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Foreword 

    1. General Information  
    1.1. For a first approximation to Evgeny Evgenievich Slutsky’s (1880 – 
1948) biography see [xix]. I have also included other materials about him 
[xviii]; [xx] and his own autobiographies [xvi; xvii], regrettably very short. 
Among obituaries I single out those written by Kolmogorov and Smirnov, 
both in 1948 and quoted by Chetverikov [xix]. Much information about 
Slutsky is contained in several Russian archives and still largely unstudied.  
    Slutsky was an outstanding scholar remembered for his achievements in 
economics, statistics and theory of probability. As an economist, he enjoys 
worldwide renown as one of the forerunners of econometrics (Zarkovitch 
1956, p. 338/1977, p. 484). See [xv, Note 20]. Slutsky saw that his 
economic studies became impossible; mathematical methods had only 
entered Soviet economics in the 1960s, and, for that matter, with great 
difficulties; the Conjuncture Institute, where he had been a consultant, was 
shut down and statisticians in general became muzzled (Sheynin 1998; 
2008, pp. 365 – 367); theological issues seriously interested him, but he 
could only discuss them with relatives and closest friends. In other words, 
he had been experiencing the usual fate (by far not its worst possible 
version) of the Soviet intelligentsia.  
    Theoretical statistics was Slutsky’s stepping stone to probability; 
moreover, two of his papers here included [iii; viii] were devoted to the 
theory of probability, but at least chronologically they belong to the 
statistical period of Slutsky’s life and directly bear on statistics. Two papers 
[vi; vii] treated the emission of paper money, and one [v] dwelt on the 
density of population, both subjects important but rarely discussed by 
statisticians. Also important were his studies of the correlation theory. In 
applications, he considered as most fruitful his geophysical contributions 
[xvi], but later he [xvii] stated that the appropriate period of his life was 
definitively lost owing to the impossibility of carrying out comprehensive 
studies.  
    I believe that the loss was only comparative, with respect to what was 
possible under more favourable conditions. Incidentally he many times 
expressed his (failed) intentions to further his work in the same direction. 
And I ought to stress that during the statistical period of his life, Slutsky 
remained one of the very few leading Soviet statisticians and that he time 
and time again referred to Chuprov, officially considered a scholar refusing 
to return to Russia. At the same time, Slutsky invariably calculated and 
provided his numerical results with superfluous (and therefore dangerous) 
digits. I [vii, Note 5] remarked on the most glaring example of this habit. 
Other unpleasant features are insufficient and sometimes careless 
explanation of his subject and the really bad, and again sometimes carelessly 
written English summaries to his geophysical papers. 
    In spite of the above, calculations were Slutsky’s strong point which is 
clearly seen in his geophysical works. Here is Kolmogorov’s pertinent 
opinion (1948/2002, p. 71): Slutsky was 
 
    Not embarrassed by corrupting the purity of his method [of solving 
problems when the analytic approach had failed]. If tables became 
necessary, […] he was prepared to spend years compiling them. 
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Kolmogorov certainly meant Slutsky’s noteworthy contribution, the table of 
the Γ-function. 
    From time to time, and especially at anniversaries of the October (old 
style) 1917 coup d’état, essays on the state of various sciences were being 
published. I (2005) have collected translations of such contributions on 
probability and statistics, and it is not difficult to find there many references 
to Slutsky. Kolmogorov, in 1935, 1938 and 1948 stressed the importance of 
his work on random functions and placed him alongside Wiener and Lévy 
(in 1935), and together with himself in 1938. In 1948, in a joint publication 
with Gnedenko, he repeated the latter statement and singled out Slutsky 
(1937). Then, in 1947, Kolmogorov named Khinchin, himself and Slutsky 
as the originators of the Moscow school of probability.  
    Smirnov, in 1948 (not in the obituary of the same year) stated that 
Slutsky, Khinchin and Kolmogorov largely created the theory of continuous 
stochastic processes and Gnedenko, in 1970, noted that Bernstein and 
Slutsky were the first Soviet authors on the theory of probability and 
mathematical statistics. 
    The tradition of publishing fundamental essays had a horrible ideological 
aspect. Thus, Khinchin (1937), of all men, wrote a servile contribution 
falsely describing the situation of science in pre-revolutionary Russia and 
comparing it with the alleged splendid position of the day, and that at the 
time when the Great Terror was in full swing! 
    Acknowledgement. It is my pleasant duty to mention Magister Guido 
Rauscher (Vienna) and Dr. Claus Wittich (Geneva). All three of us jointly 
published [xv] and it was G. R. who had discovered the Bortkiewicz papers 
(including his correspondence with Slutsky) in Uppsala. He had also found 
out that important and still largely unstudied material concerning Slutsky is 
kept in RGALI (Russian State Archive for Literature and Arts).  
    Claus Wittich partly edited my translation of [vi] and sent me the text of 
[xiii]; incidentally, that contribution had appeared both in Russian and 
English, and I have just reprinted the English version. I have also profited 
from two of his unpublished texts of 2005 and 2007 which he put at my 
disposal, Biographical notes on, and Bibliographical notes on selected 
sources concerning Slutsky. 
    I will now formulate some comments on most of the included papers. 
References to literature mentioned there are included in the Bibliographies 
to those papers, but I am providing the information about the sources 
mentioned above right now: 
 
    Khinchin A. Ya. (1937), The theory of probability in pre-revolutionary Russia and in the 
Soviet Union. Front Nauki i Tekhniki, No. 7, pp. 36 – 46. Translation: Sheynin (2005, pp. 
40 – 55). 
    Sheynin, O. (1998), Statistics in the Soviet epoch. Jahrbücher f. Nationalökonomie u. 
Statistik, Bd. 217, pp. 529 – 549. 
    ---, compiler and translator (2005), Probability and Statistics. Soviet Essays. Berlin. Also 
at www.sheynin.de  
    --- (2008), Romanovsky’s correspondence with K. Pearson and R. A. Fisher. Archives 
Intern. d’Histoire des Sciences, t. 58, No. 160 – 161, pp. 365 – 384. 
    Slutsky E. (1937), Quelche propositione relative alla teoria delle funzioni aleatorie. 
Giorn. dell. Istituto Italiano degli Attuari, t. 8, No. 2, pp. 3 – 19. 
    Zarkovitch S. S. (1956), Note on the history of sampling methods in Russia. J. Roy. Stat. 
Soc., vol. A119, pp. 336 – 338. Reprinted in Kendall M., Plackett R. L. (1977), Studies in 
the History of Statistics and Probability, vol. 2. London, pp. 482 – 484. 
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    1.2. Comments on Separate Papers  
    [iii] Kolmogorov (1948/2002, p. 69) stated that Slutsky “was the first to 
draw a correct picture of the purely mathematical essence of probability 
theory” and cited the paper here translated (“the present paper”, as I shall 
call it) and a later contribution (Slutsky 1925). Earlier, Kolmogorov (1933) 
referred to both these articles but did not mention the former in the text 
itself; curiously enough, that inconsistency persisted even in the second 
Russian translation of Kolmogorov’s classic published during his lifetime 
(Kolmogorov 1974, pp. 54 and 66). 
    Several years after 1922 Slutsky [viii, Note 2] remarked that back then he 
had not known Bernstein’s work (1917) which “deserves a most serious 
study”. 
    In his Commentary, B. V. Gnedenko (Slutsky 1960, p. 284) most 
approvingly cited a passage here intalicized in § 5 and, on p. 285, concluded 
that Slutsky had 
 
    Correctly and deeply (and apparently for the first time) approached the 
construction of the theory of probability in a rigorous and purely 
mathematical way. His paper played an important part in forming 
contemporary ideas about the foundations of the theory of probability and 
occupies a noticeable place in its history. 

 
    This English translation of [iii] first appeared in Sheynin (2005). 
    [iv] In a letter of 1924 to Chetverikov, Chuprov (Sheynin 1990/1996, p. 
49) commented: 
 
    I have recently received from Slutsky reprints of his papers. For me, the 
work [the present article] is very interesting; both in its approach and in the 
results obtained it accords with what I had arrived at for the correlation 
coefficient. 
 
There seems to be no investigation of the systematic error of that coefficient 
in Chuprov’s published works; however, Slutsky himself several times 
referred to Chuprov and Chuprov (1923, Appendix) contains all the 
formulas from the beginning of § 3 to (7) inclusively. Both that contribution 
and the present paper had appeared at about the same time. He (1925) later 
mentioned Slutsky’s paper in the appended Review of Literature but (§ 5 of 
Chapter 6) only discussed the systematic error of the correlation coefficient 
in a few lines and noted that it became essential in cases of a small number 
of observations. 
    I have not found any comparatively recent references to the systematic 
error of the correlation coefficient, but I quote Prokhorov (1999):  
 
    For a large number of independent observations having one and the same 
near-normal distribution, the sample correlation coefficient is close to the 
real coefficient. In all other cases, the correlation ratio is recommended 
instead. 
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Nevertheless, it is still possible that Slutsky’s contribution deserves to be 
recalled. Finally, I note that Slutsky wrote normal distribution in inverted 
commas although it was high time for dropping them. 
    [v] The author published this paper in a periodical intended for a broader 
circle of statisticians which apparently explains the somewhat excessively 
detailed calculations. True, he later published there much more 
mathematically oriented contributions. This time, I nevertheless think that in 
his context the remark (§ 3) about the incommensurability of certain areas 
was absolutely unwarranted.  
    In §§ 6 and 7 Slutsky calculated populations per square versta (an old 
Russian unit of length, 1.0668km). I replaced his figures passing on to 
densities per square kilometre. For the sake of brevity I usually omitted the 
“sq. km”. Slutsky also applied an old Russian unit of area, see Note 2. 
    Valentei (1985, article Slutsky on p. 409) stated: “In demography, his 
name is connected with the so-called coefficient of mean social density of 
population”. And on p. 329, in the article Density of population, that density 
is mentioned along with physical density. 
    Social density of population is also known in the English language 
literature (and possibly universally), but I am not sure that in a strict sense. 
    [vi – vii] Slutsky compiled this contribution “at the request of my [of his] 
friend Prof. L. N. Iasnopolsky” [xv, Letter No. 4]. The subject of his study 
was indeed important as witnessed, first, by his reference to a paper by 
Schmidt, the future (from 1935) academician and, much later, vice-president 
of the Academy of Sciences of the Soviet Union, and, second, by the 
appearance of his second paper [vii] published by the Conjuncture Institute. 
    I suspect that [vi, formulas (34) to (38)] notation J 1 should have been J ′. 
    [viii] Among the obvious features of this contribution are Slutsky’s 
numerous and most respectful references to Chuprov, and a similar attitude 
to the law of large numbers (incidentally, he almost always writes these 
words in inverted commas whereas I abbreviate them as LLN) which leads 
him to excessive philosophizing.  
    Khinchin (1928) later published a short paper on the strong law of large 
numbers in the same periodical. He (pp. 124 – 125) approvingly mentioned 
Slutsky in connection with the stochastic limit [viii, § 2] although did not 
explain that notion, nor did he provide any exact reference but he (p. 125) 
stated that “The true basis of the statistical applications of the law of large 
numbers is the strong rather than its usual notion”. Khinchin did not criticize 
Chuprov or Slutsky [viii]; still, the very absence of anything resembling 
their philosophical deliberations speaks for itself. He described the 
conditions for the strong law of large numbers to take place, and it was he 
who apparently introduced that term into Russian scientific literature. As a 
tiny diversion, I note that he (p. 124) wrongly believed that statisticians had 
“successfully” estimated probability by issuing from frequency and referring 
to the LLN. On the contrary, as witnessed at least by Chuprov and Slutsky, 
they remained here at a loss. Even in 1923, in a letter to Chetverikov, 
Chuprov (Sheynin 1990/1996, p. 97) acknowledged that he did not see any 
possibility of “throwing a formal logical bridge across the crack separating 
frequency from probability”. 
    In § 2 (p. 5 of the Russian text) Slutsky states that probability is the 
stochastic limit of frequency. Now, this is the inverse law of large numbers 
(Sheynin 2010) which Bernoulli had not (but thought he) proved; exactly 
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that was his aim. Neither he (nor De Moivre after him), nor Slutsky were 
mistaken, but the precision of establishing probability through frequency is 
lower than the precision of frequency when determined through probability. 
It was only Bayes who understood this circumstance, and Slutsky should 
have elaborated on his statement. He did not, however, find himself on the 
path to the frequentist theory of probability, see below, so that the situation 
is somewhat indeterminate.  
    The same year Slutsky published a companion German paper (1925) 
translated into Russian in Slutsky (1960). There, in a commentary, 
Gnedenko (pp. 285 – 286) highly estimated Slutsky’s introduction of 
stochastic asymptotes (also in § 6 of the Russian paper here translated); 
however, that notion seems to be forgotten, or, rather, not incorporated into 
one of the various kinds of convergence applied in probability. Second, 
Gnedenko noted that Slutsky had criticized Mises (without mentioning him) 
because the LLN deals with the stochastic rather than “usual” limit. In a 
weaker form, that criticism is also expressed here, in § 16.  
    Slutsky tediously discussed the then recent upheaval of geometry (§ 10). 
He could have mentioned that the entire development of mathematics, 
beginning with its emergence as the result of introducing natural numbers, 
consisted in such upheavals. Slutsky also referred to Hilbert’s axiomatic 
approach to geometry and considered his work as a pattern to be followed in 
probability. It is difficult to understand, however, why did he pass over in 
silence Hilbert’s explicit and famous demand (wish) to see the probability 
theory axiomatized. A related Slutsky’s remark was contained in his letter to 
Markov back in 1912 [xviii, § 3]: I consider it possible to develop all the 
Pearsonian theories by issuing from rigorous abstract assumptions.  
    Slutsky consistenly applied the terms random variable and theory of 
probability. The present Russian terms are random magnitude (regrettably), 
although Khinchin (1928) followed Slutsky, and theory of probabilities. 
Markov, the conservatively inclined great scientist, denied random variable 
(or magnitude) and used instead the decidedly worse expression indefinite 
magnitude; incidentally, the translators of Ondar (1977) had inadmissibly 
modernized him. Cantelli (1916a, p. 192) was likely the first to introduce the 
term random variable (in Italian), see Mises (1964, p. 52, Note 2), a 
posthumous contribution. 
    Concerning the random variable, Slutsky followed Chuprov (1922, at the 
very beginning); on the other hand, at least sometimes Chuprov (1909/1959, 
p. 13) wrote theory of probabilities. Then, Slutsky (beginning of § 5) also 
introduced distribution of probabilities (law of distribution) of a discrete 
random variable and, in his Note 8, properly mentioned Chuprov (1922, at 
the very beginning). I did not find anything similar in Czuber (1903/1908). 
Markov (1900/1924) also introduced it earlier than Slutsky, but only on p. 
74, in a chapter on the LLN, and did not name it at all.  
    Slutsky did not apply the notation of the type x  for the arithmetic mean (I 
myself introduced it in the translation) although he himself did so 
previously, for example in a paper in the same periodical [iv, § 1], and 
called it usual.  
    The most important point is, however, that, issuing from the paper 
translated below, Slutsky “arrived at the notion of stochastic process”, see 
[xvii]. 
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    [ix] Slutsky’s description of Chuprov’s Ocherki (Essays) (1909) was quite 
consistent with its general appraisal. Markov’s opinion (1911/1981, p. 151), 
was neglected: they lacked “that clarity and definiteness that the calculus of 
probability requires”. Even more: the reader of our time will be lost in the 
ocean of Chuprov’s general and hardly necessary considerations and simply 
will not understand his stress on philosophy and logic at the expense of 
mathematics. 
    Markov (Materialy 1991, p. 195), however, was outspoken; in a letter of 
1910 to V. A. Steklov, the future vice-president of the Russian Academy of 
Sciences, he wrote:  
 
    From the mathematical point of view, [the Ocherki] contain much more 
nonsense than [the dissertation of Orzensky, a Russian statistician not 
mathematically oriented]; it is certainly necessary to reject it. 
 
    I (Sheynin 2009b, pp. 5 – 9) severely criticized that contribution; here, I 
briefly repeat some of my considerations leaving aside such points as 
Chuprov’s timid (at best) disapproval of Bortkiewicz’ alleged law of small 
numbers (Sheynin 2008); his strange failure to discuss randomness; his 
mistaken belief in Cournot’s “canonical” proof of the law of large numbers 
and hesitant attitude about its meaning for statistics.  
    Chuprov (1905; 1906; 1909) discussed nomological and ontological 
relations; the former applied to certain phenomena universally or at least in 
general, the latter’s action was restricted in space and/or time, but was it 
really necessary to introduce these concepts into statistics? He borrowed 
those concepts from German philosophers Rickert and Windelband whom 
historians of that science barely remember, but statisticians have definitely 
forgotten about them.  
    What Chuprov could have noted, but obviously did not know, was the 
appearance, in 1825, of the so-called numerical method, actually known in 
various branches of natural sciences. It was based on facts almost without 
any theories; an example can be a chart of the starry heaven containing 
thousands of stars, see Sheynin (1982, § 4). The existence of that method 
compels me to disagree, at least partly, with Nekrasov, who, in 1896, while 
approving Chuprov’s (unpublished) student dissertation, inserted a marginal 
comment on its p. 4 (Sheynin 1990/1996, p. 85) containing this passage: 
 
    Concerning [force, space, time, probability] philosophers have written 
full volumes of no use for physicists or mathematicians. Mill, Kant and 
others [certainly including Windelband and Rickert] are not better, but 
worse than Aristotle, Descartes, Leibniz […]. 
 
    At the time, Nekrasov was a most serious scientist but later, as far as 
probability and statistics was concerned, he became almost a non-entity 
(Sheynin 2003).  
    Much later Chuprov himself (Bortkevich & Chuprov 2005, Letter No. 
162 of 1921) remarked that “These last years” he was “turned aside” from 
philosophy to mathematics. For that matter, Chetverikov [xix, § 2] made the 
same remark about Slutsky. Still, in 1925, in a letter to Slutsky (Sheynin 
1990/1996, p. 49), Chuprov stated that he considered the analysis in [viii], a 
paper with an excessive emphasize on philosophy, “as perfect”. 
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    There is much more to criticize in Chuprov’s works. Thus, he stated his 
problems in a most general manner, and his formulas became therefore 
extremely complicated and hardly checked by anyone during the latest 
decades. Here is the relevant opinion of Romanovsky (1930, pp. 416 and 
417) concerning formulas of the theory of correlation: Being “of 
considerable theoretical interest”, they are “almost useless; extremely 
unwieldy […] and hardly studied”. 
    A special cause here was Chuprov’s bad system of notation. In one 
contribution, he (1923) even introduced horrible expressions with two-
storey subscripts and superscripts of the same structure, – in all, four storeys 
supplementing the main line at the same time!  
    On the other hand, Slutsky had not noticed either Chuprov’s work as a 
public figure (he published more than 60 newspaper articles) or reviewer 
(more than 20 reviews of statistical literature published during the last 
decade of his life and about a dozen before that). And no one knew that 
Chuprov advocated an all-out intervention of the West to crush Bolshevism 
since the “fabula narratur […] about the fate of the European culture”.  
    This is a statement from his letter of 1919 to someone from the Russian 
Liberation Committee in London. The documents of that Committee (30 
volumes) are kept in the British Library in London, but for about 90 years 
the archivists there have been unable to compile an inventory of those 
materials (which once more testifies to the scornful and extremely harmful 
Western attitude to Russian science and culture). The quotation above is 
from Add 54437, pp. 123 – 128, the only code known to me.  
    I also note that Slutsky’s note is too short likely because Mises, the Editor 
of the Zeitschrift, stipulated that it should be no more than one page long 
[xv, Letter No. 9].  
    [x] Here, as in [xi], Slutsky applied the Fisher z-transformation. The 
problem he solved (experimentally and not really rigorously), see the title of 
the contribution, was indeed difficult. This is proved by the appearance of a 
paper (Hawkins 1989) whose author solved a similar problem analytically, 
certainly not knowing about his predecessor and only more than half a 
century later.  
    One of Slutsky’s previous contributions (1927) to which he referred does 
not really belong to the set of his works here translated, but Ondar 
(1977/1981, p. 144, Note 4) had made an interesting remark about it. There, 
Slutsky (1927/1960, p. 101) anticipated Bernstein in considering a returning 
chain (a random bridge).  
    [xi] The subject of this study is certainly important. However, for those 
times his explanations were insufficient. As also in his other papers, he 
provided many numerical results with too many significant digits thus 
misleading his readers. Then, he applied both the probable, and the mean 
square error and, moreover, without mentioning that the former was much 
inferior.  
    In his § 6, Slutsky noted that the errors of the measured values of solar 
constant were too large but he did not study how that fact influenced his 
conclusions. Moreover, that constant, as he himself noted in the very 
beginning of this paper, should have been measured outside the earth’s 
atmosphere, and it was therefore necessary to say something about the 
impossibility of ensuring it in those times. Finally, his study essentially 
depended on the measurement of temperatures made by previous authors, 
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but he said nothing about its precision so that his investigation was not 
altogether complete even as a discussion of their work. 
    Chetverikov [xix, end of § 8] reported that Slutsky had also studied 
annual rings of giant sequois of Arisona covering about two thousand years 
aiming to reach some conclusions about the changes of solar constant in 
time, but that his materials were lost during his move to Tashkent in 
wartime, in 1941. Also in § 8 Chetverikov noted that Slutsky’s statistical 
papers provided a bridge for his future stochastic contributions. 
    [xii] Some criticism can be repeated from the above lines, but Slutsky did 
not mention the probable error here and the few numerical calculations were 
acceptable.  
    [xiii] Slutsky’s note is difficult to understand, partly due to the brevity 
expected in the pertinent source and to the carelessness of the 
communicator. His main actual result is that the periodicity of sunspots is 
11.1 years, but that the problem “deserves further study”. In essence, this 
was not new: in 1901, without taking into account northern lights, Newcomb 
(Sheynin 2002, p. 155) had determined the same figure so that Slutsky’s 
main result was that that periodicity did not change. Nowadays, its strict 
constancy is denied and the period is held to be approximately 11 years.  
    In accordance with the regulations, Slutsky’s note was additionally 
published in one of the three main European languages, namely in English.  
    [xiv] The very title of this paper brings to mind the later Monte Carlo 
method. It was Buffon who, in 1777, decisively introduced geometric 
probability and an appropriate experiment into the theory of probability. His 
celebrated example (the fall of a needle on a set of parallel lines) prompted 
the generally known Laplace’s comment that that experiment can provide a 
value for the number π. However, his comment can serve as a good 
illustration of Slutsky’s remark (end of § 1) that experiments become 
unnecessary once the pertinent problem is solved theoretically. 
    Slutsky’s main problem (comparison of series of observations of two 
phenomena) could have been solved by applying, for example, the 
Spearman coefficient of rank correlation proposed in 1906. It is suited for 
comparing series consisting of the same number of terms, whereas Slutsky 
introduced a trick allowing him to drop that restriction by artificially 
lengthening the shorter series (which certainly should not be too short). He 
was thus able to estimate the probability that the phenomena were 
independent or not. 
    However, the comparison of harvests with solar activity over a large 
number of years was meaningless (see Note 14). In the 19th century several 
authors (Sheynin 1984, pp. 159 – 160) qualitatively studied the influence of 
solar activity on meteorological phenomena, and Slutsky himself [xi] 
investigated it as well.  
    [xv] We publish the extant letters of the correspondence between Evgeny 
Evgenievich Slutsky (1880 – 1948) and Vladislav Iosifovich Bortkevich, or 
Ladislaus von Bortkiewicz (1868 – 1931) that constitutes a part of the 
latter’s posthumous archive kept at the Manuskript & Musik Abteilung of 
the Library of Uppsala University (Sweden), Kapsel 7, and recently 
discovered by Guido Rauscher. Slutsky partly, and Bortkiewicz completely 
adhered to the (Russian) system of spelling drastically changed in 1917 – 
1918. It is perhaps noteworthy that there are no extant letters written by 
Slutsky from Moscow after mid-1926, – when the political situation in 
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Russia began to worsen drastically and his own circumstances became 
precarious although he continued to correspond with Western colleagues 
such as Ragnar Frisch (Chipman 2004). 
    On that point see Bortkevich & Chuprov (2005, Note 178.2 on p. 305) 
and [xviii, § 2]. The first source quotes Ptukha’s letters to Bortkevich dated 
19 Febr. and 22 May 1927:  
 
    Remnants of the previous leadership of the Central Statistical Directorate 
and of the zemstvo statistics are being rooted out. 
 
    For Slutsky and Chetverikov life is not sweet at all. 
 
On Ptukha see Note 1.  
    Bortkiewicz’ letters are obviously drafts. Their reading is difficult and we 
were unable to decipher some words; such cases are denoted by [?]. Then, 
he crossed out many lines, sometimes not clearly enough and in many cases 
did not write out words completely. Some words and expressions in 
Slutsky’s letters are underlined (here italicized), and there are cases when 
this was done very crudely, most likely by Bortkiewicz.  
    Among other topics, Slutsky dwelt on logical and philosophical issues 
connected with statistics, and it is opportune to note (Chetverikov [xix, § 
10]) that in the mid-1940s he 
 
    Even with some irritation refused to discuss purely logical concepts 
although he had been unable to disregard the then topical criticism levelled 
by Fisher against the problem of calculating the probabilities of hypotheses 
(of the Bayes theorem).  
 
    In his letters, first from Kiev, then from Moscow, Slutsky invariably 
indicated his address: Nesterovskaia St. 17, flat 8, and Mashkov St. 17/15 
(by N. S. Chetverikov, Chuprov’s closest student), respectively. 
    Bortkiewicz is known to have corresponded with Slutsky since the latter 
(Letter No. 3) had adopted a term suggested by his colleague. That they 
exchanged letters from time to time was not, however, ascertained, and only 
recently Bortkiewicz’ correspondence with Ptukha and Chetverikov came to 
light (Bortkevich & Chuprov 2005, p. 10). Actually, although having lived 
in Germany for 30 years (and about seven years before 1897), Bortkiewicz 
had retained ties with Russia (Sheynin 2001, p. 228; Bortkiewicz & 
Chuprov 2005, pp. 9 – 12). 
    Here is an excerpt from a letter of Chuprov to Bortkiewicz of 13.2.1923 
from Dresden (Ibidem, р. 250) which apparently led to the correspondence 
between the latter and Slutsky: 
 
    I have recently received a letter from Ptukha. […] I also received a letter 
from Evg. Evg. Slutsky, again from Kiev. He had been in Moscow, attended 
the stat. conference, and obtained there my address from Chetv. He tells me, 
among other things, that a mathematician from Central Asia [Bortkiewicz 
remarked here: Romanovsky] read out a report in which he arrived in a 
similar way at some of my results which I had published in Biometrika. 
Amusing! It would be good if you will be able to send him some of your 
reprints, and especially Homogenität etc. He has again returned to math. 
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stat. Delivers a course and is working himself in that field. Laments the 
absence of recent literature. It would be possible to send them through his 
relative N. Wolodkewitsch, Parkstrasse 4 [?] Berlin-Südende1. 
 
    [xix] The essay below complements other pertinent sources, notably 
Kolmogorov (1948). Regrettably, however, two negative circumstances 
should be mentioned. First, Chetverikov quoted/referred to unpublished 
sources without saying anything about their whereabouts. Second, 
Chetverikov’s mastery of mathematics was not sufficient, – he himself said 
so before adducing a long passage from Smirnov (1948), – and I had to omit 
some of his descriptions. As compared with the initial version of this essay, 
the second one lacks a few sentences; I have inserted them in square 
brackets. Then, being able to see the texts of Slutsky’s autobiographies, I 
note that Chetverikov quoted them somewhat freely (although without at 
all corrupting the meaning of the pertinent passages). 
    A special point concerns terminology. Slutsky’s term “pseudo-periodic 
function” also applied by Smirnov, see above, and retained in the English 
translation of Slutsky’s paper [17], is now understood in another sense, see 
Enc. of Mathematics, vols 1 – 10, 1988 – 1994. 
   Chetverikov, moreover, applied a similar term, quasi-periodic function, in 
the same context. It is now understood differently and, in addition, does not 
coincide with “pseudo-periodic function” (Ibidem). Note that Seneta (2001) 
applies the adjective spurious rather than pseudo. Unlike Chetverikov and 
Kolmogorov, he also mentions Slutsky’s discovery [13] that, if a sequence 
of random variables {ξi} tends in probability to a random variable ξ, then 
f(ξi), where f is a continuous function, tends in probability to f(ξ). 
    Nikolai Sergeevich Chetverikov (1885 – 1973) was Chuprov’s closest 
student. In 1923 – 1929 he worked at the Conjuncture Institute, later in 
various other institutions. Four years was in prison or labour camp as a 
saboteur (1931 – 1934?), repressed once more (1937 – 1946?) which at least 
meant prohibited to live in large cities. Published two collection of articles 
(1963; 1975), translated many Chuprov’s papers from German as well as 
Cournot (1843). See Sheynin (1990/1996, § 7.7), Komlev & Manellia 
(1990), Manellia (1998) and [xix]. As discovered by G. Rauscher, many of 
his unpublished and unstudied manuscripts are kept at the Moscow branch 
of the Archive of the Russian Academy of Science (Fond 1650). 
    The English translation of this essay first appeared in Sheynin (2005). 
    Chetverikov was certainly unable to publish some important facts, and I 
additionally report Kluikin’s archival findings (2009, pp. 78 – 82). In the 
end of 1929 Slutsky experienced a nervous breakdown caused by the 
general political climate and the situation in the statistical circles and did not 
publish anything in 1930 and 1931. In 1941, he was evacuated to Tashkent 
rather than Kazan and for a few years dismissed from the Mathematical 
Institute. The cause of that intrigue remains unknown.  
    In 1942, in a letter to Chetverikov, Slutsky commented on the book 
Boiarsky et al (1930): 
 
    The consequences of the evil, which persons known to you, namely 
Ia[strem]sky & Co., had inflicted on our statistics, were insurmountable. 
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    I myself (1998, p. 533) quoted from the telling Preface to that source as 
translated by Chuprov’s student Anderson. Kluikin also noted that  Slutsky 
had been seriously considering theological issues (which he could have only 
discussed with his relatives and closest friends). 



 14 

 

I 
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Manuel pour servir à l’étude  

de quelques méthodés principales de la statistique moderne 

 

Annales de l’Institut Commercial de Kiew 

vol. 16, 1912, 208pp. 

 
The entire book (whose title was also provided in Russian) is translated  

(Berlin, 2009; also at www.sheynin.de) 
Here, only the introductory sections are included  

 

Annotation 

 
    This is a translation of Slutsky’s contribution of 1912 which was intended 
for Russian readers. He described the Pearson’s theory of correlation 
drawing on the pertinent work of that founder of biometry and on many 
other British authors. At the time, Markov failed to appraise it properly 
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Foreword by Translator 

 
    1. Slutsky: life and work 
    2. The book on the theory of correlation 

    3. Foreword to Slutsky (1960) 
 

1. Slutsky: Life and Work 

1.1. General information. Evgeny Evgenievich Slutsky (1880 – 1948) was 
an economist, statistician and mathematician, in that chronological order. 
His life and work are described in Kolmogorov (1948), Smirnov (1948), 
Chetverikov (1959), Allen (1950), Sheynin (1999), Seneta (2001), with 
pertinent archival and newspaper sources quoted in Sheynin (1990). Slutsky 
himself (1938 and 1942, published 1999) compiled his biography. In two 
other unpublished pieces Wittich (2004; 2007) provides valuable data on 
Slutsky’s life and a pertinent annotated bibliography. In another unpublished 
paper Rauscher & Wittich (2007) collected information about Slutsky the 
poet and connoisseur of literature, a side of his personality (as well as his 
being an artist) that remains unknown. Kolmogorov (1948/2002, p. 72) 
called Slutsky “a refined and witty conversationalist, a connoisseur of 
literature, a poet and an artist”. 
    Slutsky’s works include his student diploma (1910), the book of 1912 
translated below, a paper (1914) which directly bears on a subject discussed 
in that book, and a most important economic contribution (1915), see also 
Chipman & Lenfant (2002) and Chipman (2004). His Selected Works (1960) 
contains his biography written by B. V. Gnedenko and an almost complete 
list of his works. In my § 3 below, I translate its Foreword. 
    In 1899, Slutsky enrolled in the mathematical department of Kiev 
university, was drafted into army with others for participating in the 
students’ protest movement; released after nationwide shock; expelled in 
1902 for similar activities and banned from entering any other academic 
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institution. In 1902 – 1905 studied mechanical engineering at Munich 
Polytechnic School; obviously gained further knowledge in mathematics 
and physics, but remained disinclined to engineering. In 1905 was able to 
resume learning in Russia, graduated with a gold medal from the Law 
faculty of Kiev University (end of 1910). His book of 1912 ensured him a 
position at Kiev Commercial Institute. Became professor at a successor 
organisation of that institute but had to move to Moscow because of an 
official demand that teaching ought to be in the Ukrainian language.  
    Worked as consultant (a very high position) at the Conjuncture Institute 
and Central Statistical Directorate. Owing to the beginning of the Stalinist 
regime with horrible situation in statistics (Sheynin 1998), abandoned these 
occupations, turned to the applications of statistics in geophysics. Did not 
find suitable conditions for research, became engaged in mathematics. 
Worked at Moscow State University, received there the degree of Doctor of 
Physical and Mathematical Sciences honoris causa and (Slutsky 1942/2005, 
p. 145)  
 
    was entrusted with the chair of theory of probability and mathematical 
statistics. […] However, soon afterwards I convinced myself that that stage 
of life came to me too late, that I shall not experience the good fortune of 
having pupils. My transfer to the Steklov Mathematical Institute also created 
external conditions for my total concentration on research […] 
 
Until the end of his life Slutsky had been working at that Institute of the 
Academy of Sciences, became eminent as cofounder of the theory of 
stationary processes, died of lung cancer. Was happily married, but had no 
children. From 1912 to Chuprov’s death in 1926 maintained most cordial 
relations with him.  
    A special remark is due to Allen (1950, pp. 213 – 214):  
 
    For a very long time before his death Slutsky remained almost 
inaccessible to economists and statisticians outside Russia. […] His 
assistance, or at least personal contacts with him would have been 
invaluable.  
 
    Slutsky compiled his book in a very short time; in a letter to Markov of 
1912 he (Sheynin 1990/1996, p. 45) explained that he had “experienced a 
direct impetus from Leontovich’s book [1909 – 1911] […] as well as from 
information reaching me […]”. So had he meant 1909 or 1911? He was 
more specific elsewhere (Slutsky 1942/2005, p. 142): “In 1911, I became 
interested in mathematical statistics, and, more precisely, in its then new 
direction headed by Karl Pearson”. 
    Slutsky possibly read some statistics at the Law faculty, but hardly much; 
he did not mention anything of the sort in his published works. So it seems 
that in about a year, all by himself, he mastered statistics and reached the 
level of a respected author!  
    1.2. A special publication: Slutsky’s correspondence with Bortkiewicz, 
1923 – 1926 (Wittich et al 2007). I describe some of Slutsky’s letters. 
    Letter No. 3, 25.9.1923. Slutsky made 3000 statistical trials to study 
whether equally probable combinations occurred independently from the 
size and form of bean seeds, cf. § 42 of his translated book. He never heard 
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that automatic registering devices were applied in such experiments and 
even invented something of the sorts “out of boredom”. 
    Letter No. 7, 16.5.1926. Slutsky had to move to Moscow because of 
“some discord with the Ukrainian language”, cf. § 1.1 above, most warmly 
mentioned the deceased Chuprov. He works as a consultant at the 
Conjuncture Institute “together with Chetverikov” (Chuprov’s closest 
student and follower) and “had to become” consultant also at Gosplan (State 
Planning Committee), an extremely important and influential Soviet 
institution. I venture to suppose that the situation there also became difficult 
and real scientific work was even considered subversive. Anyway, nothing 
is known about Slutsky’s work there so that he apparently soon quit it.  
    Letter No. 10, 14.6.1926. Slutsky discussed his paper of 1915 and stated  
 
    I would have now ended it in an essentially different manner. For 
uniqueness (to an additive constant) of the definition of the function of utility 
it is not necessary to demand that on each hypersurface of indifference there 
exists a pair of such benefits that 
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    It is sufficient to be able to draw a line cutting a number of such 
hypersurfaces along which the marginal utility remains constant, and this is 
in principle always possible. This result can also be obtained by elementary 
considerations. 
 
    Then Slutsky refers to his not yet published paper (1927); see also 
Chipman (2004). 

 

2. The Book on the Theory of Correlation 
    2.1. Opinions about it. The book was published, as stated on its title-
page, in the Izvestia (Annales) of the Kiev Commercial Institute, and, as 
mentioned by several authors, appeared independently later the same year. 
Sections 25, 28 and 43 (these numbers conform to those adopted in the 
translation) contained “additions to the Pearson theories”, see Slutsly’s letter 
to Markov of 1912 (Sheynin 1990/1996, pp. 45 – 46). As mentioned out of 
place in a footnote to its Introduction, Slutsky reported on his work to the 
Kiev Society of Economists. Those “Pearson theories” are what the whole 
book is about, and it is hardly out of order to mention my paper (2010) on 
that scientist. 
    2.1.1. Chuprov. He (Sheynin 1990/1996, p. 44) published a review of 
Slutsky’s book stating that its author “gained a good understanding of the 
vast English literature” and described it “intelligently”. He “most 
energetically” recommended the book to those having at least “some 
knowledge of higher mathematics”. At the time, Chuprov was not yet 
critically inclined towards the Biometric school; he changed his attitude 
later, no doubt having been turned in the mathematical direction by his 
correspondence with Markov (Ondar 1977). 
    Apparently in 1916, Chuprov (Sheynin 1990/1996, p. 45) compiled 
Slutsky’s scientific character which contained a phrase: in Slutsky’s person 
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“Russian science possesses a serious force”, but he obviously did not 
imagine how correctly he assessed his new friend! 
    There also (p. 29) I published an archival letter written by N. S. 
Chetverikov to Chuprov at the end of 1926. He most favourably described 
the situation at the Conjuncture Institute (where he himself held a high 
position) and informed his correspondent, already terminally ill, that 
Kondratiev was inviting him to join their staff. He added, however, that the 
general situation in the Soviet Union was unclear. 
    2.1.2. Pearson. He rejected both manuscripts submitted by Slutsky 
(Sheynin 1990/1996, pp. 46 – 47). In 1913, Slutsky wrote Chuprov about 
that fact and asked his advice stating that at least in one instance the reason 
for the rejection “astonished” him. Chuprov did fulfil Slutsky’s request and, 
accordingly, Slutsky successfully published one of his manuscripts (1914). I 
(Sheynin 2004, pp. 227 – 235, not contained in the original Russian paper) 
made public three of Slutsky’s letters to Pearson of 1912. 
    2.1.3. Markov. Continental mathematicians and statisticians, and 
especially Markov utterly disapproved of the Biometric school and I myself 
have described vivid pertinent episodes (Sheynin 1990/1996, pp. 120 – 122; 
2007). In his letters to Chuprov Markov (Ondar 1977/1981, letters 45 and 
47, pp. 53 and 58) remarked that Slutsky’s book (no doubt partly because of 
that general attitude) “interested” him, but did not “attract” him, and he did 
not “like it very much”. 
    More can be added. A few years later, Markov (1916/1951, p. 533, 
translation p. 212) critically mentioned the correlation theory: it “simply” [?] 
aims to discover linear [?] dependences, and, when estimating the 
appropriate probable errors, “enters the region of fantasy […]”. This 
statement was based on an unfortunate application of that theory by a 
Russian author, but Linnik (Markov 1951, p. 670; translation, p. 215), who 
commented on Markov’s memoir, explained that the conclusions of the 
correlation theory depended on the knowledge of the appropriate general 
population. Slutsky, in 1912, did several times mention the general 
population (also see below) but certainly not on the level of mid-20th 
century. However, Markov could have well noted Slutsky’s  conclusion (§ 
22) to the effect that the correlation method should not be applied when 
observations are scarce (which was the case discussed by Markov). 
    Markov’s attitude shows him as a mathematician unwilling to recognize 
the new approaches to statistics and even to the theory of probability (and 
denying any optimal properties of the method of least squares), see Sheynin 
(2006). Markov had time to prepare the last edition of his treatise that 
appeared posthumously (1924). There, he somewhat softened his views 
towards the correlation theory and even included Slutsky’s book in a short 
list of references to one of its chapters. 
    Upon reading Slutsky’s book Markov asked Grave, a professor at Kiev 
university, about the new author. Dmitry Aleksandrovich Grave (1863 – 
1939) was active in many branches of mathematics and he also published a 
treatise on insurance mathematics (in the same volume of the Kiev 
Commercial Institute Izvestia as Slutsky). In a letter toMarkov of 1912 
Grave (Sheynin 1999/2004, p. 225) informed his correspondent that neither 
he himself, nor the lawyers, professors at that Institute, had understood 
Slutsky’s report (see § 2.1 above), that they desired to acquaint themselves 



 19 

with the Pearson theories and asked him to explicate it properly. Grave, 
however, finds it “repulsive” to read Pearson. 
    Grave also told Markov about his conversation with an unnamed 
university professor of political economy who had explained that Slutsky 
was “quite a talented and serious scientist” not chosen to study as 
postgraduate “because of his distinct sympathy with social-democratic 
theories”.  
    2.1.3. Slutsky explained himself in an apparently single extant letter to 
Markov of 1912 (Sheynin 1990/1996, p. 45 – 46). Improvements of his 
manuscript “were hindered by various personal circumstances” and he 
“decided to restrict myself [himself] to a simple concise description” the 
more so since it will help those Russian statisticians who are unable to read 
the original literature. He then prophetically stated that “the shortcomings of 
Pearson’s exposition are temporary” and that his theories will be later based 
on a “rigorous basis” as it happened with mathematics of the 18th and 19th 
centuries. He added a most interesting phrase: “I consider it possible to 
develop all the Pearsonian theories by issuing from rigorous abstract 
assumptions”.  
    Slutsky also mentioned Nekrasov: when his book (1912) had appeared, he 
began to think that  
 
    My [his] work was superfluous; however, after acquainting myself 
[himself] more closely with Nekrasov’s exposition, I [Slutsky] became 
convinced that he [Nekrasov] did not even study the relevant literature 
sufficiently. 
 
    In § 31 (Note 31.1) Slutsky praised the same book; perhaps he did not yet 
read it “more closely”: after ca. 1900, Nekrasov’s contributions on the 
theory of probability and statistics became almost worthless (and utterly 
disgusted Markov), see Sheynin (2003). 
    In a letter to Chuprov of the same year Slutsky (Sheynin 1990/1996, p. 
44) noted that Grave “actively participates” in the dispute (between Markov 
and him) and added that Markov “gave me [him] a good dressing-down”. 
[…] It was easy for Markov “to discover a number of weak points”. 
    2.1.4. Kolmogorov (1948/2002) published Slutsky’s obituary which 
clearly shows his personal ties with the deceased. He (p. 68) stated that the 
book of 1912 “became a considerable independent contribution to 
[mathematical statistics and] remains important and interesting”. On the 
same page Kolmogorov listed “the main weakness[es] of the Biometric 
school: 
 
    Rigorous results on the proximity of empirical sample characteristics to 
the theoretical ones existed only for independent trials. 
    Notions of the logical structure of the theory of probability, which 
underlies all the methods of mathematical statistics, remained at the level of 
the 18th century results. 
 
The third and last weakness concerned the incompleteness of the published 
statistical tables. 
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    Kolmogorov indirect advice of applying Slutsky’s book at least as a 
background was not, however, followed; even Slutsky’s examples of 
statistically studying various problems had hardly ever been cited. 
    2.1.5. Some general remarks about the book. Information provided 
above, at the end of § 1.1, explains why Slutsky was unable to add a few 
pages about Pearson, his followers (and Galton!), or to be at least somewhat 
more critical. He certainly understood that the work of that great scientist 
was far from rigorous (see § 2.1.3 above), but on this point he only 
expressed himself about the method of moments (Additional remarks). 
Slutsky also felt that statistics ought to be based on the theory of probability; 
he said as much, although not quite generally, at the end of his § 32, and 
stated, in a letter to Markov (§ 2.1.3 above), that that approach was 
achievable. 
    On the other hand, the reader will not fail to note that Slutsky also became 
quite familiar with the practical side of statistics; his book abounds with 
pertinent remarks! And he also properly provided a lot of original examples 
of applying correlation theory. 
    Slutsky (the end of § 2.1.3 above) acknowledged that Markov had 
“discovered a number of weak points” in his book. For my part, I believe 
that he had succeeded by and large to provide a good general picture of his 
subject, but I ought to say the following. 
    1. He made a mistake in his reasoning on weighing observations, see my 
Note 28.1, in § 28 which contained his “additions to the Pearson theories”, 
see § 2.1 above. I mentioned another mistake in Note 16.1. 
    2. His explanations were sometimes inadequate or even lacking, see 
Notes 3.1, 4.3, 16.2, 40.1 and 41.2. 
    3. An author ought to show readers not only the trees, but the wood as 
well, and I especially note that Slutsky had not stated expressly and simply 
that a zero correlation coefficient does not yet signify independence. His 
explanation (beginning of both §§ 19 and 29) is not quite sufficient, and in § 
31 he only discusses correlation and causality. 
    4. He offered a faulty example (Note 31.3). 
    5. He introduced confusing notation (Note 18.5). 
    Slutsky’s system of numbering the sections and formulas was not the best 
possible. Now, in the translation, sections are numbered consecutively (not 
separately for each part), and the numbering of the formulas allows to locate 
them quite easily; thus, formula (3.2) is the second numbered formula in § 3. 
The Notes (by Slutsky, signed E. S., and my own, signed O. S.) are 
numbered the same way.  
    I have omitted some pieces of the original text such as elementary 
explanations (even concerning the calculation of determinants), 
mathematical derivations and tables of data which after all can be looked up 
in the English literature described by Slutsky. Then, I have not included the 
numerous figures and, accordingly, had to modify their accompanying 
description. 
    Acknowledgements. Magister Guido Rauscher sent me his joint 
unpublished material (Rauscher & Wittich 2006) and photostat copies of 
Slutsky (1938; 1942), of the Contents of Slutsky (1910) and of the entire 
book translated below. From Dr Claus Wittich I received his unpublished 
contributions (2004; 2007). 
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Statistics and mathematics. Review of Kaufman (1916) 
Statistika i matematika. 

Statistichesky Vestnik, No. 3 – 4, 1915 – 1916, pp. 104 – 120 
 
    [1] Kaufman’s treatise, now in its third edition, is certainly an outstanding 
phenomenon in our educational statistical literature, and not only in our as 
testified by the reviews of its German edition (1913) written by the most 
notable representatives of the European statistical thought1. This third 
edition will also obviously find many friendly readers the more so since in 
its main parts and especially in its first theoretical part it is entirely recast as 
compared to 1912. 
    However, those who attentively followed the evolution of Kaufman’s 
work will not fail to note that at least in one respect this third edition is not a 
simple development of the previous one but as though some new stage in the 
author’s statistical Weltanschauung. Indeed, the author intended both the 
second and the third editions as a manual for those wishing to prepare 
themselves for working in statistics but lacking that mathematical 
background necessary for entirely mastering statistical theory and methods. 
    The author (1912, p. 235) believed (and believes) that 
 
    It is hardly possible to master consciously the principles of the statistical 
theory […] without [its] connection with the main principles of the theory of 
probability. 
 
He therefore devoted sufficient efforts and place to provide his readers with 
a possibly more distinct idea about both the theory of probability and its 
application for solving fundamental issues of the theory of statistics. As to 
the practical application of the formulas and tricks of the higher statistical 
analysis, the author (p. 236) properly and tactfully warned those 
insufficiently prepared: 
 
    Thoroughly perceive the boundaries of your competence. […] In 
particular, certainly abstain from mechanically applying final formulas 
provided by mathematical statistics without being quite clearly aware of 
their intrinsic meaning and sense, otherwise misunderstanding can often 
result. 
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    For consoling his readers he (p. 235) stated that he was sure that “In its 
current state, statistics still leaves for them an infinitely broad area of 
activity”. True, he (p. 234) apparently did not entirely get rid of his serious 
doubts about the issue of the interrelations between statistics and 
mathematics and while acknowledging that “It is hardly possible to resolve 
the difference of opinion” among the representatives of the statistical theory 
(my italics), he even avoided any attempt to clear up this matter in his 
manual. Given these circumstances, his practical way out, as mentioned 
above, to which he became inclined, could have only been welcomed. This 
is all the more so since the general outline of his introduction to the theory 
of statistics and a number of other instances (see, for example, his very 
indicative remarks on pp. 131 and 132) allow to think that it were 
considerations about the difficulties of mathematical methods rather than 
doubts about the principles themselves that compelled the author to hesitate. 
    [2] That practical dualism is not at all specifically peculiar to statistics 
and is observed in other sciences and reflects the distinction between the 
individual features of the researchers and the subjects of their work 
(theoretical and practical astronomy, theoretical and experimental physics 
etc). However, in this third edition it became transformed into a dualism 
different in principle, the dualism between statistical theory and practice (p. 
148): 
 
    As a rule, because of the very properties of this [statistical – E. S.] 
material statistical analysis does not allow, and because the structure based 
on that data is coarse and at the same time complicated, does not demand 
the application of formulas of the calculus of probability. However, this 
does not at all contradict the fact that each such structure is entirely based 
on the principle of probabilities. 
 
    But the author (p. 153) also keeps to his previous divide between 
statisticians who “follow and will follow the routes demanding application 
of more or less complicated forms of mathematical analysis” and others who 
“while treating […] statistical material and interpreting its results, may 
restrict their efforts to elementary methods of calculation”. 
    This motif now seems rather inconsistent with the previous. Indeed, how 
is it possible to reconcile the right of a purely practical distinction only 
founded in essence on the division of labour between the researchers and the 
abovementioned standpoint negative in principle, or the author’s statements 
(p. 152) that such procedures as the construction of frequencies of 
distribution, adjustment of series etc “not only do not help to elucidate the 
real features of the studied phenomena, but, on the contrary, can provide 
ideas corrupting reality” and that “the method of correlation does not add 
anything essential to the results of elementary analysis”? 
    Choose one or the other: either these procedures and methods are useless 
and therefore harmful and ought to be altogether abandoned; or, they are 
useful, but demand an understanding of their essence, meaning and 
boundaries of application which is at least partly possible even in a treatise 
intended for readers lacking sufficient mathematical background. 
    The dualism of the author’s point of view which is not objectively 
resolved in those texts becomes nevertheless somewhat explained after 
reading that (p. 147) 



 24 

 
    The issue of our right to apply [in the area of general statistics – E. S.] the 
methods of the calculus of probability is in any case left open, or, as he adds, 
open for me. 
 
    Objectively speaking, this pronouncement certainly only confuses the 
matter since the reader remains ignorant of the basis on which, as the author 
believes, his own arguments against applying the calculus of probability are 
weakened and he is led to adopt it in the practical sense on the one hand and 
to candidly ignore it on the other.  
    And still, if I am allowed to express my general feeling, I ought to say 
that the main and the specific for the author is apparently at present not this 
previous hesitation and doubts which reflected the former stage of his 
scientific evolution, but the formed and almost firmly established conviction 
in that the statistical analysis does not either allow or demand probability 
theory. 
    I have thus returned to the quote from p. 148 with which I started to 
describe the present viewpoint of Professor Kaufman and I think that after 
all stated above I am compelled at least conjecturally to adopt it as the 
expression of the real opinion of the author, to assume it as the starting point 
and main object of my critical remarks below. 
    However, I have to begin elsewhere. Indeed, I am sure that the indicated 
dualism between statistical theory and practice is rooted much deeper, i. e., 
not in the author’s understanding of the role of probability theory, but in his 
ideas about the essence of statistics, and that issue is not yet clarified in 
contemporary literature in any sufficient measure.  
    [3] Kaufman adheres here to the now apparently dominant point of view 
that statistics is a method or methodological doctrine and not at all a science 
with its own special subject of research. And I personally would have been 
prepared to adjoin somewhat the critical aspect of his considerations, 
provided he had sharpened his reasoning to allow for Chuprov’s view whose 
idea of statistics as an ideographic science2 he does not regrettably even 
mention in spite of its certainly being the most powerful argument possessed 
by the camp which Kaufman criticizes. True, I think that even that argument 
cannot be upheld, but Kaufman did not prove that. I will not dwell on this 
difficult point because of lack of space and the more so since here I am not 
really at any variance with Kaufman. 
    Distinctions between us start further, and exactly where Kaufman 
believes to have concluded the issue, where he recognizes the 
methodological essence of statistics. Let us ask ourselves is it in essence 
really indifferent, as he (p. 17) thinks, whether “to discuss statistics as a 
supplementary science, or simply as a methodological doctrine”. When 
allowing for the author’s considerations, we, as it seems to me, ought to 
conclude, first of all, that he does not sufficiently clearly distinguish 
between the various versions of the term statistics (see his pp. 15 – 18) and 
does not follow up to conclusion the reasoning on the place of the statistical 
method in the system of logical knowledge.  
    I begin with the issue of the method itself. As a method, statistics is 
certainly not a science, but a technique, that is, a system not of reasoning, 
but of tricks, rules and patterns of practical cognizing work, whether applied 
systematically or not, conscientiously or unconscientiously, for scientific or 
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practical goals. Just the same as addition and subtraction remain arithmetical 
operations independently from who is applying them and what for. This will 
become quite clear after analysing the contents of statistics as a 
methodological doctrine. We will find there, in particular, a number of 
propositions concerning even the most simple procedure of the statistical 
technique, enumeration of the elements of a totality and its necessary 
conditions and forms. 
    The methodology of enumeration based on the analysis of its very nature 
allows us to see how practice is conditioned by the general properties of 
totalities on the one hand, and the properties of known logical operations on 
the other. To oppose, as Kaufman (pp. 13 – 14) does, statistical method and 
statistical art by issuing from indications external in regard to operations 
themselves, i. e., from the aims of the work, is in essence wrong even 
without allowing for the difficulty of drawing the necessary boundary which 
he mentions.  
    Whether the enumeration of social masses, say, is applied practically (e. 
g., for the aims of administration as statistical art according to Kaufman) or 
for knowledge (statistical method), is of no consequence. Not technically, as 
the author believes, but according to its essence the nature of the operation 
will be the same as will be the conditions for it to be properly done; 
consequently, the corresponding reasoning belonging to statistics as a 
methodological doctrine will also be the same in both cases.  
    And the last inference: since this reasoning does not change with the aims 
of the operation, it follows that the location of the boundary depends not on 
Kaufman’s decision or otherwise, but on the essence of the matter. And, 
incidentally, this means that a discussion of the issues concerning the 
contents of a science is not idle, is not to be decided by opportunistic 
considerations of expediency; no, it is important and, if properly formulated, 
fosters the deepening and the solution of the most general problems of 
science. 
    [4] I think that it is just as impossible to agree with Kaufman’s arguments 
about the nature of statistics as a methodological science. As a system of 
considerations, statistics, understood in that sense, is necessarily either a 
science or its part. Kaufman (p. 16) compares it with the doctrine of 
measuring devices which allegedly cannot be isolated as a special science. 
However, if that doctrine is not a special science, it is a part of another one, 
– of which, it ought to be asked, of the science which it provides with the 
means of research, or of that on which it is logically based?  
    Both alternatives fall away almost at once; the former, because measuring 
devices such as clocks and microscopes serve all or many sciences and 
purely practical needs as well, and the latter, since a complete theory of one 
and the same device as of an ideographic item demands the application of 
many sciences, such as mathematics, mechanics, physics, chemistry, 
psychology (recall the personal equation in astronomy) rather than one, etc. 
    After thinking it over, the entire issue of attributing the theory of 
measuring devices to a certain theoretical science becomes absolutely 
mistaken because the peculiar logical structure of such a doctrine is 
overlooked here. The considerations constituting that doctrine are united 
into a system in a manner absolutely different from that, applied in any 
theoretical science. Here, the systematic connection is conditioned not by 
the objective relations between things and their various aspects, but by their 
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teleological function with these things being seen as the means for attaining 
the aims of the researcher. 
    Hence the natural grouping of separate technical disciplines according to 
the pursued goals intersected with their partition for the sake of achieving 
maximal possible homogeneity of the contents according to the essence of 
the underlying theoretical doctrines. 
    And it is now also understandable why, in the process of teaching and 
elucidating, some technical disciplines are more closely adjoined to those 
sciences from which they derive their theoretical elements (for example, the 
doctrine of physical measurements) whereas others are in the neighbourhood 
of those sciences which make use of their results (e. g., the doctrine of 
devices for psychological measurements). Finally, still other disciplines in 
addition possess external independence (metallurgy or the doctrine of 
fibrous substances). All this, however, is an issue of teaching and 
elucidation and has no direct bearing on the logical essence of the relevant 
doctrines. 
    [5] These considerations justify the independence of statistics as a 
technical or practical science which according to some tests admits in 
addition of separation into statistical methodology and statistical technique 
and at the same time leads us really earnestly to the problem of statistics as 
an independent theoretical science. Actually, any practical doctrine, as 
Husserl (1900 – 1901) had discovered in an inimitable masterly way, 
certainly assumes some underlying theoretical doctrine justifying its 
propositions. Indeed, for proving the possibility of some goal by definite 
means we ought to perceive the connection between means and goal as 
between cause and effect. And the study of such connections leads us to a 
totality of considerations constituting a system whose main point is the 
essence and properties of the subject rather than of the goals. 
    We thus arrive at an analysis of the theoretical considerations on which 
statistical methodology is built. Isolating that which relates to the properties 
of, first, judgements and concepts, i. e., to logic, and then of the properties 
of quantitative images upon which it [logic]3 is operating, i. e., of 
mathematics, we nevertheless obtain some remainder for which no 
acknowledged sanctuary is in existence, which remains uncoordinated and 
homeless until we perceive its special theoretical essence and provide it with 
the missing unity in the system of judgements fully deserving the name of 
theoretical statistics. 
   All the existing various propositions of the doctrine of totalities and their 
general properties only provisionally adjoining methodological problems 
will belong here. We will thus have, first of all, the doctrine of the main 
formal properties of totalities; then, of their quantitative and structural forms 
(which now constitutes an essential part of the so-called Kollektivmasslehre, 
that is, of the doctrine of frequencies and surfaces of distribution, of means 
etc); then, also included will be a generalized formal doctrine of population, 
or, more correctly, of totalities of a changing composition, whose elements 
emerge, change their state and disappear, be they [individuals of a] 
population, trees in a forest or atoms4. 
    Finally, here also belongs the doctrine of the machinery of causes 
determining the frequency of phenomena rather than of separate events. All 
this is not a logical doctrine of the world of judgement and concepts, but 
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statistical doctrines of the world of phenomena in [the entirety of] their 
forms and mutual conditionality. 
    Whether to separate them as a special subject for elucidation and 
teaching, certainly depends on our arbitrary opinion, but a special science 
emerges not by arbitrariness but [because of the existence of] intrinsic ties 
[of the appropriate components], cognized as something objectively 
compelling, as establishing a systematic likeness and unity of the 
corresponding relations as well as of the considerations expressing our 
knowledge of their properties and ties [between them]. 
    [6] And now we approach the issue of the relation of the calculus of 
probability to statistics. It only suffices to compare the contents of some 
purely mathematical treatise on the former with statistical reasoning on 
probability; for example, the contribution of Markov with the writings of 
von Kries [1886] or Chuprov, and the deep intrinsic heterogeneity of the 
problems, methods and of the very spirit of these writings becomes striking. 
And further considerations will show that these distinctions are based on the 
difference between the subjects. 
    Calculus of probability is a purely mathematical science5. How something 
is occurring is of no consequence to it; it deals not with factual but possible 
frequencies, not with their real causes but their possible probabilities. And 
the concept of probability itself is there quite different, is generalized and 
abstract. As soon as some number is arbitrarily assigned as the weight of 
each possible event and a number of definitions is made use of, the basis is 
prepared for building in a purely abstract way infinitely many purely 
abstract castles of combinations in the air, and of going over from those 
weights to the weights of various derivative possibilities (for example, of 
some groups of repeated occurrences of events). 
    For the calculus of probability, any enrichment of the concept of 
probability as compared with the above is useless, it would have nothing to 
do with it. Throwing a bridge from that ethereal atmosphere of mathematical 
speculations to the region of real events is only possible by abandoning the 
ground of the calculus of probability and entering the route of studying the 
real world with its machinery of cause and effect. Only thus we obtain 
knowledge about the ties between frequency and probability, justify [the 
assumptions of] the law of large numbers and find the basis for applying the 
calculus of probability to studies of reality.  
    Chuprov investigates free causal connections6; von Kries discovers the 
causal underpinning of games of chance and the actual justification for the 
tendency of frequencies to coincide with probabilities; Venn and Edgeworth 
attempt to build the very notion of probability on the concept of frequency7, 
– but nothing mentioned has any relation to the mathematical science of the 
calculus of probability. Here [in statistics], the mind operates not with ideal 
forms and quantities but with real things and phenomena although 
considered from an extremely general viewpoint8. 
    Above, I did not add anything to the essence of the doctrines of 
theoretical statistics, I had not even demanded the creation of such a science 
(always a somewhat dangerous enterprise) and only mentioned a number of 
existing doctrines and their intrinsic ties [with each other?]. If, however, it 
occurred that these doctrines constitute the main theoretical contents of 
statistical methodology, then I will hardly be mistaken when stating that 
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statistics as a theoretical science does exist, that collective items, totalities 
considered as such, to whichever area they belong, are its subject. 
    Incidentally, it also follows all by itself that since statistics studies 
quantitative properties which we cannot ignore because of their part in the 
relations and ties peculiar to the subject of statistics, statistics should be 
indeed considered a mathematical science, i. e., one of those sciences in 
which mathematical methods are essential and unavoidable9. 
    Then, it is natural that also in practical applications of theoretical statistics 
and statistical methodology, that is, in the practice of concrete statistical 
work on empirical data, mathematical methods are also unavoidable, and 
that there exists no essential boundary between various chapters of statistical 
practice in regard to the subject of study. It is only possible to distinguish in 
each chapter more elementary and more complicated problems, and, in 
general, problems of one and another theoretical type. 
    [7] The study of Kaufman’s viewpoint only corroborates, as I believe, 
these considerations. Indeed, after formulating his essential objections to the 
application of the theory of probability to statistics he finally arrives at a 
conclusion whose considerable significance I ought to deny decisively. He 
(p. 147) assigns as the area of such application the set of simplest 
phenomena of population statistics and a certain part of phenomena in 
natural sciences, then (true, somewhat hesitatingly, see above) refuses to 
agree that the calculus of probability is applicable to general statistics.  
    It is impossible to be satisfied by such a decision. Indeed, general 
statistics (an expression that the author himself writes in inverted commas) 
is obviously a heterogeneous group of problems lacking any intrinsic ties. 
And, if only the theory of probability can at all be applicable to analysing 
reality, the necessary boundaries and conditions can depend not on the 
concrete properties of the totalities, but on their formal properties on the one 
hand and on the properties of the problems to be solved on the other. It is 
exactly in this direction that a manual of statistics ought to guide the 
beginners. 
    Kaufman (p. 147) expresses himself in the sense that for the areas 
mentioned (population statistics etc)  
 
    The existence of the prerequisites for the [application of] the theory of 
probability can be considered justified a posteriori, and the application of 
its methods here does not in principle excite objections anymore. 
 
    That the author is hardly in the right here can be already seen by the 
quotations from Markov and von Kries that he provides there. Indeed, even 
in the area where “the validity of applying the elements of the calculus of 
probability is least doubtful” (Kaufman, p. 145, his italics), the former 
denies the right of statisticians to justify in principle their practice (tables of 
mortality whose usefulness he does not deny) “by referring to the formulas 
of the calculus of probability”. 
    As to the latter, since he is against the application of those formulas, his 
viewpoint concerns not one or another area of statistics (population or 
general statistics), i. e., not real objects but formally traced problems. 
    [8] Turning to the essence of the matter, inasmuch as it is possible in the 
boundaries of this paper, I am issuing from Markov’s demand, that is, from 
the need to ascertain in each separate case whether the trials were 
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independent, the probability was invariable and [the appropriate cases] 
equally possible. Under such restrictions, all the applications of the calculus 
of probability to statistics are partitioned in two main groups: in one of 
them, the applicability is justified a posteriori by proving that those 
conditions are fulfilled at least approximately; and in the other one, 
applications are substantiated a priori. 
    In the first instance we are dealing with predicting probable frequencies 
of some phenomenon by known frequencies of other facts (urn experiments, 
heredity, insurance etc). In the second case we have to do with comparing 
reality with a theoretical pattern for which Markov’s demands are postulated 
a priori. Simplest examples here again are experiments with urns, coins etc 
only considered in their different logical aspect.  
    Here, we compare the actual frequency with its value expected with one 
or another probability under the conditions of constancy, independence (or a 
definite dependence) and equal possibilities. And we do not act differently 
when studying the fluctuations of the sex ratio at birth or death etc. by the 
Lexian or any other similar method. 
    The same standpoint underlies the method that Kaufman discusses under 
a somewhat unfortunate name differential. Thus, when comparing for 
example the percentage of peasants lacking a horse of their own in two 
different localities so as to find out how significant is the difference, the real 
basis for the comparison is some imagined totality of individual farms, some 
imagined nation where the conditions determining the number of horseless 
peasants are assumed to be everywhere the same and the distribution of the 
farms over the territory is purely accidental10. And, issuing from that image, 
we calculate the probability that the difference mentioned could have been 
not less than in reality.  
    We are thus able to imagine at least the order of the probability of a 
correct judgement about whether the observed difference may be explained 
as being purely accidental, or whether we should assume as its basis either 
some detectable in principle causes or the insufficient accuracy of the data. 
    Kaufman correctly states that for such a conclusion it is not necessary to 
determine invariably the value of the appropriate probabilities, but he fails 
to notice that practitioners are infinitely many times guilty, also in our 
zemstvo statistics, of absolutely unfounded decisive inferences made from 
insufficient data. To oppose such arbitrary conclusions and to train 
systematically the feeling for the digits (so valued by the author), the 
calculation of probabilities or estimation of their order by determining mean 
square or probable errors and other measures of probable deviations ought to 
be practised incomparably oftener than it is done now. 
    Incidentally, it should be noted that Kaufman, when referring to von Kries 
for corroborating his views, hardly noted that he (p. 244) discussed that very 
method of applying the calculus of probability to statistics calling it 
Untersuchende Methode. He allowed its application for studying mass social 
phenomena even in case of large numbers (in erhebliche Umfange). Kries 
very highly appreciates the investigations of Lexis and argues that they 
simply constitute a variety of that same method. 
    I believe that the contemporary statistical literature (above, I myself did 
not say anything essentially new)11 sufficiently justified the application of 
the method under discussion to statistics and that, according to the train of 
thought leading to that substantiation, no partition whatsoever of statistics 
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into areas, as Kaufman attempts to accomplish, can hardly be supported by 
any perceptible logical foundation12. 
    [9] Not less shaky is the author’s understanding of the application of the 
patterns and formulas of the theory of probability to sampling. As von Knies 
rightfully remarked, its embryos in the conjectural statistics13 of political 
arithmeticians developed by mathematicians (by Laplace!) failed to be 
sufficiently justified by an exhausting criticism of the empirically applied 
methods of isolating the sample. The work of Kiaer [at the turn of the 19th 
century] which in a sense marked a new stage suffered from the same 
shortcoming. 
    But Kaufman himself (p. 98) demands sampling with mechanical 
selection, that is, as I understand him, with a purely accidental choice, and 
he admits that such a procedure “provides a full guarantee of typicality, of 
representativeness of the results of sampling”. This, however, is indeed 
what is needed for a justified application of the calculus of probability to 
sampling. Yule and Bowley deal only with this method [of sampling] and I 
am unable to understand how Kaufman (p. 97) could have concluded that, 
according to the Bowley method, it was indifferent whether to snatch at 
random 100,000 individual farms of a province or to select as the sample the 
entire population of its two uyezds [districts], or of an entire longitudinal 
strip. 
    This statement, may the author excuse me, is a misunderstanding pure and 
simple. And when he comes to deny the importance of the sample size 
(contrary to what is already gaining the upper hand also in our practice) as 
opposed to its relative size I cannot but perceive here the results of the same 
misunderstanding14. 
    I will dwell, for example, on his (Ibidem) reproach of sampling for 
extinguishing those qualitative nuances, those varieties of phenomena which 
exist in real life when considered in large masses, and are exhibited ever 
more distinctly with their increase. This is of course true, but we must not 
overlook that, on the other hand, the more considerable is the mass, the 
simpler and more curtailed usually ought to be the programme [of its 
investigation] so that in most cases, on the contrary, only sampling can 
allow us to approach reality from such different sides and therefore to 
perceive it more or less fully and distinctly in all its variety, see for example 
Westergaard (1890, pp. 205, 207 and some other places). 
    Then, for recognizing any nuance a corresponding absolute size of the 
sample is needed so that, having formulated beforehand definite cognitive 
theoretical or practical goals, we will be able to determine the corresponding 
sample size. No flair will help here since it did not guarantee even such an 
experienced investigator as Kaufman15 against an entirely mistaken 
recognition of the decisive importance of the relative size of the sample. 
Only a systematic application of tests provided by the calculus of 
probability, if, certainly, the researcher possesses all the other qualities 
peculiar for a good worker, can ensure the success of sampling. A critical 
discussion of the experience already at hand could have indicated all this 
with indisputable clarity. 
    I ought to add that this issue is by no means academic only. Exactly for 
the practitioner the problem of establishing the number of elements to be 
described, invariably connected with financial considerations, often 
determines whether the investigation will take place or not. 
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    [10] My paper has already become too lengthy and I cannot consider in 
detail separate propositions made by the author concerning particular issues. 
Although unable to agree with many of them, I must abandon his views on 
separate methods of mathematical statistics and will only point out some of 
his shortcomings. Thus, I am inclined to believe that the uninitiated will be 
put to difficulties by the three definitions of probability (by Laplace, 
Bortkiewicz and Vlasov [1909]) with which the author (p. 49) begins his 
exposition, and that such readers will understand them the less the more they 
will ponder over them. As it seems, this is especially true in regard to 
Laplace’s definition provided out of the author’s context.  
    Just the same (pp. 50 – 51), Czuber’s definition is not understandable 
without a long explanation. I imagine that it would have been more 
advantageous to expound the principles of the theory of probability by 
examples with balls etc making use of the most elementary concept of 
probability as the ratio of the favourable cases to all of them and only to 
deepen this idea afterwards by indicating other possibilities. Here, however, 
the “logical foundation of the notion of probability” cannot be avoided since 
otherwise the reader will be confused by those various definitions rather 
than assimilate them. Moreover, the discussion of these issues (the 
viewpoints, say, of Venn, Cournot, von Kries, Chuprov) are much more 
important for understanding the beginnings of the theory of statistics than 
many other parts of the author’s exposition, and, in addition, they are more 
readily understood.  
    Thus, I think that the derivation of the probability integral (pp. 76 – 78) 
could have been omitted since the reader will not be able to conclude it; it 
would have been better to explain instead the general train of thought 
leading to it and its significance and meaning. The author (p. 81) provided 
the appropriate approximate calculations, but it would have been better to 
choose an example allowing in addition to calculate the same probability in 
an elementary way by adding up probabilities of separate cases. For the 
beginner, this would mean much and it will also clearly indicate that the 
integral only provides approximations. Then, I think that the generalization 
of the law of large numbers (pp. 82 – 83) based on the [Bienaymé –] 
Chebyshev inequality can also be omitted, but, on the contrary, that it would 
have been apparently better to prove the Bayes theorem and to explain it in 
more detail. Indeed, it was the source of so many logical sins! 
    [11] And in general, it seems to me that for the goals attempted by 
Kaufman the volume of mathematics could have been lessened, but that the 
selected minimal information should have been worked out in rather more 
detail. Then, it would have been easier for the reader to learn how to 
calculate and to use the formulas of the calculus of probability at least at the 
minimal possible level as well as to apply the table of the probability 
integral which would have been useful to adduce at least in an abridged 
form as was the case with Chuprov (1909) or even in a more abridged way 
as Westergaard did.  
    Among the minor shortcomings […]. These, however, are trifles which 
will hardly dumbfound a shrewd reader. More essential, as it seems to me, is 
the statement (pp. 121 – 129) that the naturalism of the coincidence of the 
empirical so-called check of the formulas of the calculus of probability with 
the theoretically predicted for games of chance is explained because “the 
law [of random deviations – E. S.] itself was, after all, derived from the 
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results of such experiments and games”. This, however, seems to be an 
accidental lapse. 
    Then, the author unjustly attributes to Bortkiewicz (to the law of small 
numbers) the ascertaining of the “theoretical distribution of the fluctuations” 
of small numbers without mentioning that the appropriate main formula is 
due to Poisson. Finally, I would argue against the use of the expression 
method of moments not in regard to the method competing with least squares 
for drawing a curve, but to the calculation of means by issuing from data 
grouped into intervals of equal length (p. 531). This will result in the use of 
an absolutely definite term in an extraneous manner which is hardly 
sufficiently justified. 
    Some probabilities are calculated wrongly […], 0.995 instead of 0.95, 
0.999979 instead of 0.997. The figure on p. 566 is scarcely vivid since only 
a quarter of the correlation diagram is shown, but the exposition of the 
calculation of the correlation coefficient itself seems to be sufficiently clear 
even for a beginner which of course was not easy to attain. I only think that 
the author with his knowledge of explaining could have included in his 
lengthy treatise rather more practical advice on, and patterns of calculation 
and not to refer readers so often to other sources either only helpful to a few 
because of linguistic difficulties (Yule) or insufficiently suited for the 
beginners (my own contribution of 1912) or, finally, to those entirely 
unsuited for his aims because of mistakes made (M. B. Gurevich). 
    In particular, I bear in mind the calculation of means, index numbers and 
more elementary methods of smoothing series which the author also admits 
for certain purposes. The inclusion of the formulas and tables due to Pareto 
and provided by Benini16 transforms the application of the method of least 
squares to calculating smoothing curves of the first four degrees into a 
childish occupation possible perhaps even for a school student of the third 
form and it would have compelled many practitioners to thank the author 
heartily. And this will be desirable to see in the likely deservedly soon to 
appear next edition of his generally speaking excellent treatise.  
 

Notes 
    1. I mention Lexis (1913): Kaufmann’s contribution “fills an important gap” and 
occupies “a special place” in the German statistical literature; he manages [makes do] with 
elementary mathematics which is a favourable circumstance. Then, Lexis believes that the 
theory of probability assumes equally possible cases and that the law of large numbers 
ought to be justified by empirical data. In short, I do not discern here a pioneer in the field 
of statistics. 
    Slutsky did not say anything about previous studies of the same subject but later he refers 
to several authors. However, it is opportune to add a few lines (Sheynin 1999). Slutsky 
mentions, and italicizes the term theoretical statistics but avoids mathematical statistics, a 
term that appeared at least in 1869 (Zeuner), and he did not define statistics. That statistics 
is a method (see his text a bit below) was stated in 1860 (Fox); and Pearson’s maxim (1892, 
p. 15) certainly comes to mind: “Unity of all science consists alone in its method, not in its 
material”. And it was Alphonse DeCandolle who first stated, in 1833, that statistics was a 
branch of mathematics. I note finally that later scholars, Pearson and Fisher, held that 
statistics was (“essentially” – Fisher) a branch of applied mathematics. O. S. 
    2. According to Chuprov (1909), who followed the German philosophers Windelband 
and Rickert, various sciences are either ideographic or nomographic (rather than 
nomothetic, as those philosophers called it). The former described reality (history), the 
latter studied regularity.  
    Late in life, in his reviews of several books, Chuprov again stated that statistics was an 
ideographic science although mostly having to do with quantitative data (which is not the 
case with history, allegedly an ideographic science). However, the literature concerning 
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philosophy of probability does not anymore mention those philosophers and anyway even 
history is not a science without discussing regularities. O. S. 
    3. Judgements and concepts rather belong to philosophy. The it in the next sentence is 
not altogether clear and is only one example of Slutsky’s careless style. And in § 10 Slutsky 
mentioned definitions of probability offered by four authors whereas they really were either 
general considerations or comments. O. S. 
    4. Atoms do not disappear. O. S. 
    5. Yes, purely mathematical, but, at that time, not yet belonging to pure mathematics. O. 
S. 
    6. Chuprov (1909/1959, p. 133) set great store by free causal connections but I am not at 
all satisfied by his considerations. Their existence, as he reasoned, led to an unavoidable 
recognition of the need for probabilities, but he did not mention either correlation or 
randomness. O. S. 
    7. At the time, Mises had not yet formulated his frequentist theory of probability. O. S. 
    8. Venn (1866/1888, p. 88) expresses this idea very distinctly:  
 
    There is, it seems to me, a broad and important distinction between a material science 
which employs mathematics and a formal one which consists of nothing but mathematics. 
 
    And on p. 40:  
 
    During these […] chapters we have been entirely occupied with laying what may by 
called the physical foundations of Probability. 
 
    See also pp. 41 and 265 – 266. I quote Venn because both von Kries and Chuprov, as it 
seems to me, were not altogether just in respect to him. His empiricism is not at all as 
coarse as can be judged by their opinion and in any case he is not guilty of simply 
identifying probabilities with empirical frequencies. E. S. 
    9. It seems to me that these considerations answer Kaufman’s objection (p. 151) to my 
statement that statistics “is a mathematical science”: “This is certainly not the case. 
Statistics is not mathematics”. I agree with the latter words, but hope that he will also agree 
that neither is physics the same as mathematics. E. S. 
    10. Slutsky several times uses this not quite acceptable expression obviously having in 
mind a uniformly distributed random variable. O. S. 
    11. I believe that it is superfluous to corroborate this statement by quotations and 
references or name some names since any such attempt may be objected to by saying that 
all this is a mathematical school. In regard to at least this issue the essence consists not at 
all in opposing a school. When the debate is about a substance of something, it would be 
strange to group authors into schools according to their attitude towards propositions 
sufficiently clearly established by most authoritative scholars from, let us say, Laplace to 
leading contemporary figures of statistical thought.  
    I should hardly qualify this statement by adding that, when referring to experts, I do not 
wish to doubt that hesitations and debates are justifiable. E. S. 
    12. Also here I indicate that the description of the differential method (pp. 139 – 141) is 
hardly understandable to a beginner, and in essence hardly correct. The interpretation of the 
formula … [without consulting Kaufman’s treatise the following lines will not be clear. In 
essence, the matter is rather elementary]. My remark (1912) concerning the probable error 
of the difference of dependent variables Kaufman (pp. 140, 143, 146) interprets to his 
advantage, but wrongly, without allowing for my statement elsewhere (1912, p. 100/2009,  
§ 23). […] E. S. 
    13. Bortkiewicz (1904, p. 825) used the same expression in the sense of sampling. O. S. 
    14. I take the opportunity to remark that it seems wrong to attribute to Bowley, as 
became usual apparently because of Chuprov [1912], the principle of composing the sample 
from purely accidentally snatched elements. The point is that this is the only method of 
sampling prompted by the calculus of probability and it was known long ago; in any case, 
Laplace had used it. As to the statistical aspect of the problem, it consists not in the 
principle of randomness as such, but in the technical tricks needed to achieve a purely 
accidental selection of observations, and here the last word is far from being pronounced. In 
1903, at the Berlin session of the International Statistical Institute, March, as the author of a 
resolution on Kiaer’s report adopted by its demographic section, quite rightly, as I believe, 
objected to him by connecting the only correct version of sampling with Laplace’s 
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investigations rather than with Bowley. E. S. On the history of sampling see You Poh Seng 
(1951). O. S. 
    15. Kaufman had indeed published many concrete statistical investigations, but I doubt 
that they were ever seriously reviewed. O. S. 
    16. Chuprov (1925) later also referred to Benini (1906) and noted that he was unable to 
get hold of the relevant Pareto memoir (which he did not name either). O. S. 
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K voprosu o logicheskikh osnovakh ischislenia veroiatnostei.  

Report at the Third All-Union Statistical Congress, Nov. 1922.  
Vestnik Statistiki, No. 9 – 12, 1922, pp. 13 – 21. 

In a somewhat modified form in Sbornik Statei Pamiati (Festschrift) N. A. Kablukova,  
vol. 1. Moscow, 1925, pp. 254 – 262.  

Finally, in Slutsky’s posthumous Izbrannye Trudy (Sel. Works).  
Moscow, 1960, pp. 18 – 24 

 
    [1] The calculus of probability is usually explicated as a purely 
mathematical discipline, and it is really such with respect to its main 
substance when considered irrespective of applications. However, the pure 
mathematical nature of one element that enters the calculus from its very 
beginning is very questionable: any detailed interpretation of that element 
involves our thoughts in a domain of ideas and problems foreign to pure 
mathematics. Of course, I bear in mind none other than the notion of 
probability itself. As an illustration, let us consider, for example, the 
classical course of Academician Markov. 
    In the Introduction to its second edition (1908), he declares that he will 
treat the calculus of probability as a branch of mathematics, and each 
attentive reader knows how strictly he regards his promises. Markov shows 
this strictness at once, in the extremely typical of him comment on the 
second line of the very first page. There, he elaborates on the word we: 
 
    The word we is generally used in mathematics and does not impart any 
special subjectivity to the calculus of probability. 
 
Let us however compare this pronouncement with Markov’s definition of 
equipossibility that he offers on p. 2: 
 
    We call two events equally possible if there are no grounds for expecting 
one of them rather than the other one.  
 
He adduces a note saying that, according to his point of view,  
 
    Various concepts […] are defined not so much by words, each of which in 
turn demands a definition, as by our attitude to them, which is ascertained 
gradually. 
 
    It is doubtless, however, that, in the given context, this remark should 
only be considered as a logically hardly rightful way out for the author’s 
feeling of some dissatisfaction with his own definition. That subjective 
element, whose shadow he diligently attempted to drive out by his remark 
on the first page, appears here once more so as to occupy the central position 
in the structure of the main notion, which must serve as the foundation for 
all the subsequent deliberations. 
    In my opinion, there is a means for countering this difficulty; there exists 
an absolutely drastic measure that many will, however, be bound to consider 
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as cutting rather than untangling the Gordian knot. The legend tells us, that, 
nevertheless, such an attitude proved sufficient for conquering almost the 
whole world. I shall sketch the idea of my solution. 
    First of all, it is necessary to introduce the main notions defined in the 
spirit of strict formalism by following the classical example of Hilbert’s 
Grundlagen (1899). Such notions as event, trial, the solely possible events, 
(in)compatible events, etc, ought to be established in this way, i.e. with the 
removal of all the concepts concerning natural sciences (time, cause, etc). 
Let us call the complex of the solely possible and incompatible events A, B, 
…, H an alternative, and the relation between them, disjunction. Then, 
instead of introducing the notion of equipossibility, we shall proceed as 
follows. 
    [2] We will consider such relations, which take place if some number is 
associated with each of these solely possible and incompatible events, under 
the condition that, if any of them (for example, A) is in turn decomposed 
into an alternative (either α, or β, or γ, …, or η), then the sum of those 
numbers, that occur to be associated with α, β, γ, …, η, will be equal to the 
number associated with A. 
    The association just described should be understood as the existence of 
some one-valued but not one-to-one relation R between the events included 
in the alternative and the numbers. In addition, R is the same for all the 
events and possesses the abovementioned formal property, but in essence it 
remains absolutely arbitrary in the entire domain of the calculus considered 
as a purely mathematical discipline. It can even happen that, in the context 
of one issue, each term of an alternative is connected with some number by 
relation R, whereas each term of another alternative is in turn connected 
with some number by relation R′ not identical with R; the relation R″ will 
take place for a third alternative, and so on. If, in addition, a formal 
connection between the relations R, R′, R″, … is given, purely mathematical 
complications, which the classical calculus of probability had never studied 
in a general setting, will arise. Leaving them aside, I return however to the 
simplest type.  
    Suppose that an alternative can be decomposed into the solely possible 
and incompatible events with which some fundamental relation R connects 
numbers equal one to another. I shall call such elementary events isovalent , 
and I shall introduce the notion of valency of an event as a proper fraction 
whose numerator is equal to the number of the elementary events 
corresponding to the given event, and whose denominator is the number of 
all the solely possible elementary and incompatible events included in the 
given alternative. 
    It is absolutely obvious that this foundation formally completely coincides 
with the classical foundation; hence, all the former’s purely mathematical 
corollaries will formally be the same. The word probability will everywhere 
be substituted by valency; the formulation of all the theorems will, mutatis 
mutandis, persist [with necessary alterations]; all the proofs will remain 
valid. The only change consists in that the very substance of the calculus 
will not now have any direct bearing on probability.  
    For example, the addition theorem will be formulated thus: If A and B are 
events incompatible one with another, the valency of the event “either A or 
B” is equal to the sum of their valencies. The multiplication theorem will be: 
For compatible events A and B, the valency of the event “both A and B” is 
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equal to the valency of one of them multiplied by the conditional valency of 
the other one; etc. 
    The purport of any theorem obviously remains purely formal until we, 
when somehow applying it, associate some material sense with the 
fundamental relation R; that is, until we fix the meaning of those numbers, 
that in the given case are attached to the terms of the alternative. Knowing 
the sense in which such and such events are isovalent, we will be logically 
justified, on the grounds of our calculus, to state that some other definite 
events will also be isovalent or have such and such valency, again in the 
same sense. It will now be naturally inconsistent to call our science calculus 
of probability; the term disjunctive calculus will apparently do2. 
    [3] This science will be as formal and as free of all the non-mathematical 
difficulties as the theory of groups. There, we are known to be dealing with 
some things, but it remains indefinite with which exactly. Then, we have to 
do there with some relation that can conjugate any two things one with 
another so that the result of this operation will be some third thing from the 
same totality. Under these conditions, the theory of groups develops an 
involved set of theorems, mathematically very elegant and really important 
for various applications. Within the bounds of the theory itself, the material 
substance of that set remains indefinite which leads to formal purity and 
variety of applications, and is indeed one of the theory’s most powerful 
points. If the group consists of natural numbers, and the main operation 
providing a third thing out of the two given ones is addition, we obtain one 
possible interpretation; if the main operation is multiplication, we arrive at 
another interpretation; then, when compiling a group out of all possible 
permutations of several numbers, we get a still differing interpretation; and 
if, instead, we consider all possible rotations of some regular polyhedron, 
we have a yet new interpretation, etc. 
    In our case, we also have something similar. The formal notion of valency 
can have more than one single sense, and the meaning of the theorems 
known to us long since in their classical form is in essence also many-
valued. Their nature remains however hidden and is only dwelt with during 
disputes, to a considerable extent fruitless, on the notion of probability. I 
shall attempt to sketch several possible interpretations of the calculus of 
alternatives. 
    First of all, we certainly have its classical form. We come to it by 
replacing isovalency by equipossibility and substituting probability for 
valency. This change may be considered from a purely formal, and from a 
material point of view. When keeping to the former, which is the only 
interesting one for a mathematician, we introduce the concepts purely 
conventionally. Suppose that the possibility of an event can be higher than, 
or equal to the possibility of another event. Presume also that two events, 
each decomposable into the same number of other solely and equally 
possible incompatible events, are themselves necessarily equally possible. 
Then, irrespective of either a more definite meaning of, or of the conditions 
for equipossibility, we are able to introduce, in the usual way, the notion of 
probability in its purely mathematical aspect. Or, otherwise, when keeping 
closer to the reasoning above, we may say: Suppose that possibility can be 
expressed numerically and that the possibility of an event is equal to the sum 
of the possibilities of those solely possible and incompatible events into 
which it is decomposable. Then, etc, etc. 
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    This deliberation is tantamount to the following. We have a finished 
formal mathematical calculus complete with its notions and axioms. When 
applying it, we suppose that those axioms, that underpin the formal 
disjunctive calculus, are valid for some chosen concept, – for example, as in 
our case, for possibility. Thus, we presume that possibilities can be 
expressed by numbers; that all the terms of a given alternative are connected 
with these numbers by a one-to-one correspondence; that these latter obey 
those formal relations which we introduced for the numbers connected with 
the former by valency. From a purely mathematical viewpoint, this is 
apparently quite sufficient for passing on from the calculus of alternatives to 
the calculus of probability. 
    It is obvious, however, that all this only covers one aspect of the matter, 
and that here also exists another, material, so to say, side lying entirely 
beyond the bounds of purely mathematical ideas and interests. Indeed, for 
settling the issue of whether all the abovementioned notions and axioms 
categorically rather than conditionally suit the concepts possibility and 
probability, we ought to know what exactly do we mean by these notions. It 
is clear that this problem is of an absolutely special type requiring not a 
mathematical, but an essentially different phenomenological and 
philosophical approach. I think that for my formulation of the issues, the 
line of demarcation appears with sufficient clearness as though all by itself.  
    [4] Let us now go somewhat farther in another direction. I have remarked 
that the calculus of alternatives admits not a single interpretation, but rather 
a number of them, and this formal generality is indeed one of its most 
important logical advantages over the classical calculus of probability. So as 
to justify this idea, I ought to indicate at least one more of its differing 
interpretations. Let us have a series of trials where each of the events A, B, 
…, H is repeated several times. The numbers of these repetitions, i.e., the 
actual absolute frequencies of the events, are uniquely connected with the 
events because each of them has one certain frequency. This relation is not 
biunique, because, inversely, two or more events can have one and the same 
frequency. Then, if some event is decomposable into several solely possible 
and incompatible kinds, the sum of their frequencies is equal to the 
frequency of the given event. Frequency thus satisfies those conditions 
under which I introduced the concept of valency into the calculus of 
alternatives. 
    We may therefore replace valency by relative frequency and thus obtain a 
number of theorems with respect to the latter without repeating all the 
deliberations or calculations, but jokingly, so to say, by a single substitution 
of the new term into the previous formal statements. Thus, we will have the 
addition and the multiplication theorems for frequencies, absolutely 
analogous to the known propositions of the calculus of probability. How far-
reaching are such similarities? Obviously, they go as far as the general 
foundation of definitions and axioms do. Had there been no other 
independent entities except these notions and axioms in the disjunctive 
calculus, or, respectively, the calculus of probability, then the calculus of 
frequencies would have formally covered the entire contents of both the two 
former calculuses. This, however, is not so. The issue of repeated trials and 
the concept of frequency enter the calculus of probability at one of its early 
stages; in addition, we should naturally find out whether, when assuming 
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our second interpretation of the calculus of alternatives, the formal 
conditions that correspond to that stage can be, and are actually satisfied. 
    [5] More interesting is a third interpretation. It goes much farther, covers 
a large and perhaps even the entire domain of our calculus provided only 
that we can agree with a purely empirical understanding of probability. 
Suppose that it makes sense to consider any number of trials under some 
constant conditions. Presume also that there exists a law on whose strength 
the relative number of the occurrences of any of the alternatively possible 
events must tend to some limit as the number of trials increases. This 
limiting relative frequency [These … frequencies] apparently satisfies 
[satisfy] those conditions, under which I introduced the notions of 
isovalency and valency of events. Hence, as far as the general foundation of 
the axioms reaches, all the theorems of the calculus of valency will possess 
this, as well as the classical interpretation. That the analogy goes very far is 
unquestionable. To say nothing about the almost trivial addition and 
multiplication theorems, it also covers the doctrine of repetition of events 
including such of its propositions as the Jakob Bernoulli, and the [De 
Moivre –] Laplace theorems. Small wonder that sometimes all civic rights 
are granted to this interpretation. Thus, we find it as a special favourite in 
the British school. What has it to do with the classical interpretation? Does it 
entirely cover the latter? And, if not, where do they diverge? Only in the 
understanding of the sense of the theorems, or perhaps in the extent of 
mathematical similarity? Until now, there are no definitive answers to any 
of these questions. 
    A rigorous revision of all the fundamentals of the calculus of probability, 
a creation of a rigorous axiomatics and a reduction of the entire structure of 
this discipline to a more or less visible mathematical form, are necessary. 
This however is only possible on the basis of a complete formalization of the 
calculus with the exclusion from it of all not purely mathematical issues. 
Neither probability, nor the potential limiting frequency possess such a 
formal nature. The calculus of probability should be converted into a 
disjunctive calculus as indicated above, and only then will it enter the 
system of mathematical sciences as its branch and become definitive, a 
quality which it is still lacking, and enjoy equal logical rights with the other 
branches. 
    My solution is however something more than a simple methodical device 
for disentangling the issues of the logic of the calculus of probability. So as 
to convince ourselves in this fact, suffice it to imagine that nature of logical 
purity which our calculus will obtain as a result of the indicated conversion, 
which is something objective, as are all the borders separating the sciences 
one from another. We reveal them, but we do not create them. Indeed, it 
needs only to compare with each other even those few theorems whose 
statements in terms of probabilities, frequencies and potential limiting 
frequencies are unquestionable.  
    Let us only imagine three such absolutely parallel series of definitions, 
axioms and theorems explicated independently, and, consequently, roughly 
speaking, separately from each other in three different treatises devoted to 
three supposedly separate calculuses respectively. In each case we will have 
independent series of ideas, definitions and proofs. We ask ourselves, 
whether the similarity between them is objective or subjective. The answer 
is self-evident. The general pattern and the course of reasoning are the same. 
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Once we perceive this, we also observe that the likeness exists irrespective 
of our subjective arbitrariness. 
    [6] It may be objected, that the formalization of the calculus of probability 
postulated here avoids exactly the most essential and the most interesting for 
theoretical statistics issues. This, however, is no objection. The essence of 
probabilities, the relations between probability and limiting frequency, and 
between the calculus of probability and the real course of things, – all these 
problems are important and interesting, but they are of another logical 
system, and, moreover, such, whose proper statement is impossible without 
solving simpler and logically more primitive problems. Their definitive and 
complete solution, as dictated by the entire development of mathematical 
thought, lies exactly in the direction whose defence is the subject of my 
study. We only have to dart a look on the issues, concerning the essence of 
the notion of probability and of its relation to reality, for understanding with 
full clearness their utter distinction from the formal mathematical problems 
comprising the subject of the disjunctive calculus and its axiomatics and 
logic. Thus, only a logical and phenomenological analysis absolutely not of 
a formal mathematical nature can indicate that probability is a category unto 
itself, completely independent of the notion of limiting frequency. 
    Now I allow myself a remark as a hint of a solely preliminary nature. 
Suppose that we have a number of frequencies which must surely approach 
some limit as the number of repetitions [of trials] increases unboundedly. It 
does not however follow at all that in some initial part of the trials the 
[studied] event could not have been repeated with a frequency essentially 
different from its limiting value. Suppose for example that a sharper deals 
the cards unfairly; that he cheats relatively less as the game goes on; and 
that in the limit, as the number of rounds increases unboundedly, each card 
will appear with frequency 1/52 as it should have happened under fair 
circumstances 3. Even without knowing anything about the law governing 
the composition of the series of trials, we would nevertheless be sure to 
discover, after observing the actual behaviour of the frequencies, that, with 
probability extremely close to certainty, the probability of the event during 
the first series of the trials diverges from its limiting value not less than by 
such-and-such amount. True, the notion of limiting frequency can also be 
applied to the proportion of right and wrong judgements, but neither here is 
the issue definitively decided: just as in the case above, we may ask the 
[same] questions about the probability of judgement, about the frequency 
and the probability of that proportion4.  
    [7] The same is true with respect to the possibility of applying the 
calculus of probability to empirical experience. Not the latter guides us 
when we establish the calculus’ theorems, but, on the contrary, they, and 
only they, provide us with a prior compulsory clue for regulating it. From 
the calculus of probability we borrow the type of that law, which, following 
N. A. Umov5, we might have called the law of chaos, of complete disorder. 
There exist domains of phenomena where the chain of causes and effects on 
the one hand, and the arrangement of ideographic information6 on the other 
hand, ensure, in conformity with natural laws, the regularity of such a 
sequence: if the occurrence (non-occurrence) of some event is denoted by A 
(by B), then, in the limit, as the number of trials increases unboundedly, A 
ought to appear with the same relative frequency both in the entire series 
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and after any combination of the events; equally often after A, and after B; 
after AA, AB, or BB; after AAB, AAA, ABA, etc, etc. 
    That such domains actually exist is shown by experience, but only when 
the idea of probability guides it and provides the very pattern of the law of 
chaos and the tests for establishing its action in one or another field, and for 
appraising the judgement which establishes it. Hence, in this respect the 
notion of probability also becomes indispensably necessary and logically 
primary. Is it even possible to justify the natural philosophical premises of 
the law of chaos without applying the notion of probability? I think that this 
is questionable. 
    Now, I have however went out of the boundaries of my main subject 
although this was apparently not quite useless for its elucidation. My 
concluding remarks will perhaps amplify the purely logical arguments by a 
vivid feeling, caused not by a logically formal consideration, but by direct 
vision and comprehension of the essence of things and issues. 
 

Notes 
    1. After my text had appeared in Vestnik Statistiki, I [see 1925a] improved some 
formulations making them more intelligible and introduced a few editorial corrections, but I 
did not change anything in essence. E. S. 
    2. After my report was published, Professor Bortkiewicz, in a letter [to me], kindly 
suggested this term [xv, Letter No. 3]. E. S.  
    Khinchin (1928, p. 126) mentioned the disjunctive calculus “according to Slutsky’s 
known terminology”. O. S. 
    3. I have omitted some details in this passage because Slutsky had not explained the 
essence of the game. Also note that his example is actually directed against the frequentist 
(Mises) theory of probability. O. S. 
    4. Some explanation is lacking. O. S.  
    5. Russian physicist (1846 – 1915). Slutsky provided no reference.O. S. 
    6. Ideography, the science of single facts, of history. This notion goes back to the 
philosophers Windelband and Rickert. Also see Sheynin (1990/1996, p. 98) and Foreword, 
comment on [viii]. O. S.  
 

Bibliography 
    Bernstein, S.N. (1917, in Russian), An essay on an axiomatic justification of the theory 
of probability. Sobranie Sochinenii (Coll. Works), vol. 4. No place, 1964, pp. 10 – 60. 
Translation Sheynin (2005, pp. 49 – 111). Also at www.sheynin.de 
    Khinchin, A. Ya. (1928, in Russian), The strong law of large numbers and its 
significance for mathematical statistics. Vestnik Statistiki, No. 1, pp. 123 – 128. 
    Kolmogorov, A.N. (1933). Grundbegriffe der Wahrscheinlichkeitsrechnung. Berlin. 
    --- (1948, in Russian), Obituary: Evgeny Evgenievich Slutsky. Translation (2002): Math. 
Scientist vol. 27, pp. 67 – 74. 
    --- (1974). Second Russian translation of Kolmogorov (1933). Moscow. 
    Markov, A. A. (1900), Ischislenie Veroiatnostei (Calculus of Probability). Subsequent 
editions: 1908, 1913 and 1924. German translation of the second edition: 
Wahrscheinlichkeitsrechnung. Leipzig – Berlin, 1912. 
    Sheynin, O. (1990, in Russian), A. A. Chuprov: Life, Work, Correspondence. Göttingen, 
1996. 
    --- (2005), Probability and Statistics. Russian Papers of the Soviet Period. Coll. 
translations of various authors. Berlin. Also www.sheynin.de  
    Slutsky, E.E. (1925). Über stochastische Asymptoten und Grenzwerte. Metron, Bd. 5, 
No. 3, pp. 3 – 89. 
    --- (1960), Izbrannye Trudy (Sel. Works). Moscow. 



 42 

 
IV 

 

On Some Patterns of Correlation Connection  

and the Systematic Error of the Correlation Coefficient 
 

O nekotorykh skhemakh korreliatsionnoi sviazi i o sistematicheskoi oshibke  
koeffizienta korreliatsii. Vestnik Statistiki, No. 1 – 3, 1923, pp. 31 – 50 

 
    1. Chetverikov (1921) has recently considered a few patterns of 
connection between causes and effects leading to correlation between 
random variables. All those patterns can be generalized to appear as 
particular cases of a still more [?] general pattern (Yule 1912, Problem 6, p. 
227 and Answer on p. 365).  
    The correlation coefficient for the last mentioned generalization can be 
easily and rigorously determined by the method of moments. Consider the 
correlation between two variables, both being sums of two terms supposing 
that their connection consists in that one term is common for both. And so, 
let 
 
    x = u + w, y = v + w                                                                      (1) 
 
where u, v and w are random variables, independent from each other in 
respect of probabilities. Denoting expectation by E, we therefore have 
 
    Eurws = EurEws, Evrws = EvrEws, Eurvs = EurEvs.                        (2)  
 
    Note that for deriving the formula of the correlation coefficient it is not 
necessary to presume absolute independence in Chuprov’s sense (1922, p. 
241/2004, § 1.2)1; it is sufficient for formula (2) to take place at r = s = 1. In 
usual notation, for some random variable z, 
 
    2 2

2E ,  µ ( ) σ E( ) ,zz z z z z= = = −  

 
we will say that the correlation coefficient is 
 

    
E( )( )

,
σ σxy

x y

x x y y
r

− −
=                                                                    (3) 

 
where, as is known and easy to prove, 
 
    E( )( )x x y y− −  = Exy – xy . 
 
    Let us now derive the formula for the correlation coefficient between two 
random variables obeying the above conditions. We have 

 
    E( )( )x x y y− −  = Exy – xy ,  
    Exy = E(u + w)(v + w) = Euv + Euw +Evw + Ew2 =  

2 2 2

2 2 2

E ( )( ) E

E E( ) .

uv uw vw w u w v w w w

xy w w xy w w

+ + + = + + − + =

+ − = + −
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Therefore, 
 
    E( )( )x x y y− − = µ2(w),  
 

    
2 2

2

2 2

σ σµ ( )
.

σ σ σ σµ ( )µ ( )
w w

xy

x y u w v w

w
r

x y + +

= = =                              (4a, b) 

 
    It is not difficult to prove that formulas (4) will also be valid for 
 
    x = A(u + w), y = B(v + w) 
 
where A and B are some constant coefficients2.  
    This formula allows us to introduce the following pattern of connection 
between two random variables with u, v and w being the causes, and x and y, 
the effects. If two phenomena have a common cause in addition to special 
causes independent both from each other and from that common cause, 
then, for any law of distribution of probabilities, in case the causes are 
additive and the effects proportional to them, the correlation coefficient will 
be equal to the ratio of the mean square of the common cause and the 
geometric mean of of their mean squares of the causes. 
    2. Consider now some particular cases.  
    a) Suppose that the causal connection admits of being described in the 
following way. The special causes are proportional to the numbers u and v 
of white balls having been extracted with replacement from two urns after n1 
and n2 trials with probabilities p1 and p2; the common cause is proportional 
to the number w of white balls extracted from a third urn in n3 trials with 
probability p3. Then 
 
    x = Au + Bw = B[(A/B)u + w], y = Cv + Dw = D[(C/D)v + w]. 
 
    Now, in accordance with the above, and directly applying formula (4b), 
we will have 
 

    
2

( / ) ( / )

σ
.

σ σ
w

xy

A B u w C D v w

r
+ +

=  

 
It is known that 
 

    1 1 1 2 2 2 3 3 3σ ,  σ , σu v wn p q n p q n p q= = =  

 
where qi = 1 – pi, i = 1, 2, 3. 
    In addition, since the second moment of a sum of independent magnitudes 
is equal to the sum of their second moments, 
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2 2
2 2 2 2 2 2 1 1 1 3 3 3
( / ) ( / ) 2

2 2
2 2 2 2 2 2 2 2 2 3 3 3
( / ) ( / ) 2

σ σ σ ( ) σ σ ,

σ σ σ ( ) σ σ .

A B u w A B u w u w

C D u w C D v w v w

A n p q B n p qA

B B

C n p q D n p qC

D D

+

+

+
= + = + =

+
= + = + =

 

 

    3 3 3

2 2 2 2
1 1 1 3 3 3 2 2 2 3 3 3

.xy

BDn p q
r

A n p q B n p q C n p q D n p q
=

+ +
 

 
    If A = B and C = D,  
 

    3

1 1 1 3 3 3 2 2 2 3 3 3

.xy

n
r

n p q n p q n p q n p q
=

+ +
                                   (5) 

 
Finally if p1 = p2 = p3 = p,  
 

    3

1 3 2 3( )( )
xy

n
r

n n n n
=

+ +
  

 
which is Chetverikov’s formula. If n1 = n2, as in the trials made by 
Darbishire [1907], and we assume for the sake of convenience that n1 = n2 = 
n and n3 = m, then 
 

    .xy

m
r

n m
=

+
 

 
    Only under the conditions stated concerning the coefficients A, B, C, and 
D and equality of the probabilities, it is possible to represent the correlation 
coefficient as a ratio of the number of common elementary causes of two 
phenomena to the geometric mean of all the elementary causes of both. 
    b) We may obtain the same results by considering another pattern. Let 
there be n1 special elementary causes of phenomenon x, each of them 
contributing either a positive or negative elementary component A to x with 
probabilities p1 and q1 and suppose that the number of positive A’s is u. 
Also, let similar conditions hold for the other causes as well. Then 
 
    x = [Au – A(n1 – u)] + [Bw – B(n3 – w)] = A(2u – n1) + B(2w – n3),  
 
    y = [Cv – C(n2 – v)] + [Dw – D(n3 – w)] = C(2v – n2) + B(2w – n3) 
 
All the mean square magnitudes σ will obviously be here twice as large as in 
the previous case a) so that the formulas for the correlation coefficient 
provided above will also be valid. 
    c) As our last example, we consider three groups of mutually independent 
random variables 
 
    

1 2 31 2 1 2 1 2, ,  ..., ;  , ,  ..., ; , ,  ..., ,n n nx x x y y y z z z  
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with differing values having different probabilities according to their own 
arbitrary laws possible for each group. Let 
 

    
31 2

1 1 1

,  ,  ,
nn n

i j k
i j k

u x v y w z
= = =

= = =∑ ∑ ∑  

 
required is the correlation coefficient between x and y as defined by (1). 
    The conclusions of § 1 are of course valid here also. Namely, since 
 

    

31 2

3

3 31 2

2 2 2 2 2 2 2 2 2 2 2 2

1 1 1

2

1

2 2 2 2

1 1 1 1

σ σ ,  σ σ ,  σ σ ,  σ σ σ ,  σ σ σ ,

σ
.

[ σ σ ][ σ σ ]

 

i j k

k

i k j k

nn n

u x v y w z x u w y v w
i j k

n

z
k

xy n nn n

x z y z
i k j k

r

= = =

=

= = = =

= = = = + = +

=

+ +

∑ ∑ ∑

∑

∑ ∑ ∑ ∑

 

If  
 
    

1 2 1 2 1 2
σ σ  ... = σ σ  ... = σ σ  ...,x x y y z z= = = = = =  

 
whích can take place, for example, when the laws of distribution are the 
same for all random variables of the discussed problem, then (5) takes place. 
    We will obtain such a correlation coefficient when compiling sums of 
numbers according to the following rule. Let the terms of a number 
sequence follow one another absolutely irregularly and take the values 0, 1, 
2, …, 8, 9 with one and the same probability 1/10; such, as we may believe, 
is a sequence of the last digits in a seven-digit table of logarithms. From that 
sequence, isolate subsequences of n1, n3, and n2 numbers, add up the first n1 
numbers with the first n3 numbers, then the latter with the next n1 numbers, 
etc3.  
    3. When wishing to compare the theoretical formulas derived above with 
the results of some appropriate experiment, we will have to allow for the 
fact that the formula for calculating the correlation coefficient by issuing 
from the empirical frequencies is corrupted by some systematic error. Let 
the empirical values of the variables be x′ and y′, their arithmetic mean, 

 and ,x y′ ′  then the empirical value of the correlation coefficient4 
 

    
2 2

( )( )
ρ

( ) ( )

x x y y

x x y y

′ ′ ′ ′− −
=

′ ′ ′ ′− −

∑
∑ ∑

 

 
will be only corrupted by a random error if  
 

    11 2 2

E( )( )
Eρ .

E( ) E( )

x x y y
r

x x y y

− −
= =

− −
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    According to the newest investigations (Chuprov 1922, p. 267/2004, § 
4.2A), this, however, does not take place, and the systematic error is (to the 
terms of order 1/N) 
 

    ρ 11 22 11 11 40 04 31 13

1 1 3 1
ε Eρ [ ( ) ( )]  ...

4 8 2
r r r r r r r r

N
= − = + + − + + .       (6) 

 
Here, N is the number of all cases in the given empirical totality, and 
 

    
/2 /2

20 02

µ

µ µ
ij

i j j j
r = , 

 
    2 2

20 02µ E( ) ( ) ,  µ E( ) ,   µ E( ) .i j
i j x x y y x x y y= − − = − = −  

 
    For the mean square random error of the correlation coefficient, to terms 
of the order of (1/N), we have (Chuprov 1922, p. 269/2004, § 4.2B)  
 

   2 2 2 2
ρ 22 11 11 31 13 11 40 04

1 1 1
σ E(ρ ρ) [ (1 ) ( ) ( )] ...

2 4
r r r r r r r r

N
= − = + − + + + +  (7) 

 
and it is somewhat interesting to apply the few theoretical patterns of 
correlation connection for ascertaining, at least for those cases, how large 
can the systematic error of the usual formula for the correlation coefficient 
be as compared with its random error.  
    To achieve that goal, we have to find the expressions for all the needed 
moments. By applying the method of § 1, I obtain after easy algebraic work, 
again for x and y obeying relations (1),  
 
    µ4(x) = µ4(u) + µ4(w) + 6µ2(u) µ2(w),  
    µ4(y) = µ4(v) + µ4(w) + 6µ2(v) µ2(w), 
    µ22(xy) = µ2(x) + µ2(y) + µ4(w) – µ2

2(w), 
    µ31(xy) = µ4(w) + 3µ2(u) µ2(w), µ13(xy) = µ4(w) + 3µ2(v) µ2(w), 
 
so that 
 

    
2

2 4 2
11 22

2 22 2

µ ( ) µ ( ) µ ( )
,  1 , 

µ ( )µ ( )µ ( )µ ( )

w w w
r r

x yx y

−
= = +  

 

    4 4 4 2 2
40 2 2

2 2

µ ( ) µ ( ) µ ( ) 6µ ( )µ ( )
,

µ ( ) µ ( )

x u w u w
r

x x

+ +
= =                      (8) 

    4 4 4 2 2
04 2 2

2 2

µ ( ) µ ( ) µ ( ) 6µ ( )µ ( )
,

µ ( ) µ ( )

y v w v w
r

y y

+ +
= =  

 

    4 2 2 4 2 2
31 133 3

2 2 2 2

µ ( ) 3µ ( )µ ( ) µ ( ) 3µ ( )µ ( )
,  .

µ ( )µ ( ) µ ( )µ ( )

w u w w v w
r r

x y y x

+ +
= =  
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    4. We will now apply the formulas of § 3 for the particular patterns of § 2; 
to simplify our problem, we will assume those patterns in a more specific 
way. 
    Pattern a). Suppose we have three urns; n extractions are made from each 
of the first two, and m extractions from the third one. In each case, the 
probability of the occurrence of a white ball is p, and the random numbers of 
the extracted white balls are u, v, and w respectively. We will consider the 
correlation between x and y obeying conditions (1) and denote n + m = s. 
    The moments of the so-called binomial distribution are known. For the 
first urn, say, they are 
 
    2

2 E( ) ,  µ ( ) E( ) ,u u np u u u npq= = = − =  

    3
3µ ( ) E( ) ( ),  u u u npq q p= − = −  

    4 2 2 2
4µ ( ) E( ) 3 (1 6 ).u u u n p q npq pq= − = + −  

 
Similar formulas are valid for the other urns, and, because the trials are 
independent, for the extractions from the first two urns taken together, i. e., 
for x and y, as well. Noting that 
 

    11xy

m
r r

s
= = ,                                                                                    (9) 

 
introducing 
 

    
1 6 pq

c
pq

−
=                                                                                       (10) 

 
and issuing from the results of § 3, we arrive after insignificant 
transformations at  
 

    2
22 11 11 40 04 31 13 111 2 ,  3 ,  (3 ) .

c c c
r r r r r r r r

s s s
= + + = = + = = +  

 
    With an increasing s, these expressions approach the corresponding 
moments of the so-called “normal” distribution 
 
    2

22 11 40 04 31 13 111 2 ,  3,  3 .r r r r r r r= + = = = =  

 
Calculating as previously to the terms of the order 1/N, we have for the 
systematic and random errors of the correlation coefficient 
 

    11 11 11
ρ 11

(1 )[1 ( / 2 )]
ε Eρ  ...,

2

r r r c s
r

N

− + +
= − = − +                        (11) 

 

    2 2 2
ρ 11 11 11 11

1
σ E(ρ ρ) (1 ) (1 )(2 )  ...

2

c
r r r r

sN
= − = − + − − +   (12) 

 
and, as the first approximation,  
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    11 11

2ρ 11 11

11

[1 ( / 2 )]Eρ 1
 ...

σ 2 (2 )
(1 )

2 1

r r c s

N r rc
r

s r

+ +
= − +

−
+ +

−

                             (13) 

 
    When considering this expression, we note that in two cases, when c < 0 
and r11 → 1, and when r11 is arbitrary and c → ∞, it will apparently 
infinitely increase. In the first case, the left side of (13) cannot actually 
become as large as desired. Let for example p = q = 1/2, and, see (10), c = – 
2. We know, see (9) and the conditions of the problem, that m and s are 
whole numbers. For having r11 = 0.99, say, we ought to extract at least 99 
balls from the third urn and one ball from each of the two first ones. In 
general, n must at least be equal to 1. Then 
 

    11 11

11 11

1 1
,  

1

r rn
s

s r s r

−
= = =

−
 

 
and formula (13) will provide 
 

    
2

ρ 11 11

2
ρ 11 11

ε 2 11
.

σ 2 3 1

r r

N r r

+ −
= −

+ −
 

 
    This magnitude takes its maximum value when r11 = 1, when further ερ/σρ 

= 1/ 3N− . For N = 12 and 27 it is – 1/6 and – 1/9 etc. and in any case the 
systematic error of the correlation coefficient is several times less than its 
random error. The difference as compared with the “normal” distribution is 
also small. At c = 0 or finite c and s = ∞ formulas (11) – (13) are 
transformed into formulas of the “normal” distribution.  

    Then, for r11 = 1, ερ/σρ = 1/ 2 N−  which only very little differs from the 
above. 
    Pattern b). If, for example, q approaches zero, c, see formula (10), can 
become arbitrary large. For r11 = 1/2 formula (13) provides 
 

    ρ

ρ

ε 1
1 ( / 3 ).

σ 4
c s

N
= − +  

 
Let p = 99/100, or 9999/10000, q = 1/100 or 1/10000; with s = 10, ερ/σρ = – 
0.51/√N; and – 4.6/√N. If N = 25, then ερ/σρ = – 0.1 and – 0.9 etc. 
    A closer examination, however, reveals the following circumstance. 
When separately calculating ερ and σρ the second example will provide ερ = 
– 2.5 and σρ = 2.75. First of all, the absolute value of ρ cannot exceed 1 so 
that the result obtained must be attributed to an inadmissible use of 
approximate values of these two magnitudes, to neglecting the terms of the 
order 1/N 2. Second, it is also obvious that, when extracting 5 balls from any 
of the three urns containing 9999 white balls and 1 black ball, we should 
expect in an overwhelming number of cases all the extracted balls to be 
white.  
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    In each series of 5 extractions, one after another, we ought to have x = u 
+ w = 5 + 5 = 10 and y = v + w = 5 + 5 = 10. Assuming N = 25 as we did in 
our example, we will have to make 25·15 = 375 extractions for compiling 25 
values of both x and y, and the probability that not a single black ball will 
occur is (9999/10000)375 = 0.97. It follows that in an overwhelming number 
of cases the series of 25 values of x and y will consist of the same numbers 
with zero deviations from their means. The correlation coefficient will then 
take the empirical expression ρ = 0/0. 
    In other words, no conclusion can be formulated under the stated 
conditions. If we increase N so that the chance of at least one black ball 
occurring during all 15N trials will be at least 1/2, we will have to choose N 
= 502 approximately, then ερ = 0.125, σρ = 0.61 and ερ/σρ = 0.2. For any 
sufficiently large N and the correlation coefficient to be reasonably 
formulated, that ratio will even become essentially smaller. The general 
conclusion is that the studied theoretical patterns, in all practically 
interesting cases, always provide a systematic error of the correlation 
coefficient several times less than the random mean square error. 
    5. Turning now to Pattern c) of § 2, I only consider the case in which all 
the variables 
 
    x1, x2, …, y1, y2, …, z1, z2, … 
 
obey the same law of distribution. Suppose also that, as it was in § 4,  
 
    n1 = n2 = n, n3 = m, n + m = s. 
 
Then u, v, w, x and y will all be sums of n, n, m, s and s random variables 
obeying the same law. For the sake of brevity let also 
 
    µ2(x1) = µ2(x2) = … = µ2(y1) = µ2(y2) = … = µ2(z1) = µ2(z2) = … µ2 
 
and similarly denote the fourth moment of all these variables simply by µ4.  
Then  
 

    2 2
2 2 2

1 1 1

µ ( ) µ ( ) E [ E ] E [ ( )] µ ,
n n n

i i i i
i i i

v u x x x x n
= = =

= = − = − =∑ ∑ ∑  

    4 4
4 4

1 1 1

µ ( ) µ ( ) E [ E ] E [ ( )]
n n n

i i i i
i i i

v u x x x x
= = =

= = − = − =∑ ∑ ∑  

    4 2 2

1 1 1,

E [ ( ) ] E [6 ( ) ( ) ]
n n n

i i i i j j
i i j j i

x x x x x x
= = = ≠

− + − − =∑ ∑ ∑  

    4 2 2

1 1 1,

 [E ( ) ] 6 [E ( ) E ( ) ]
n n n

i i i i j j
i i j j i

x x x x x x
= = = ≠

− + − − =∑ ∑ ∑  

    2
4 2µ 3 ( 1)µ .n n n+ −  

 
    Similarly, when replacing n by m and s, we will have 
 
    µ2(w) = mµ2, µ2(x) = µ2(y) = sµ2, 
 
    2 2

4 4 2 4 4 4 2µ ( ) µ 3 ( 1)µ ,  µ ( ) µ ( ) 3µ 3 ( 1)µ .w m m m x y s s= + − = = + −  
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Substituting now the obtained expressions in formula (8) and denoting after 
Pearson 2

2 4 2β µ / µ=  we will have after some easy work  

 

    2 11
11 22 11 2,  1 2 (β 3),

rm
r r r

s s
= = + + −  

                                                                                                         (14) 

    2 11
40 04 31 13 11 2

β 3
3 ,  3 (β 3)

r
r r r r r

s s

−
= = + = = + − . 

 
    For β2 = 3 or finite β and s = ∞ these will again become the moments of 
the “normal” distribution. And, when substituting (14) into (6) and (7), we 
find that  
 

    11 11 11 2
ρ 11

(1 )[1 (β 3) / 2 ]  ...
ε =Eρ ,

2

r r r s
r

N

− + + − +
− = −                (15) 

 

    2 2 2 2
ρ 11 11 11 11

β 31
σ =E(ρ ρ) (1 ) (1 )(2 )  ...

2
r r r r

sN

−
− = − + − − + , (16)  

 
i. e., formulas similar to (11) and (12). Their analysis on the lines of § 4 will 
lead to the same conclusions, but we leave it for the readers. 
    We only provide a numerical example. Let us take 330 cards, writing 0 on 
81 of them; 1, on 49; 2, on 25; 3, on 9; 4, on 1; 5, on 1, and again, 6, 7, 8 
and 9 on 9, 25, 49 and 81 cards respectively. When extracting these cards 
with replacement, the occurring randomly variable numbers will have values 
0, 1, 2, …, 8, 9 with probabilities proportional to  
 
    81, 49, 25, 9, 1, 1, 9, 25, 49, 81  
 
(equal to 81/330, …). They are also proportional to the squares of the 
deviations of the values of the variable from its arithmetic mean for an 
unlimited number of trials, 4.5. Calculation shows that that distribution is 
characterized by the following moments: 
 
    2 4E 4.5,  µ ( ) 14.65,  µ ( ) 252.0625,x x x x= = = =  

 

    4
2 22

2

µ ( )
β 1.18,  β 3 1.82.

µ ( )

x

x
= = − = −  

 
    When composing groups of 11 numbers from a sequence of the random 
values of such a variable, then composing N pairs of numbers by adding the 
first 10, and the last 10 of them, the terms of each pair will be correlated 
and, as proved above, the correlation coefficient will be 9/10. Determining 
now ερ and σρ by formulas (15) and (16) we will have 
 
    ερ = – 0.0814/N, σρ = 0.164/√N. 
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    Although the initial distribution, as we saw, was extremely peculiar and 
very remote from the “normal” law, they only differ from the same 
magnitudes for that distribution by 5% and 14% respectively. Even for a 
modest value of N = 25, the ratio of the systematic error to the random will 
only be about 1/10.  
    In general, the above apparently allows us to conclude that, for any 
theoretical value of the systematic error, the practical asignificance of that 
error of the empirical correlation coefficient, as revealed by the latest 
investigations, is happily either completely or almost of no consequence. 

 

Appendix 
    Here is an illustration. I chose 1500 one-digit numbers separated in their 
order in groups of three5. Three vertical series, 500 numbers in each, were 
thus formed; suppose them to be the values of random variables u, w and v 
having possible values 0, 1, 2, …, 8, 9. Assume that for each of the three 
series the probability of each value is 1/10 and does not depend either on the 
previous or subsequent values of the same variable or of the other ones. 
These three assumptions 1) Of a definite law of probability. 2) Of the 
constancy of that law, and 3) Of the independence of the variables, are 
apparently the most likely if not absolutely necessary. 
   Adding up in pairs the numbers of the first two rows, then the second and 
the third, we obtain the values of variables 
 
    x = u + w, y = v + w. 
 
We also compile a column of the absolute values of (x – y), directly 
calculate how many times each value of the [three new] variables does occur 
and obtain the following table (Table 1). 
    Now we have to calculate the correlation coefficient between x and y. As 
shown above, it should be equal to 1/2 if only the adopted hypotheses are 
obeyed. Denoting ∑nxx by ∑n etc, and empirical magnitudes with an 
additional stroke above, we have 
 
    ∑x = 4453, ∑y = 4651, ∑x2 = 47783,  
    ∑y2 = 51729, ∑(x – y)2 = 7354, 
 
    ∑xy = ½[∑x2 + ∑y2 – ∑(x – y)2] = 46079, 
 

    
1 1

8.906, 9.302,x x y y
N N

′ ′= = = =∑ ∑  

 

    2 2 2
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1
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1
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    11µ ( ) 9.33054
0.56157.

σ σ 16.619720xy

x y

xy
r

′
′ = = =

′ ′
 

 
    For comprehending the significance of the obtained deviation from the 
theory, let us derive the corresponding theoretical constants. Consider a 
random variable with values 0, 1, 2, …, 8, 9 with probabilities 1/10. Its 
constants [parameters] will coincide with the corresponding values of u, w, 
and v: 
 

    
1

E( ) (0 1  ... + 8 9) 4.5 ,
10

z z u v w= = + + + = = = =  

    2 2 2 2 2
2

1
µ ( ) σ E( ) [(0 4.5) (1 4.5)  ... (9 4.5) ]

10zz z z= = − = − + − + + − =  

    8.25 = 2 2 2µ ( ) µ ( ) µ ( ),u v w= =  

 
    σz = 2.872281 = σu = σv = σw, 

    4 4 4 4
4

1
µ ( ) E( ) [(0 4.5) (1 4.5)  ... (9 4.5) ]

10
z z z= − = − + − + + − =  

    120.8625 = µ4(u) = µ4(v) = µ4(w), 
 

    4
2 2

2

µ ( )
β 3 3 1.22425

µ ( )

z

z
− = − = − . 

 
    And, as shown above in a general way, 
 
    2E( ) 9.0,x y z= = =  
    µ2(x) = µ2(y) = 2µ2(z) = 16.50, σx = σy = 4.062019, 
    2

4 4 4 2µ ( ) µ ( ) 2µ ( ) 3.2µ ( ) 650.1.x y z z= = + =  

 
Now, by applying known formulas we calculate the mean square errors 
 

    
σσ

σ σ σ 0.12845,  σ σ 0.18166,xz
u v w x y

N N
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2

4 2
σ σ

2

µ ( ) µ ( )
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µ ( )x y
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N

x
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    Finally, the mean square error of the correlation coefficient rxy which is 
equal to 1/2 will be 
 

    2 2 2β 31 1 1 1
σ [1 ( ) ] (1 ) (2 ) : 500 0.02992

2 2 2 2 2 2xyr

−
= − − ⋅ − ⋅ − =

⋅
 

 



 53 

with systematic error 
 

    2 2β 31 1 1
ε E [ (1 1/ 2) (1 1/ 2)]  0.00030.

2500 2 2 2 2xyr xy xyr r′

−
′= − = − − + ⋅ − = −

⋅
 

 
    This is absolutely insignificant. For an infinitely repeated series of 500 
pairs of numbers x and y irreproachably complying with theoretical 
assumptions the arithmetic mean of the empirical values of the correlation 
coefficient should tend not to 1/2, but to (1/2 – 0.00030) = 0.49970. The 
difference only constitutes 1% of the mean square error. Denoting the 
deviation of the empirical correlation coefficient from its theoretical value 
(otherwise, its error) by ∆rxy, we have 
 
    ∆rxy = 0.56157 – 0.49970 = 0.06187,  
 

    
0.06187

2.068.
σ 0.02992

xy

xy

r

r∆
= =  

 
    The “error” of the empirical correlation coefficient so essentially 
exceeding its mean square error is actually not extraordinary. If our 
hypotheses were indeed valid, such an excess would have been considered a 
rather, but not excessively rare random occasion. For the “normal” 
distribution of errors, which for N = 500 can be admitted as a first 
approximation, the probability of an error equal or larger in absolute value is 
3.8/100. However, had there been no prior considerations for our 
hypotheses, that result should have led us to conclude that the probability of 
their being valid is rather low. 
    Let us attempt to reveal the possible cause for the deviations of the 
empirical correlation coefficient from the indications of the theory. We 
express r′xy in the following way 
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and therefore 
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    For independent u, v and w the expectations of r′uv, r′uw, and r′vw vanish 
(Chuprov 1922, p. 248/2004, end of § 2.2A), and for a more or less 
considerable N, r′xy will be sufficiently precisely, to the order of its 
systematic error, ε

xyr ′  equal to 
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    If now u, v and w have a single common law of distribution remaining 
constant during the entire empirical series, then 2 2 2Eσ Eσ Eσu v w

′ ′ ′= =  and, 

again for a sufficiently large N, we will have sufficiently precisely 
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    Neglecting errors of the order of the systematic error of the correlation 
coefficient, we thus conclude that any deviation of the empirical correlation 
coefficient from theoretical indications can result from three and only three 
causes. First, random errors of ,  ,   on the one hand, and ofuv uv uvr r r′ ′ ′  σ ,  u

′ σ ,v
′  

σw
′  on the other hand. Second, non-random “errors” of ,  ,  , uv uw vwr r r′ ′ ′  i. e., 

their non-random deviations from zero owing to connections between u, v 
and w. Third, non-random “errors” of  σ ,  u

′ σ ,v
′ and σw

′  caused by the 

difference between the laws of distribution of those variables. When 
analysing empirical data, these causes can be distinguished one from another 
and the sources of “error” in the r′xy revealed, sometimes practically 
certainly, but sometimes only more or less probably, depending on the 
magnitude of the corresponding deviations. If these deviations are not 
clearly expressed, the problem can certainly remain entirely open. 
    Turning now to our numerical series, we can compile anew a table of the 
distribution of the values of u, v and w (Table 2). We are then able to 
calculate […]. 
    Calculating now the other general characteristics of the distribution of our 
variables, we compare them with each other and with the earlier derived 
corresponding magnitudes for x and y, see Table 3. We are now able, first, 
to establish the source of the error of r′xy. Noting that the product σ′xσ′y 
exceeds its theoretical value, we see that 2σw

′ /σ′xσ′y exceeds 0.5 only because 

of the rather essential positive error of σ′w. It led to r′xy deviating by 
0.035201, or by 7.04% of its theoretical value. The other part of the error 
(5.27% of the same magnitude) occurred because of a positive correlation 
between u and v on the one hand and, on the other hand, between v and w.  
    How essential are all these deviations? Or, how high is the probability of 
a random origin of their entire totality? Restricting our attention to nine 
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magnitudes,  ,   ,   ,u v w′ ′ ′  σ′u, σ′v, σ′w, r′uv, r′uw and r′vw whose errors should 
be mutually independent for independent u, v and w, we can apply the 
Pearson criterion (Slutsky 1912, pp. 192 – 193/2009, § 43). Namely, 
squaring the ratio of the “errors” to the corresponding mean square errors 
(Table 3, last column), and adding up those squares, we have x2 = 17.35. For 
nine independent variables, i. e., for n′ = 10, the Elderton table [1902] leads 
to P = 0.044.  
    A probability of such an order does not empower us to any decisive 
conclusions. There is nothing special in that we have accidentally 
encountered a combination of random numbers naturally occurring once in 
roughly 23 cases. On the other hand, had there been no prior considerations 
for our hypotheses about the chosen numbers, it would still have been more 
probable that they, the hypotheses, did not quite comply with reality. 
    It is not easy to see anywhere something absolutely random, and there is 
nothing inconceivable in that the chosen one-digit numbers were slightly 
connected with each other owing to the connection between the four- and 
five-digit numbers of births and deaths in those consecutive years which 
they describe. That curious problem demands, however, a special 
investigation beyond the framework of the present paper. 

 

Explanation of Tables 
    I am only explaining the three tables, all of them in the Supplement. O. S. 
    Table 1. Magnitudes x and y, as explained in text, are sums of uniformly 
distributed random variables and have possible values 0(1)18. The Table 
provides the number of the occurrences of each of those values, then the 
same for |x – y|.  
    Table 2. Magnitudes u, v and w are the one-digit empirical numbers 
chosen from the Jahrbuch (1913). The Table provides the number of 
occurrences of each of their values, separately for all three of those 
variables. 
    Table 3. It provides the theoretical and empirical values of the arithmetic 
means of u, v, w and of their standard deviations; the same for ruv, ruw and 
rvw, and for x, y and rxy. The main column shows the difference between the 
empirical and theoretical values of each of the mentioned magnitudes 
divided by their appropriate theoretical value. 

 

Notes 
    1. Chuprov stated that for random variables to be mutually independent, the law of 
distribution of any one of them ought to persist whichever possible values are taken by the 
other variables. According to the modern definition, the densities f(xi) of random variables 
ξi and the density f(x1, x2, …, xn) of {ξi} should then obey the condition 
 
    f(x1, x2, …, xn) = f(x1) f(x2) … f(xn) 
 
with a similar condition imposed on their distribution functions. O. S. 
    2. Indeed, if u + w = ξ, v + w = η, then x = Aξ, y = Bη. But 
 

    ηE( )( ) E(ξ ξ)(η η),  σ σ ,  σξ σ ,x x y y AB Ax y B− − = − − = =  

 
therefore 
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2

ξη
ξ η

σ
,

σ σ
w

xyr r= =  

 
QED. E. S. 
    3. This is unclear. O. S. 
    4. I have written x′, y′, … instead of the obviously mistaken x1, y1, … The same mistake 
occurred in the beginning of the Appendix in spite of Slutsky’s direct indication that he is 
applying strokes. O. S. 
    5. Slutsky mentions the source, the tables of births and deaths in the Jahrbuch (1913), 
from which he had taken his numbers, and explains how he had chosen them, 1499 in all, 
from it. O. S. 
    We repeated one digit, a 9, and obtained 1500. In one case, 4 was mistakenly chosen 
instead of 5. Having in mind the goal of the experiment, the ensuing errors can be thought 
as of no consequence. E. S.  
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V 

 

On a New Coefficient of Mean Density of Population 
 

O novom koeffiziente srednei plotnosti naselenia. 
Vestnik Statistiki, No. 4 – 6, 1923, pp. 5 – 19 

 
    1. The ratio of population to the area of the territory it occupies, if 
distributed uniformly, is the density of population; otherwise, it is the mean 
density. However, for any considerably irregular distribution that latter 
number absolutely wrongly characterizes the conditions of life of the 
population. 
    Let us consider a fictitious example. Given a country consisting of two 
regions with populations 10mln and only 99 thousand and areas 100 
thousand and 9,900 thousand sq km respectively. The densities will be 100 
and 0.01 whereas the mean density is 1.0099. In any comparison with the 
more uniformly populated countries, that last-mentioned figure will only 
mislead because almost 99% of the population, or, in other words, all the 
population is certainly living, generally speaking, under the same conditions 
of density as the inhabitants of other countries having density 100. 
    It might be argued that the inadequacy of the mean density is a property 
common to all other mean magnitudes. This, however, is wrong, as I will 
now show. More precisely, without denying that a mean value as such 
possesses some shortcomings, we will see that the mean density is a number 
formed logically correctly, but illogically applied. 
    Let us have some territory divided into small districts with differing 
densities. Marking off the density on the x-axis, and dividing the entire 
interval into parts, we can construct rectangles with small bases with their 
areas proportional, first, to the sum of territories inhabited with the 
corresponding density; or, second, to the population. We thus obtain 
diagrams showing the distribution of the territory, or of the population 
according to the density. The mean values of the indications will be 
absolutely different since the weights will be areas in the first case, and 
populations, in the second. 
    Let the areas be s1, s2, …, sm with populations n1, n2, …, nm and densities 
c1, c2, …, cm. Then the mean densities will be respectively1 
 

    

1 1
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                                             (1; 2) 

 
Here, N is the population of the territory, and S, its area. The second mean 
can also be calculated as 
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= =∑ .                                                                (3) 

 
    The logical mistake usually made is that the mean density of the first 
kind, i. e. the mean density or the arithmetic mean of the densities is 
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calculated as an indicator of the territory, but applied for characterizing 
population and the conditions of life for which the arithmetic mean of 
densities as an indication of the population itself would have been required. 
To explain this on a simplest example: densities 10 and 20 lead to mean 
density 15, but the first case is valid for equal areas uniformly populated 
with the above densities; and the second instance, when we have equal 
populations in both regions. 
    We may distinguish between the two means calling them mean physical 
and mean social densities, respectively. Let us calculate the latter for our 
fictitious example above: 
 

    
6 3

6

100 10 10 0.01 99 10
γ 99.02,

10.099 10

⋅ ⋅ + ⋅ ⋅
= =

⋅
 

 
a number very close to the density for the prevailing number of people. 
Under the conditions stated, that should seem to be quite natural.  
    In concluding, it would perhaps not be amiss to note the connection 
between the two means. Formula (3) provides 
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In other words, the social density of the population is equal to the mean 
square density with weights being the corresponding areas divided by the 
mean physical density. Or, denoting as usual the mean square deviation of 
density by σc and the coefficient of variation, i. e. σ / ,c c by vc, and taking 

into account the known identity 
 
    2 2

2( ) σ ,c cm c= +  

 
we have 
 

    
2 2σ

γ σc
c c

c
c v

c

+
= = +                                                                   (5) 

 
from which, in particular, it follows that always γ .c≥  
    It is also evident that for these magnitudes to be equal to each other it is 
necessary that σc = 0, i. e., that c1 = c2 = … = cm. In all cases, in which the 
social density is calculated for territories with differing densities, γ  .c>  
    2. The above method of calculating the mean social density is only 
applicable without restrictions when the partial regions s1, s2, …, sm are 
populated absolutely uniformly. Otherwise that mean only provides an 
approximate magnitude whose logical meaning should yet be ascertained 
and whose precision is not yet known. On the face of it, it is only clear that 
the more uniformly is the population distributed over each district, the closer 
is the calculated magnitude to the real mean (social) density, and the other 
way round. But what is that real mean? 
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    Suppose that the population is a continuous function of the coordinates of 
the appropriate surface. This means that, for each element of area ∆s taken 
about an arbitrary point and having population ∆n, there should exist the 
limit of the ratio ∆n/∆s as ∆s tends to zero. Then that limit equal to γ will be 
the density at a given point, γds will be the population of an infinitely small 
element of area ds and the mean social density will be represented by the 
integral 
 

    21
γ γ ds

N
= ∫                                                                                (6) 

 
taken over all the appropriate area. 
      Now, another case. Let 
 
    ∆1s > ∆2s > … ∆is > … 
 
be a number of elementary areas situated about some point and unboundedly 
approaching zero. It can occur that, although the population is not a 
continuous function of the area, the ratios 
 
    ∆1n/∆1s, ∆2n/∆2s, …, ∆in/∆is, …, ∆ln/∆ls, … 
 
constitute a so-called semi-convergent series. That means that its terms, 
beginning with some i, will ever nearer approach some constant magnitude 
C so that the [absolute] difference between them becomes less than some 
somehow reasonably assigned error, but, beginning with some farther 
subscript l, these terms move away from that quasi-limit C. We may agree to 
consider that magnitude as the density of the population at the appropriate 
point and formula (6) will again provide the social mean density for the 
entire territory. From the logical side, the situation here is about the same as 
in the similar concepts of statistical physics. 
    We will attempt, however, to regard our issue from another viewpoint, 
and to formulate the following problem:  
    Is it possible to attach a meaning to the concept of mean density logically 
consistent with any distribution of the population and admitting quite an 
adequate approach to such an essentially discrete function as the 
inhabitation of a territory? 
    I believe that that will be possible after the concept of density of 
population be subjected to a certain logical transformation. When the 
density is calculated in the usual way, individuals are treated as some 
absolutely abstract units without at all considering their relations with the 
territory, such as work, mobility, ownership etc. Only one aspect is taken 
into account, viz., whether the given individual is within the boundaries of a 
certain territory. And, if the territory is separated by several systems of 
successive partitions, such as provinces, districts, etc., only the smallest of 
those is always considered as though the inhabitant of the district, say, has 
no relations with the larger parts. When calculating the mean (physical) 
density, obvious absurdities are not met with although some difficulties 
sufficiently described in geographical literature do occur. For example, if a 
man lives in one district, but works elsewhere, to which population should 
he be attached? And, how should we deal with uninhabited, or very sparsely 
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inhabited areas (forests, highland pastures, various wastelands, etc.) 
interspersed among populous tracts? 
    Due to the insufficiency of its logical basis, the concept of mean social 
density suffers considerably greater. Indeed, when calculating the mean 
physical density, a move of an individual from one sub-region to another 
one as well as the change of the boundaries between them are only reflected 
in the mean densities of these districts whereas the mean density of the 
entire territory does not change. At the same time, however, after any 
change of those boundaries, the mean social density generally takes a new 
value. Since the interior boundaries are arbitrary, the mean social density 
lacks objective meaning. 
    This can be explained by a reductio ad absurdum if we understand the 
usual concept as the restriction of the individual’s relation with the territory 
only to his “being within”. Separate all the territory into such tiny plots that 
not more than one individual inhabits each of them. Then, applying the 
general principle of calculation, we will obtain a zero density for each 
uninhabited plot and the same [positive] density for the other ones. For plots 
of 2, 1, 0.5sq. m we will find elementary densities and, therefore, mean 
social densities equal to 1/2, 1, 2 people/sq. m depending on our arbitrary 
choice rather than on some objective conditions. 
    3. For establishing a logically well-grounded concept of density of 
population we ought to attach to it the meaning of some relationship 
between individual and territory and derive just as many versions of that 
concept as reasonable relationships will be taken into account. Within the 
context of my paper it is not important which of these will be useful for the 
practitioner or be theoretically interesting. 
    Let us consider some possible relation R between an individual and a 
point within the pertinent territory. Suppose that all the points connected 
with some individual by R constitute one or several entire plots and call it, 
or their totality, the region inhabited by him with respect to R, or, shorter, 
his region. Consider at first the case in which the relation R does not admit 
of any quantitative gradations, that for the individual there is no difference 
between the points of his region. Then we may say that such a region is 
uniformly inhabited by him, and its density will obviously be 1/S where S is 
its area. As to the population, if other individuals are lacking, it is equal to 1 
for the entire region; for its half it is 1/2, and for any part of the region with 
area s it is s/S. 
    Let us take into consideration all the individuals inhabiting some territory. 
Determine the boundaries of the regions where each of them is living and 
consider one of the regions formed by the intersection of such boundaries 
but not being intersected by any of them. All the points of each region will 
be homogeneous in the sense that each point is conjugated by the relation R 
with one and the same number of the same individuals. The area of a region 
will possess one and the same density in all its parts and we will call such 
regions simple parts of the territory. 
    Suppose that some territory is divisible in ω simple parts with areas s1, s2, 
…, sω and let part si be “inhabited” by mi individuals whose regions are Si1, 
Si2, … Then, according to the above, the total population of such a simple 
part will be 
 
    vi = si/Si1 + si/Si2 + … (m terms)                                                      (7) 
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and its density 
 
    γi = 1/Si1 + 1/Si2 + … (m terms).                                                     (8) 
 
    Obviously, ∑si = S and ∑vi = N and we may apply formulas (2) and (3) 
for calculating the mean social density. Then 
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    Suppose also that we may subdivide all the simple parts into elementary 
plots having one and the same area ∆s. Then, since the densities in all the 
separate simple parts are the same, we will have for each such part 
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and therefore 
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    Since, in the general case, the areas of the simple parts are 
incommensurable, formula (11) can only be approximate. However, in the 
limit we will always have the precise expression 
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    All the previous considerations can be easily generalized to the case in 
which the relation of the individual to the territory is of a quantitative 
nature. Then, for each individual there will exist some function of the 
density describing his inhabiting an appropriate territory with respect to R, 
and the density of population at every point will be equal to the sum of these 
partial densities. Formula (12), or, approximately, (11), will then represent 
the mean social density of all the territory. 
    Example. Ten people, 6 prisoners and 4 warders, are walking over a plot 
of, say, 1 desiatina2. The latter walk all over the plot, whereas the former are 
free to walk over 1/4 of it. Then the “population” of the smaller plot is 6 + 
4(1/4) = 7 people and the density is 7:(1/4) = 28 people. The rest part of the 
plot, only available for the warders, has population 4·3/4 = 3 people and 
density 3:3/4 = 4. The mean social density is 28·7 + 4·3 = 20.8 as against the 
mean physical density of 10 people. 
    4. Both the population and the density can change not only in space but 
over time as well and the same two concepts have to be distinguished now 
also. When calculating the mean density and assigning the appropriate time 
intervals as the weights, we obtain the physical mean; if, however, we admit 
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instead the time during which the population has lived [in the territory] 
given the corresponding densities, we get the mean social density. 
    Suppose that the constant population of a coastal zone with area 10sq. km 
is 10 people, but that during 1/50 of a year this zone is being overflowed 
with an industrial army 10 thousand strong. Then the zone’s density will be 
1,001 during 1/50 of a year and 1 man during the rest of the year. 
Calculating the mean with weights 1/50 and 49/50 we have 
 
    21.0c =  people.                                                                         (13) 
 
    If, however, we take into account that during the first period 10,010 
people will live 10,010(1/50) = 200.2 man-years, and during the second 
period the 10 people will live 10(49/50) = 9.8 man-years, the mean social 
density will be 
 

    
1001 200.2 1 9.8

γ 954.3
200.2 9.8

⋅ + ⋅
= =

+
 people.                                    (14) 

 
    The first number (13) is the arithmetic mean as an indicator of the 
territory, almost uninhabited for the greater part of the year, whereas the 
second mean (14) is an indicator of the conditions of life of certain social 
masses, of 10,010 people during 1/50 of a year, and of 10 people during 
49/50 of a year. Each of these means has its own special meaning and they 
cannot replace one another.  
    It is of certain interest to consider in general the mean social density for 
an entire period. Suppose that t1, t2, …, tk are elementary periods of time, s1, 
s2, …, sω, elementary plots of the territory, vi1, vi2, …, vik, and γi1, γi2, …, γik, 
the populations and densities for the i-th plot during the appropriate time 
intervals. Let, in addition, lij be the total time of life passed by the 
population of the i-th plot during the j-th interval of time. Then, denote by 

 and γi iv  the mean population and density for the whole period of time 

 
    T = t1 + t2 + … + tk  
 
for the i-th plot, and by li the total time passed by its population during 
period T. We also ought to denote the total time passed by all the population 
during all the period by L, the mean population of the territory over the 
entire period by N  and the mean social density for all the territory and the 
whole period by γ .T  Similar magnitudes for the whole territory over the j-th 

elementary interval of time will be Lj, Nj and γ .ij  

    Define the mean social density over time period T as 
 

    
ω

1 1

1
γ γ .

k

T ij ij
i j

l
L = =

= ∑∑                                                                     (15) 

 
It is also possible to represent this expression in one of the following ways. 
First, when summing over time, we obtain 
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ω

1

1
γ γ .T i i

i

l
L =

= ∑                                                                           (16) 

 
    In other words, the mean social density for all the territory over a certain 
period of time is obtained by calculating those densities over the whole 
period for each elementary plot and then taking the mean with weights equal 
to the time passed by the inhabitants of each plot over all the period. 
    Second, when summing over all the area for each of the separate 
elementary time periods we get 
 

    
ω

1 1 1

1 1 1
γ [ γ ] γ .

k k

T j j i j i j j ij
j i ij

t N v L
L N L= = =

= =∑ ∑ ∑                               (17) 

 
Thus, the same mean social density can be determined when deriving it for 
all the territory over each elementary period of time and then taking their 
mean with weights equal to the time passed by all the population during 
each of those periods. 
    Third, let us denote by 2(γ )i

m  the mean square of the density for the i-th 

plot over all the period with weights simply equal to the duration of the 
corresponding elementary periods: 
 

    2
2(γ )

1

1
γ .

i

k

ij j
j

m t
T =

= ∑                                                                     (18) 

 
Now, noting that 
 
    lij = tjvij = tjγijsi 
 
we will represent expression (15) in the following way: 
 

    
ω ω

2 2

1 1 1 1

1 1
γ γ [ γ ].

k k

T ij j i ij j
i j i j

T
t s t

L L T= = = =
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    Since 
 

    
1

1
,

k

j j
j

L
N t N
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we finally obtain 
 

    
ω

2( )
1

1
γ .

iT i
i

m s
N

γ
=

= ∑                                                                   (19) 

 
    This expression (19) is curiously similar to formula (3). The latter is 
transformed into it if the square of the density for an elementary plot is 
replaced by the physical mean square of the densities for each plot over all 
the time period and the population is understood as the mean population 
over the same period. 
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    5. My aim does not include the study of the methodological issues that 
will inevitably arise when any attempt is made to apply the general 
theoretical patterns to concrete empirical material. This constitutes a 
problem for geography rather than for theoretical statistics and I restrict my 
further exposition to a few remarks. 
    It is clear that only rarely and, for that matter, in absolutely exceptional 
cases, the researcher will be able to determine the density by issuing from 
the distribution of each individual among the appropriate territory. In 
general, even for the most detailed investigation, it will be necessary to 
confine the study to establishing social masses more or less homogeneous 
with respect to their relation with the territory, as well as of rather 
homogeneous regions. As a first approximation, it is possible to indicate the 
following.  
    The researcher should single out the areas of a) settlements of the urban 
type; b) agricultural settlements and those belonging to them complete with 
tracts of land under usual agricultural use; he should isolate areas c) with 
extremely rare permanent populations (forests, steppes, highland pastures); 
and, finally, those d) having absolutely no populations (swamps, sands, 
etc.). 
    The density for areas a) is calculated under the assumption that all the 
inhabitants uniformly use the entire area of the appropriate settlement, and 
nothing else. For areas b), again assuming a uniform use, but also allowing 
for the time when the population is working outside its territory (in logging 
areas, on summer pastures, and, also seasonally, in cities). For areas c), 
taking into account both the sparse permanent and the more dense temporary 
populations. In areas d) the density should be assumed nonexistent.  
    Only such investigations of typical regions spread over a number of small 
tracts can give us an idea about the real distribution of the population and 
the social mean densities of the separate tracts. After all the territory of 
some country is covered by a sufficient number of such test tracts, we can 
also hope to obtain, according to the principles of sampling, both the overall 
picture of the distribution of the social densities and the mean social density 
for the entire country. In those countries, where, as for example in Germany, 
many researchers have already been working with great persistence and 
considerable input in that direction, [even] on the scale of the smallest 
administrative units, the preparatory stage for calculating the mean social 
density is partly concluded. We, however, were hardly engaged in solving 
such problems and should begin almost from the beginning. 
    6. The following example based on slightly generalized data on the 
Moscow district for ca. 1910 illustrates how different can the mean physical 
and social densities be. The area of the territory is 2,670sq. km, and 
population 2mln of which 1.5mln live in the main city of the district. For the 
sake of simplicity we will suppose that all the rest (0.5mln) constitute the 
rural population uniformly distributed over the whole area.  
    The density of the population in Moscow is 158 thousand and in rural 
areas 500·103/2670 = 187 people. The mean social density is 
 

    
3158 10 1.5 187 0.5

115.2 thousand people
1.5 0.5

⋅ ⋅ + ⋅
=

+
 

 
whereas the mean physical density is 2·106/2670 = 749 people. 
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    Given such a great difference between the densities for the urban and 
rural populations, a single mean density, be it physical or social, cannot 
provide a complete picture. In particular, the means for these groups of 
inhabitants should be additionally calculated. However, our example 
suggests other considerations as well. 
    It is impossible to derive the mean social density of the population of a 
country by issuing from mean physical densities for any large sub-
territories, such as, for instance, our provinces or even districts and 
disregarding either absolutely uninhabited tracts (the tundra in the far North, 
the sands in Central Asia [now being beyond Russia] or the compact 
gatherings of the population over insignificant urban areas. Therefore, the 
mean density, calculated, say, for the Russian Empire in 1915 as the mean 
of the district data with weights, equal for example to the appropriate 
populations, cannot at all be considered as any, even rough approximation to 
the real value of the mean social density. 
    Such an average possesses nevertheless its own, special logical meaning 
distinct both from that of the mean physical and mean social density. 
Indeed, after finding out3 that there are, per square kilometre, in Belgium, 
240.0; in England, 138.7; in Germany, 112.2; and in France, 73.0 people, 
we, for all that, learn something, although imperfectly, about the conditions 
of life in those countries. 
    In other words, the mean physical density can (with certain reservations 
and cautiously) be considered as a numerical measure of the conditions of 
life of the appropriate social masses. It is therefore absolutely logically 
justifiable to introduce such a notion as the mean of physical densities but 
calculated with weights representing the populations of the appropriate 
countries or their parts. It is easy to indicate the deficiencies of that notion, 
but all that may be stated against it is based on the shortcomings of its 
foundation, i. e., of the usual mean (physical) density. Unless and until it is 
considered possible to apply that mean for characterizing the conditions of 
life, the mean (physical) density, calculated, however not for the mean 
square kilometre, but for the mean individual, possesses, as I think it does, 
its raison d’être. 
    7. As an example, let us consider the density of the population in Russia 
in 1915. It is strange to discover4 that, contrary to the data for the countries 
of Western Europe (§ 6), the density for Russia as a whole was represented 
by the number 8.3. After considering everything that was said above, it 
seems absolutely doubtless that that number will not do at all for 
comparison. If we desire to have a single number for all the population of 
Russia it can only be the social-physical mean of the provinces or districts5. 
    It is quite natural that the mean density with weights assigned in 
accordance with the appropriate population is 55.7 instead of 7.76 as the 
same data provide by the usual method. And it is not difficult to establish 
that 89.0% of all the population of Russia was living with a higher density. 
Then, when calculating the mean density weighted in accordance with the 
population, we obtain6 
 
    5% of the population, mean density 293.2 
    10%,                                                 198.1 
    25%                                                 125.3 […] 
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    While adducing these numbers only as an illustration, I do not provide 
any comment. 
 

Notes 
    1. Unlike Slutsky, I introduce here and below the Gauss notation such as 
 
    [ab] = a1b1 + a2b2 + … + anbn.                                                O. S. 
 
    2. An old Russian unit of area, or, actually, several essentially differing from each other 
units. For Slutsky’s fictitious example, this fact is not really important. O. S. 
    3. Statisticheskii Ezegodnik Rossii (Russian Statistical Yearbook) for 1915, p. 59. E. S. 
    4. Ibidem (Note 3), pp. 58 – 59. E. S. 
    5. I only adduce Slutsky’s final result. Issuing from the same source (Note 3), he arrived 
at the following conclusion:  
 
    5% of population occupied 0.16% of territory, density 112.0 
    10 and 25%, occupied 0.55 and 2.1% of the territory respectively, density 93.4 and 66.2, 
etc. O. S. 
 
    6. Here, Slutsky adduced a note explaining the details of his calculations. O. S. 
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VI 

 

On Calculating the State Revenue from the Emission of Paper Money 
 

K voprosu o vychislenii dokhoda gosudarstva ot emissii.  
Mestnoe Khoziastvo (Kiev), No. 2, 1923, pp. 39 – 62. Appended to Iasnopolsky (1923) 

 
    The following lines have the task to study the methods of calculating the 
state revenue from issuing paper money and the real value of this operation. 
In another logical context it would have been a part of this construction to 
relate it to a formal theory of the issue of money, but a justification of this 
point of view does not enter into our present task. The aim of this sketch is 
mostly methodological. We check some methods of treating the data 
pertaining to money emission adopted in our literature and outline some new 
approaches. Although the lack of space does not enable us to exhaust the 
subject even to some extent, we nonetheless hope that our attempt will not 
be useless for those engaged in a scientific study of money emission. 
    1. Proceeding to our problem, we begin by establishing which magnitudes 
ought to be investigated. We denote the quantity of all paper money issued 
up to a certain moment t by ut, or, more briefly, by u. This is what is called 
the grand issue during all the time until the given moment. The quantity of 
paper money being en route [in transit] and in bank tills we shall designate 
by wt or w. The quantity of paper money actually put into circulation to 
moment t, i.e. actually paid out from the bank tills, shall be mt or simply m.  
    If the banks’ working cash might be neglected – that is, if we could 
assume that the banknotes transferred from the reserve fund to the 
circulating fund began generally circulating in the national economy at the 
moment of the transfer – then wt would coincide with the so-called small 
issue. The following relation obviously exists between the three magnitudes 
introduced above: 
 
    ut = mt + wt                                                                                 (1) 
 
    In our notation, the issue during some time interval, for example for the 
period from t = 0 to t = 1, will be: the grand issue, (u1 – u0); and the small 
issue, (m1 – m0). As to the real value of the total mass of all the paper money 
issued up to a given moment, it is determined either by multiplying the 
pertinent magnitude by the value of a monetary unit at the moment, pt, or by 
dividing it by the so-called index of the given moment it, since, indeed,  
 
    it = (1/pt), pt = (1/it).                                                                      (2) 
 
    Denoting now the real value of all the grand, and the small issue by Ut 
and Mt respectively, we thus obtain  
 
    Ut = pt ut = ut /it, Mt = ptmt = mt/it.                                          (3; 4) 
 
    The quantity of paper money put into circulation (mt) does not coincide 
with that actually circulating because a part of it is lost for whatever reason, 
and another part, even though a small one, is hoarded. However, we will 
assume that the quantity of circulating money changes proportionally to mt 
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which, for short periods of time, is certainly close to reality and might be 
admitted as a first approximation. The reader will see that this assumption is 
of a very restricted import for the sequel. Indeed, we only need the simplest 
case, in which the level of prices changes proportionally to the quantity of 
circulating money (and, consequently, proportionally, on the strength of this 
assumption, to the quantity of the issued paper money mt), as some tentative 
norm and a convenient transitional link to a more complicated and more 
close to reality theoretical construction.  
    2. We will understand the state revenue from the emission during a 
certain period of time as the real value of the paper money at the moments 
when the pertinent issues had been put out into circulation. Denote the 
revenue by J and suppose that small issues ∆1m, ∆2m, …, ∆nm, were made 
many times and that each time the sums ∆im were put out into circulation as 
a single whole. If the value of money at the moments of the issues was p1, 
p2, …, pn, then 
 
    J = p1∆1m + p2∆2m + … + pn∆nm,                                                    (5) 
 
    ∆1m + ∆2m + … + ∆nm = mt – m0.                                                     (6) 
 
    The problem of calculating the revenue is encountered because both the 
separate sums ∆im and the corresponding values of the monetary unit are 
unknown. 
    We will first determine the revenue J under the simplest hypothesis that 
the value of money is inversely proportional to the total amount of money 
put out into circulation m so that the value of that amount remains constant: 
 
    p0m0 = p1m1 = Const.                                                                           (7) 
 
    Various assumptions may be adopted concerning the separate issues of 
paper money. It might be supposed that the money was issued in equal 
portions; that the issues constituted a geometric progression; or, finally, that 
the issue was going on continuously. The last-mentioned supposition is the 
most convenient for calculations and its deviation from the real situation is 
negligible. Indeed, the state revenue is realized at the moments when money 
is paid out to civil servants, contractors, etc. Thousands of banks are paying 
out moneys, negligible as compared with the total mass of a monthly issue, 
during different hours of a business day and the general picture is that of an 
almost continuous current. 
    Suppose that an elementary issue is dm, and its value, pdm. Then, owing 
to our assumption of an inverse proportionality between p and m, 
 
    p = Mo/m.                                                                                           (8) 
 
The elementary revenue is thus 
 
    dJ = Mo(dm/m) 
 
and the total revenue is 
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    J = M0 ∫
tm

m

 

 0

(dm/m) = M0 ln(mt/m0) = M0 ln n,                                   (9) 

 
if n denotes the multiplier by which the quantity of money put into 
circulation had increased during the given period. 
    To convince ourselves how close to reality is this formula under the same 
hypothesis of inverse proportionality of p and m, we shall additionally 
calculate the revenue under another assumption. Suppose that the money is 
put into circulation in s equal portions of size ∆m. Then the quantity of the 
circulating money will be 
 
    m0 + ∆m, m0 + 2∆m, …, m0 + s∆m 
 
and the respective values of the monetary unit, 
 
    p0[mo/(m0 + ∆m)], p0[mo/(m0 + 2∆m)], …, p0[mo/(m0 + s∆m)]. 
 
    The revenue will then be  
 
    J = p0∆m{[mo/(m0 + ∆m)]+ [mo/(m0 + 2∆m)] +…+ [mo/(m0 + s∆m)]}. 
 
Denoting (∆m/m0) = h, we may write that as 
 
    J = p0∆m {[1/(1 + h)] + [1/(1 + 2h)] + … + [1/(1 + sh)]}.             (10) 
 
    Calculating the sum according to the Euler formula, we will obtain1 
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    If, as above, we denote the rate of the increase in the issue, mt/m0, by n, 
then 
 
    h = ∆m/m0 =[∆m/(mt – m0)] [(mt – m0)/m0] = (n – 1)/s. 
 
It follows that the expression under the sign of logarithm in (11) will be 
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It tends to n as s → ∞, and, since all the other terms then tend to zero, we 
have from (11) 
 

    lim J = M0 ln n, s → ∞, ∆m → 0,                                                    (12) 
 
which coincides with what we obtained above when assuming a continuous 
current. 
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    Suppose that s = 30, ∆m = (1/30)m0, then h = ∆m/m0, n = 2 and formula 
(11) leads to 
 
    J = M0{ln (61/31) + (1/2)[(1/31) – (1/61)] + (1/12) [(1/312) – (1/612)] –  
    (6/720)[(1/314) – (1/614)] + … } = 0.6949M0. 
 
    Formula (9) provides J = M0 ln 2 = 0.6931M0, only differing from the 
former magnitude by 1.2%. However, our assumption that, during the period 
when the amount of money in circulation increased twofold [n = 2], there 
were only 30 issues, is of course too rough. Supposing that s = 1000 and h = 
1/1000, we will indeed find out, as it is easy to show, that formula (11) 
provides a result only differing from J = M0 ln 2 by 0.04%. We may 
therefore consider the formula (9) a quite proper expression for the state 
revenue from the issue of paper money under our main abovementioned 
assumption. 
    3. In our literature, this revenue is usually determined by dividing the 
amount of money put into circulation by the index for the middle of the 
relevant period of time. Suppose for the sake of convenience that the 
beginning of that period is the zero point of time and that its length is unit 
(for example, 1 month), then the index for the middle of the period will be 
denoted as i1/2 and the approximate formula under our discussion will then 
be 
 
    J′ = [(m1 – m0)/i1/2].                                                                      (13) 
 
    Its first check ought to consist in comparing it with formula (9), which, 
under the hypothesis that the level of prices is proportional to the amount of 
money, should be regarded as strict. But we must know the law guiding the 
movement of the issue in time. 
    If the amounts of the issues as existed at the first day of each month from 
1917 to 1923 are plotted on a logarithmic scale, then, as shown by Schmidt 
(1923), for the most part of that period the thus obtained line might be 
replaced to a high precision by a number of linear segments, most of them 
rather long. Assuming that this law is valid for each of the comparatively 
short (for example, monthly) periods taken separately, for which the 
approximate formula (13) can indeed only be reasonably applied, we will 
obtain the law of the movement of the issue as2 
 
    ln m = a + gt.                                                                              (14) 
 
    For t = 0 and 1 we have 
 
    a = ln m0, g = ln m1 – ln m0 = ln(m1/m0) = ln n. 
 
Thus we arrive at 
 
    mt = m0 e

gt, g = ln n                                                                     (15) 
 
or, which is sometimes more convenient, 
 
    mt = m0n

t.                                                                                    (16) 
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    Note that n is here understood as the norm of the increase in the issue per 
unit time and it would be most expedient to call it the rate of the issue.  
    Suppose now that at some moment T the level of prices becomes such that 
formula (13) provides an exact expression of the revenue when i1/2 is 
replaced in it by iT. According to our hypothesis 
 
    (it /i0) = (mt /m0)  
 
so that, because of (16),  
 
    it =i0 n

t
.                                                                                      (17) 

 
Therefore, iT =i0n

T and T can be obtained from the equation 
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we obtain from (18) 
 
    nT = [(n – 1)/ln n]. 
 
    Therefore, on the one hand, we will have 
 

    T = 
n
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]ln/)1ln[( −
                                                                      (19) 

 
and, on the other hand, on the strength of (17) and (2), 
 
    (pT/p0) = (i0/iT) = [ln n/(n – 1)].                                                    (20) 
 
    Table 1 provides the values of (pT/p0) and T for some values of n. Column 
4 indicates how many days apart from the middle of a 30-days month is the 
moment for which the index furnishes the exact magnitude of the revenue 
when the monthly issue is divided by that index. We see that for n < 2 this 
difference (30T – 15) is less than a day, which of course is small enough. 
Finally, the last column shows the error of the approximate value of the 
revenue in accordance with formula (13). It is obtained in the following 
way. Inserting in (13), instead of i1/2 its value as provided by formula (17), 
i.e., i0√n, we have 
 
    J′ = [(m1 – m0)/i0√n] = [(n – 1)/√n]M0. 
 
Dividing this by the expression for J as given by formula (9), we obtain 
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    (J′/J) = 
)]1/([ln

1

−nnn
.                                                      (21) 

 
    Using the magnitudes calculated in accordance with this formula, we have 
derived for the sake of distinctness the relative percentage errors of the 
empirical formula (13) and entered them in the last column of Table 1. We 
see that for n < 2 the error of formula (13) does not exceed 2% and is [even] 
less than 1% until n does not exceed 1.6 plus. Since until 1923 the monthly 
rate of the issue never exceeded 2, and in most cases it was not more than 
1.6, the application of formula (13) obviously involves more or less 
admissible errors especially when we take into consideration the influence 
of the other sources of error. Nevertheless, formula (9) is a more proper 
expression of the revenue from the issue. 
    4. The proportionality of the level of prices and the amount of money put 
out into circulation can only be considered as a tentative assumption. The 
general level of prices depends not only on that factor, but also on a number 
of other causes including such a forcible factor as the volume of the turnover 
[?]. During the time period, with which our study is concerned, the volume 
of commodities marketed in our country had experienced very considerable 
changes and the rapidity of the money circulation had certainly not remained 
constant either. And we indeed see that the actual movement of the prices 
had been to a large extent independent of the movement of the issues. 
    To gain a foothold for theoretical deliberations let us consider the curve 
depicting the movement of the real value of all the issues, see Diagram 1 in 
Iasnopolsky’s article (1923). We see that M does not remain constant, as it 
would have been had the level of prices been proportional to the amount of 
money put out into circulation, but experiences considerable changes. 
Generally, they are, however, comparatively rather smooth, do not have 
very sharp jumps. Therefore, when considering a more or less short period 
of time, it is seen that each small arc of the curve M, which is a function of 
time, can be replaced with a rather proper approximation either by a 
parabola of the second degree or even by a [segment of a] straight line. For 
very short periods, such as a month or a fortnight, the assumption of 
linearity for the curve M = f(t) is probably rather close to reality. 
    Let us dwell on this assumption. It means that 
 
    M = a + bt.                                                                             (22) 
 
Hence, since Mt = mt pt, 
 
    p = (a + bt)/m.                                                                         (23) 
 
    Suppose that the amount of money put out into circulations increased by 
an infinitesimal magnitude dm; the infinitesimal revenue will then be 
 
    dJ = [(a + bt)/m]dm 
 
and the revenue accrued during time interval (0; t) will be represented by the 
integral  
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    J = ∫
t

0

[(a + bt)/m]dm.                                                             (24) 

 
Differentiating (15) with respect to t, we will have  
 
    dm = gm0 e

gtdt = gmdt 
 
and, when substituting this expression in (24), we obtain  
 

    J =g ∫
t

0

(a + bt) dt = g[at + (1/2)bt2].                                     (25) 

 
    However, assuming that t = 0 we obtain on the strength of (22) a = M0 
and it follows that bt = Mt – M0. Owing to (15),  
 
    gt = ln (mt /m0) 
 
and we find that 
 
    J = gt([a + (1/2)bt] = ln (mt /m0)[M0 + (1/2)(Mt – M0)].  
 
And, finally, again denoting (mt /m0) = n, we obtain 
 
    J = (1/2)(M0 + Mt)ln n.                                                            (26) 
 
    The reader will see that this formula only differs from (9) in that the value 
of all the paper money put out into circulation up to the beginning of the 
period (M0) is replaced by the arithmetic mean of the same value for the 
beginning and the end of the period. Now, (26) can be written as 
 
    J = (1/2) M0[1 + (Mt/M0)]ln n 
 
and since M0 = m0/i0, Mt = mt /it, (mt /m0) = n and (it /i0) can be denoted by k, 
the revenue from the issue will be expressed as 
 
    J = (1/2)[1 + (n/k)]M0 ln n.                                                            (27) 
 
    5. Following Falkner (1923), we may call the ratio J/M0 the relative 
efficiency of the issue. Only it is hardly correct to consider this magnitude, 
as he does (p. 54), the portion of the circulated consumer values extracted 
by means of the issue, since, even in accordance with the simplest 
theoretical pattern, the value of the mass of commodities is equal not to M, 
but to M multiplied by the rapidity of the circulation of the banknotes. 
    Denoting the relative efficiency by η, that is, replacing J/M0 by η, we 
obtain from (27) 
 
    η = (1/2)[1 + (n/k)]ln n.                                                               (28) 
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    It is seen now that, if the general level of prices increases in the same 
number of times as the amount of money put out into circulation, the 
relative efficiency of the issue will be 
 
    η = ln n                                                                                          (29) 
 
and is thus expressed by the natural logarithm of the rate. We will indeed 
call this magnitude, tentatively of course, the normal relative efficiency. If 
the rate of the issue is higher than the rate of prices (n > k), then η > ln n; if 
it is lower (n < k), then η < ln n.  
    If n does not exceed 2, ln n can be expanded into a series 
 
    ln n = ln[1 + (n – 1)] = (n – 1) – (1/2)(n – 1)2 + (1/3) (n – 1)3 – …    (30)  
 
    The magnitude (n – 1) is the norm of the increment of the issue. If the rate 
= 1.25, this norm is 0.25 or 25%, etc. Formula (30) shows that, given a more 
or less weak rate, it is possible to neglect the second and the following terms 
of this expansion and then the normal relative efficiency will be expressed 
by the norm of the increment of the issue. For example, if n = 1.1,  
 
    ln n = 0.1 – 0.005 + 0.00033 – 0.000025 + … 
 
and, assuming that, approximately, ln n = n – 1 = 0.1, or 10%, we thus make 
an absolute error less than (1/2)% although its relative (with respect to the 
10%) magnitude is nevertheless 4.7%. For n = 1.2, the approximate value of 
the normal relative efficiency would have been 0.2, or 20% instead of ln 1.2 
= 0.182, or 18.2% and its relative error, already 10%. This error rapidly 
increases with the further increase in n as it can be seen in Table 2.  
    It was the closeness of the relative efficiency to the norm of increment, 
given small values of n, that caused Falkner’s mistake (1923, p. 54). He 
attempted to explain the considerable difference between these two 
indicators in 1921 and 1922 by the divergence of the rate of prices and the 
rate of the issue. We see that this is wrong because, even if the level of 
prices is strictly proportional to the volume of the issue, when having the 
norm of the increment equal to 100% (n = 2), the relative efficiency is only 
69.3%; and efficiency of only 109.9% corresponds to an increment of 200%, 
etc. 
    The formula for the relative efficiency derived above can be checked 
against the data for 1922 (Table 3). The actual efficiency (the method of 
whose calculation is indicated below) is shown in column 6. Entered 
alongside are the relative theoretical (column 5) and normal (column 4) 
efficiencies. Columns 2 and 3 show the rates of the issue (n) and prices (k).  
    When transferring the figures of columns 2 – 6 of Table 3 to a diagram 
(Fig. 1), we obtain a clear picture of the fluctuations of all the pertinent 
magnitudes that confirms the deliberations above. The empirical efficiency, 
as we see, rather closely follows all the windings of the theoretical curve. As 
long as the rate of issue overcomes that of the prices (from May to 
September), both curves are situated above the curve of the normal 
efficiency; and below it in the opposite case (January – April and October – 
November). When both rates coincide, then the curves of relative efficiency 
(both the theoretical and empirical curves) coincide, or almost coincide, 
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with the norm (April and December). Since the selected period [1922] 
belongs to those with most sharp fluctuations of both rates, we may 
apparently conclude that the theory explicated above corresponds to reality 
in general [for any periods]. This means that we are entitled to base our 
future calculations as well on the hypothesis that, at least for periods not 
longer than a month, the curve of the value of the total mass of paper money 
is [actually] rectilinear. 
    6. Let us check further the empirical formula for calculating the revenue 
from the issue (formula (13)) which we discussed above when assuming the 
hypothesis that the level of prices was proportional to the amount of money 
put out into circulation. Assuming now that the index is moving 
independently and a hypothesis of a linear M, and recalling formulas (23) 
and (2), we will have for the index the equation 
 
    it = [mt /(a + bt)]. 
 
    At t = 0 we have, according to formula (22), a = M0 and, at t = 1, b = M1 
– M0, so that the previous expression becomes  
 

    it = 
tMMM

mt

)( 010 −+
. 

 
Substituting M0 by m0/i0, and M1, by m1/i1, and denoting, as before, m1/m0 = 
n and i1/i0 = k, we obtain without difficulties 
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    Substituting now, instead of (mt/m0), its value nt given by equation (16), 
we finally obtain  
 

    it = 
tkn
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0

−+
.                                                                     (32) 

 
For the middle of a unit period, substituting t = 1/2 in (32), we will find that 
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+kn
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whence, substituting this expression in formula (13), we get 
 

    J ′ = (1/2)
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mmkn
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01 )](1)/[( −+
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nkn )1](1)/[( −+
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    However, under the assumed hypothesis, the real value of the revenue 
from the issue is determined by formula (27). Therefore, the ratio of the 
approximate expression of the revenue J ′ to its real value J becomes equal 
to 
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    (J′/J) = 
)]1/([ln

1

−nnn
.                                                        (35) 

 
This exactly coincides with the same expression derived above (formula 
(21)) for the case in which the level of prices changes proportionally to the 
amount of the issued money. In practice, the error of this formula in most 
cases does not exceed 1%; only once in 1922, with n = 1.8, was it larger 
than this figure; for such value of n Table 1 shows that the error is 1.4%. 
This error does not at all depend on the ratio of the rate of prices to the rate 
of the issue which refutes the opinion recently expressed by Bazarov (1923, 
p. 23)3 that  
 
    During periods of a slow sinking of the course [this method allegedly] 
systematically exaggerates the real revenue from the issue and that, to the 
contrary, during periods of especially rapid sinking of the course, this 
method systematically underestimates the magnitude sought. 
 
    This question is important, and we will therefore subject formula (13) to 
one more check. Indeed, we will assume that, just as the issue, the index is 
changing by a geometric progression, only having another common ratio. 
Then mt = m0 e

gt, it = io e
ht. Omitting the derivation so as not to overstep the 

assigned volume of this paper, we only provide the end result: 
 

    J = ∫
−

=
1

0 )/ln(

1)/(

kn

kn

i

dm
 M0 ln n.                                                (36) 

 
For the middle of the period the index is 
 
    i1/2 = i0√k                                                                                     (37) 
 
and, substituting this last expression into the approximate formula (13) and 
dividing the result by (36), we will find that4 
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    For n < 1.6, the numerator of this expression, as we saw in Table 1, 
differs from 1 not more than by 0.7% whereas the denominator repeats the 
numerator with n being replaced by n/k. During the entire year 1922, this 
ratio never exceeded 1.51 [see Table 3, July 1922]. Table 1 shows that for 
n/k = 1.5 the denominator of (38) ought to differ from 1 less than by 0.7%. 
Under that hypothesis, this is the maximal extent of the influence of the 
divergence of the rate of prices from that of the issue, even when so sharp 
fluctuations as occurred in 1922 are present, on the error of the formula (13). 
And, contrary to Bazarov, a slower increase in the index for a given n does 
not exaggerate the discussed approximate value of the revenue but tends to 
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underestimate it. Be that as it may, suchlike influences are absolutely 
insignificant as compared with other errors. 
    Had we assumed that during a month the level of prices sometimes rose 
and sometimes fell rather than moved in one direction, the error of the 
approximate formula (13) could have been considerably larger. This, 
however, has nothing to do with Bazarov’s thesis, because, independently of 
the total result of all the movements of the index during a month, the error 
can be either positive or negative. For proving this proposition it is sufficient 
to imagine that first the highest, and then the lowest level of prices occurred 
at the middle of the pertinent period. For the time being, until the question is 
not studied more thoroughly, we may consider such fluctuations of the index 
as random deviations from a smoothly changing level and believe that the 
ensuing errors in calculating the revenue from the issue compensate each 
other in the general total for a number of months. Our calculations (below) 
apparently confirm this point of view.  
    7. We are now going over to the problem of interpolation because this 
operation can be necessary when calculating the revenue from the issue 
when the data are incomplete. 
    Figures of the grand issue (our u) for the first day of each month as well 
as the index of the Statistika Truda (Statistics of Labour), also for these 
days, are known to be officially published. Beginning with 1922, this index 
is also provided for the fifteenth day of each month and we have to make 
use of it since the other indices do not cover all the period. All our 
calculations are therefore of a very tentative importance; however, we must 
regrettably leave here completely aside the problem of indices in its relation 
to the issue. The reader will see that this circumstance can hardly shake our 
conclusions since they are only of a methodological nature.  
    For 1922, in addition to the figures of the grand issue, figures of the so-
called small issue (our m) are also available, and the difference between 
them constitutes the total amount of paper money en route and in banks. 
These figures, especially when comparing them with those provided by 
Bazarov (1923, p. 24) for the first months of 1923, provoke doubts and for 
us their analysis is premature. Note only that we cannot at all agree with the 
respected author that the mean percent of money in the banks and en route, 
as compared with the total amount of money put out into circulation during 
a month, and calculated by making use of the data for those few months 
which he studies, can be taken as a norm for all the previous period. Without 
even mentioning that the conditions in the past could and should have 
differed not insignificantly as compared with the modern time, we indicate 
that the mean itself was derived from so few, and so differing one from 
another numbers, that its significance is extremely doubtful. We believe that 
here we ought to wait for further official publications and to abstain for the 
time being from judgement. 
    In the sequel, we will keep to the hypothesis adopted by a number of 
researchers that it takes two weeks for the money en route and deposited in 
banks until being circulated. Accordingly, the official figures of the issues 
for the first day of a month correspond to the amount of money put out into 
circulation (m) until the 15th of the same month. For the sake of brevity we 
will now simply call the time during which money is en route and in banks 
the bank period and denote it by τ. Assuming, of course absolutely 
tentatively, the hypothesis that τ = 1/2 of a month, we shall study the 
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ensuing methods of calculation of the revenue from, and the relative 
efficiency of the issue. In concluding, we will attempt to estimate, even if 
approximately, how great is the error of these calculations depending on a 
mistaken determination of τ. 
    The first problem which we should examine is that of interpolation. In 
accordance with the adopted hypothesis, the amount of the issued paper 
money is only known for the middle of a month whereas the indices of 
prices, for its first day. True, we can calculate the monthly revenue by 
dividing the increment of the monthly issue by the index for the end of the 
month because the end of the month, or, more precisely, the first day of the 
next month, will be the middle of the corresponding period. Nevertheless, 
without knowing the index, we will be unable to determine the relative 
efficiency of the issue since we cannot calculate the value of the total 
amount of paper money at the beginning of the period (as of the middle of 
the month). And, second, we will only know the revenue from the 15th to the 
next 15th rather than from the first day to the next first day as is necessary 
for comparing and adding it to other state revenues. Third, we will be unable 
to determine the yearly revenue either because the total calculated revenue 
for 12 months will correspond to the period from January 15 to January 15 
of the next year rather than to the calendar year.  
    For determining the relative efficiency when calculating the revenue from 
the middle of a month to the middle of the next month it is necessary to 
interpolate the prices, and, for solving the second problem, to interpolate the 
emission. We begin with the latter.  
    If the rate of issue during the studied period remains constant, we have 
(formula (15)) 
 
    ln m1 = ln m0 + gt1; ln m2 = ln m0 + gt2; ln m3 = ln m0 + gt3, 
 
therefore 
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    Supposing for the sake of convenience that t1 = 0, t2 = t and t3 = 1, we 
obtain a simple interpolation formula  
 
    ln mt = ln m0 + t(ln m1 – ln m0).                                              (39) 
 
    A practically convenient arrangement of calculations is shown in Table 4 
which deals with figures describing the grand issue (u) and t being 
consecutively equal to 1/4, 1/2, 3/4. The second column shows the 
logarithms of the issues for 1 Dec. 1921, 1 Jan. 1922, etc. Consecutive 
differences between these logarithms are entered in the third column and, in 
the next column, 1/4 of the differences. Note that when applying five-place 
logarithmic tables, as it was done here, rounding off is better avoided 
because we ensure a constant checking when exactly calculating (1/4)∆ln u 
by means of an arithmometer. One revolution of its handle provides the 
figures of the fifth column; two, three, and four revolutions furnish those of 
the next two columns and the value of the logarithm for the next month.  
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    The thus interpolated figures, along with the initial figures, provide the 
data of the grand issue for the first day of the month, for its first quarter, its 
middle, for the third quarter and for the first day of the next month. Had the 
money not been delayed in the banks at all (τ = 0), the issue for January 1, 
for example, would have coincided with the amount of money issued up to 
that date. If the money is delayed for one week, the amount of the issued 
money will be equal to the figure of the grand issue for the third quarter of 
December (its logarithm is the first figure in column 7 of Table 5). Mid-
December and its first quarter correspond to delays of two and three weeks 
respectively. 
    In this way we obtain Table 5 where the thus derived amounts of money 
put out into circulation on the first day of each month of 1922 are shown 
under the hypotheses that τ = 0, 1, 2, 3 and 4 weeks.  
    Drawing on these figures, we shall formulate some essential conclusions 
in the sequel, but now we pass on to the next problem: Is it correct to apply 
the described method of interpolation if, as we know for sure, the rate of the 
issue changes from month to month, sometimes considerably, and there are 
no grounds for believing that these changes occur by jumps at the 
boundaries between the monthly intervals? Is it not more natural to suppose 
that, if during the previous month the rate of issue was lower, the pertinent 
causes were still probably acting during the first half of the current month; 
and that the second half of the current month can be influenced by those 
causes whose action will be quite felt in the next month by a further 
lowering, or, let us say, heightening of the rate? It would therefore be 
perhaps more correct to take into consideration not only the given month, 
but to allow also for the two, and perhaps four neighbouring months 
although the more distant influences hardly ought to be studied. If this idea 
is adopted, the appropriate interpolation can be described as follows. The 
logarithms of the figures of the monthly issues are shown on a diagram; the 
points corresponding to the beginning and the end of the months are 
connected not by rectilinear segments, as it would have been proper for the 
previous method of interpolation, but by curves. For each month a separate 
curve determined by its starting and end points as well as by points 
corresponding to one or two previous and the same number of subsequent 
months is drawn.  
    Without dwelling on the theory of interpolation for this case, we only 
provide an arrangement of the calculations in accordance with the Stirling 
[interpolation] formula which seems to be indeed suitable because it 
interpolates not one-sidedly, as, for example, the Newton formula does, – 
that is, not by means of the differences between the given month and a 
number of previous or subsequent months, – but by considering all of these 
differences. 
    The arrangement of the calculations is shown in Table 6. Here, in column 
2, we again have the logarithms of the grand issue for the first day of each 
month beginning with October 1921. We begin with that date because we 
have to interpolate between 1 Dec. 1921 and 1 Jan. 1922 and wish to allow 
for the two subsequent, and two previous months. We will see below that 
this involves the necessity to restrict the calculations with third differences. 
For calculating the fourth, etc differences we should have considered not 
two, but three or more previous, and the same number of subsequent months 
but we consider the more distant influences illusive. 
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    Column 3 shows the differences between the figures of the preceding 
column (Roman type), and the second and third differences are entered in 
columns 4 and 5 respectively. Each time we subtract the upper figure from 
the lower one and allow for their signs, and we write down the differences 
not on the same line with the subtrahend, as we did in Table 4, but between 
it and the minuend. The figures in italics, which are the arithmetic means of 
the corresponding differences, are entered afterwards.  
    When keeping to such an arrangement of the table, it is easy to see that 
the two [apparently] superfluous figures provided both in the beginning and 
at the end of the table enable us to allow for the third differences. 
    Column 6 provides the calculated logarithms of the issues for the middle 
of the appropriate months. Thus, the first figure of that column, 4.11127, is 
entered between the lines XII and I and corresponds to the issue for 15 
December (uXII+1/2). In accordance with the hypothesis that the bank period 
lasts two weeks, it should be equal to the logarithm of the amount of money 
issued on 1 January (m1). Calculations are made by means of the Stirling 
[interpolation] formula, see for example Krylov (1911, p. 250)5,  
 
    f(a + th) = f(a) + (t/1)f(1)(a) + (t2/1·2)f(2)(a) +  
    [(t + 1)t(t – 1)/1 2 3]f (3)(a) + …                                               (40) 
 
only allowing for the first four terms (including f (3)(a)). Here, a is the value 
of the argument. In our case, this is the moment corresponding to the first of 
those two numbers between which interpolation is done; for example, if 1 
Jan. is assumed as the starting moment of time and a month is considered as 
a unit, then a = 0 for 1 Jan., a = 1 for 1 Febr., etc. The difference between 
consecutive values of the argument is denoted by h; in our case, h = 1 (one 
month) and t is a number situated between 0 and 1 and showing what part of 
h is the distance between the beginning of a period and the value of the 
argument for which we are calculating the intermediate value of the 
function. For example, if we wish to know the issue for 8 January (more 
precisely, for the boundary between the first and the second quarter of 
January), t = 1/4; then, t = 1/2 for the middle of the month, etc. Finally,  
f (1)(a), f (2)(a), etc are the numbers entered in the columns of differences in 
the same line as f (a) for the beginning of the corresponding period; namely, 
f (1)(a) is the arithmetic mean of the first differences, f (2)(a) is the second 
difference, f (3)(a) is the mean of the third differences, etc.  
    To determine the issue for mid-January (say), we ought to take the 
logarithm of the issue for 1 Jan., f (a) = 4.24400, and three numbers from 
the same line,  
 
    f (1)(a) = 0.24300, f (2)(a) = – 0.01556, f (3)(a) = – 0.049515. 
 
We then calculate the coefficients: 
 
    t = 1/2; (t2/1·2) = 1/8; [(t + 1)t(t – 1)/1·2·3] = – 1/16 
 
and proceed further. […] The result, ln uI+1/2 = 4.36665, is shown in column 
6 of the same Table 6 between the dates 1922, I and II. […] Column 7 
indicates the figures of the issue (of the grand issue) for the first day of each 
month; the next column shows the issue for mid-months calculated as 
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explained above (drawing on the logarithms in column 6). The same 
magnitudes calculated as geometric means by a simple linear interpolation 
of the logarithms and entered in Table 5 are shown once more in column 9 
of Table 6 so as to enable a distinct comparison. Column 10 provides the 
discrepancies between columns 8 and 9, and the same discrepancies relative 
to the data in column 8 and expressed in per cents are in column 11. We see 
that these discrepancies are quite small; their absolute mean is only equal to 
0.8%. For usual calculations, when having to do with such approximate data 
as, for example, the index of prices, corrupted by systematic errors 
amounting perhaps to 10 – 15%, and the issue, whose moment we do not 
know, – it could have occurred during the first, the second, or the third week 
of the month, – these discrepancies might certainly be neglected. However, 
we delay our judgement until making the next stage of the comparison; 
indeed, we ought to examine whether these discrepancies do not influence to 
a greater extent the calculations of the revenue from the issue. 
    But let us first study the prices. Without providing the calculations made 
by interpolating the logarithms of the indices in accordance with the two 
abovementioned methods, we only furnish their results, see Table 7. There, i 
denotes real indices as given in Statistics of Labour, NNo. 1 and 2 for 1923; 
i′ and i″ are the indices for the middle of each month considered as unknown  
magnitudes and derived by interpolation from the first days in accordance 
with the geometric mean and the Stirling formula respectively. 
    When studying the differences between the figures obtained by both 
methods, we see that in the mean they amount to 2.2% and thus almost 
threefold exceed the same differences for the issues. This is indeed what 
should have been expected after some acquaintance with both curves. 
However, in spite of the differences, being although not large but still 
already comparatively noticeable, the complicated method of interpolation, 
if judged by the data for 1922 treated by us, is apparently not more 
advantageous than the simple method: the errors of these methods, 4.2 and 
4.5%, as calculated by comparing their results with the real figures, almost 
coincide. True, the former distributes the error in both directions more 
uniformly than the latter: the sums of the percentage errors of i (columns 10 
and 8) are 22.4 – 23. 7 = – 1.3 and 21.3 – 28.1 = – 6.8 respectively. 
However, the difference between these sums is not really large and, with the 
data at hand, it is difficult to say to what extent it is not accidental. In 
general, both methods are approximately equivalent and even the less 
accurate of them provides comparatively suitable approximations.  
    8. We can subject the different methods of interpolation and different 
formulas for calculating the revenue to some critical comparison by 
calculating it for the separate months of 1922 by different methods. 
    It is obvious that, from among all possible approximations to this revenue, 
the best result is rendered by that which was obtained by making use of all 
the available data. The conclusion thus arrived at will serve for estimating 
the other methods, – those, among which we ought to choose when 
investigating the issues for the previous years and drawing on a lesser 
amount of materials. What is available for 1922 but remains unknown for 
the previous time is the index for the middle of the months which we must 
determine by interpolation.  
    And so, we have five magnitudes, i0, i1/2, i1, m0 and m1 for each month of 
1922. We can make use of them by calculating the revenue either for 



 82 

monthly, or half-monthly periods. For the sake of distinctness, let us 
compare all the available formulas (enumerating them anew): 
 
    JI = [m1 – m0)/i1/2]                                                                     (I), 
    JII = M0 ln n,                                                                              (II) 
     JIII = (1/2)(M0 + M1)ln n = (1/2)[1 + (n/k)]M0 ln n,                (III) 
 
    M0 = m0/i0, M1 = m1/i1, n = m1/m0, k = i1/i0. 
 
    First, consider the application of these formulas to the calculation of J for 
whole months at once. Formula (I), that, as we saw, should at n < 2 provide 
a result rather close to reality, is nevertheless only empirical and corrupted 
by some systematic error. There are hardly any grounds for preferring it 
rather than (II) or (III). It is unlikely to be the best one when the rate of the 
increase in prices is changing. Indeed, when applying it, we do not at all 
make use of two out of the five magnitudes listed above, – of the index for 
the beginning and the end of the month. And so, this formula is not suitable.  
    In our case, formula (II) is not the best one either; the assumptions on 
which it is founded (uniformity of the rate of issue and coinciding rates of 
prices and issues) contradict reality. [In addition,] it does not make use of all 
the facts or all data. Formula (III) is better. It allows for the discrepancy 
between the [rates of] the prices and the issues and makes use of four 
magnitudes, m0, m1, i0 and i1, but still does not use i1/2 and assumes a certain 
increase in the level of prices, – namely, such that corresponds to a linear 
increase (or decrease) in the total mass of paper money.  
    Considering [all] this, it seems most expedient to calculate the revenue 
from the issue for half-months in accordance with formula (III); it allows for 
all the known facts and its possible error is limited to narrowest boundaries. 
    And so, having chosen this method and keeping to the hypothesis of a 
two-week bank period, we calculate the half-monthly revenues from the 
issue from 1 Jan. 1922 to 1 Jan. 1923 drawing on the given indices (column 
2 of Table 7) and on partly given, and partly derived by interpolation figures 
of the issues. All the initial data and the results of calculation are provided in 
Table 8.  
    After all that was stated above, this table hardly demands much 
explanation, its structure is clear. It begins with the index for 1 Jan. 1922 
and the amount of the issue interpolated for 15 Dec. (see Table 6). In 
accordance with the assumed hypothesis, this amount, 12.920, is assumed as 
the amount of money put out into circulation (m) as of 1 Jan. 1923. Figures 
in column 4 are derived by dividing those of column 3 by figures in column 
2 and represent the value of the money put out into circulation. Column 5 
shows the arithmetic means of the pertinent figures in the previous column. 
In column 6 we have the coefficient of the increase in the issue during two 
weeks, column 7 indicates its natural logarithm and column 8 is the revenue 
from the issue for separate half-months calculated by multiplying the 
pertinent figures in columns 5 and 7. Columns 9 and 10 provide the revenue 
from the first day to the next first day, and from the 15th day to the next 15th 
day, respectively, obtained by summing the pertinent pairs of figures from 
column 8. 
    For the sake of comparison column 11 provides the revenue from the 15th 
day to the next 15th day, beginning with 15 Jan. 1922 until 15 Dec. of the 
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same year inclusive, calculated by means of formula (I), – that is, in 
accordance with the approximate and usually applied method. Neither 
logarithms, nor interpolation are here present: the consecutive differences of 
the figures of the issues, assumed as the amount of money put out into 
circulation from the 15th day to the next 15th day, are divided by the index of 
the first day of the next month. In our opinion, the coincidence is not bad at 
all. The discrepancies do not exceed 2.8% and their absolute mean is only 
1.2%. And, the discrepancy of the appropriate total sum [266.1:265.41] (we 
obtain it by adding the figures in brackets in column 11 corresponding to 
two half-months both in the beginning and at the end of the year) is 
absolutely insignificant, only 1/4%. Those readers, who with certain distrust, 
understandable for a non-mathematician, scanned our long calculations and 
deliberations, will [now] perhaps gain some confidence in mathematics. 
And, in general, we hope for an agreement concerning the following 
statements: 
    1) The empirical method of calculating the revenue from the issue is 
trustworthy and may be applied without being afraid of large errors.  
    2) The hypotheses adopted as a foundation for the calculations in 
accordance with formula (III), i.e., above all, the uniformity of the rate of 
issue, and, second, the uniformity (linearity) of the change of the value of 
the total amount of money put out into circulation, when applied to half-
monthly periods, are close to reality.  
    9. The relative reliability of the empirical method (formula (I)) of 
calculating the revenue does not save us from the trouble of making a 
number of comparisons between several methods. Indeed, when quite 
justifiably wishing to calculate the revenue from the issue for the previous 
years, for which no mid-monthly indices are available, not from the 15th to 
the 15th of the next month, but from the first day to the next first day, we 
would have either to interpolate the indices or apply formula (III). And in 
any case we would also be obliged to interpolate the issues. Even if the 
indices for the middle of the months were published, the pertinent problems 
would not have lost meaning: it is sufficient to become convinced, that the 
hypothesis of a two-week bank period ought to be replaced by another one, 
for all the problems connected with interpolation to reappear.  
    For the sake of comparison we have calculated the revenue from the issue 
from the first day to the next first day by several methods. Let us list them 
and introduce notation.  
    J: the revenue calculated by a method indicated above, see column 9 in 
Table 8. We will consider it as providing the maximal yet available 
approximation to reality and compare it with the other approximations. 
    J ′: the same, calculated by formula (I). 
    J ′′′: the same, calculated by formula (III). 
    J1′ and J1′′′: the same, calculated by formulas (I) and (III) respectively by 
drawing on the amount of money put out into circulation as of the first day 
of the month (m) and interpolated by the first method (of geometric mean). 
    J2′: the same as J1′ but with interpolation by the second method (by the 
Stirling formula). Note that J1′, J1′′′ and J2′ are only calculated by drawing 
on officially published data (on actual indices). 
    J1A′: the revenue calculated in the same way as J1′ but by dividing by the 
index equal to the geometric mean of the indices for the beginning and the 
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end of the month rather than by the actual index for the middle of the 
month.  
    Magnitudes J, J1′, J2′, J1′′′ and J1A′ are entered in columns 1 – 5 of Table 9 
respectively which also shows the percentage differences; notation such as 
ε3/1 means the ratio, expressed in per cents, of the difference between the 
figure in column 3 and that in column 1 divided by the latter.  
    This table provides some valuable indications. 
    1) First, it again confirms what we saw above: formula (1) provides a 
result closely situated to the most reliable approximation J both in Table 8, 
where we applied this formula to the initial data contained in an official 
publication and considering the interval from the 15th day to the next 15th 
day; and here, in Table 9, if applying it to the best from among the 
interpolated data. There, the deviations in the mean amounted to 1.2%, here, 
to 2.2% (ε3/1). The use of the simple geometric mean somewhat worsens the 
result, – the deviation becomes equal to 3.5% (ε2/1), – but even this cannot 
be considered bad.  
    2) The result is worse when applying formula (III) to figures derived by 
simple interpolation (J1′′′), or, when calculating the revenue by formula (I) 
by drawing on the same figures and again using interpolation. In both cases, 
the deviation from the most reliable approximation then amounts to 4.5%.  
    3) But these errors are not systematic, their positive and negative signs are 
distributed randomly. This is already evident since the yearly revenue is 
almost the same for all the methods of its calculation; deviations only 
amount to fractions of one per cent. 
    4) The very small difference between J1′′′ and J1A′ only amounting to 
1/2% in the mean, whereas the methods of their determination are absolutely 
different, is interesting indeed. 
    5) We may therefore conclude that, for the time before 1922, the results of 
determining the revenue from the first day to the next first day by both 
available methods, – that is, a) when considering the figures of the small 
issue for each first day as geometric means of official data and calculating 
the revenue by formula (III); and b) when considering the indices for the 
middle of the months as geometric means of the indices for the beginning 
and the end of the appropriate months and drawing on the same figures but 
applying formula (I), – are of approximately the same precision. In short, 
when applying simple interpolation (of the logarithms), formulas (I) and 
(III) are apparently of the same precision. 
    10. The mean error of calculating the revenue by interpolation of the data, 
as we may guess on the strength of the above, does not exceed 5% in the 
mean in either direction and is more or less compensated in the yearly totals. 
However, the situation concerning another error is quite different. I bear in 
mind the error caused by a wrong determination of the bank period τ. In 
Table 5 we had entered the values of m at τ = 0, 1, 3 and 4 (weeks). Let us 
see how the change of τ influences the value of the total issue and the 
revenue, see Table 10 based on formula (I). The pertinent differences ∆m 
between the first day of a month and the first day of the next month are 
divided by the index for the middle of the month, see column 2 of Table 8. 
Thus the values of J in Table 10 are derived whereas the values of M are the 
quotients of m divided by the respective index for the beginning of the 
month. We restricted our attention to three hypotheses, τ = 1, 2 and 3. 



 85 

    In the fourth part of Table 10 the reader can see the deviations (ε1/2 and 
ε3/2) of the revenue calculated for τ = 1 and 3 from that when τ = 2 if the 
last-mentioned revenue is taken to be 100. The mean errors are here 9.85 
and 8.87% and they are of a systematic rather than random nature (do not 
change their direction).  
    The yearly totals therefore also differ considerably. We shall determine 
these differences in per cents in a somewhat another way, not as we did 
when calculating the monthly revenues in the table. Namely, we shall 
suppose that the yearly total is 100 first for τ = 1, and then for τ = 3. This 
means that if the actual bank period was only 1 week, and assuming that τ = 
2, our estimate of the yearly revenue for 1922 would have been lower by 
7.2% than the real figure. For an actual bank period of 3 weeks we would 
have overestimated the yearly revenue by 9.2%. These errors are great as 
compared with discrepancies amounting to fractions of one per cent, 
between the figures of the revenue as calculated by different methods of 
interpolation and calculation. The efforts of the researchers evidently ought 
to be directed to throwing light on this obscure point. 

 

Explanation of Tables and Figures 
    Table 3, column 1: Months of 1922 
    Fig. 1, the legend: Empirical; theoretical; normal relative efficiency of the 
issue. The norm of the monthly increment of the issue; of the index of prices 
    Table 4, column 1: Date 
    Table 5, column 1: Date. The other columns: the amount of money put 
out into circulation as of the first day of the appropriate month (in 1012 of 
nominal roubles) assuming various bank periods (in weeks) 
    Table 6, column 1: Date. Last line: Mean absolute value.  
    Footnote: Issues entered in this [the seventh] column are taken from 
Vestnik Finansov No. 16 – 17, pp. 10 – 11. A misprint in the figure for Dec. 
1922 is corrected. The figure for Febr. 1923 is calculated by drawing on 
later data that we had not possessed but was provided by Bazarov (1923, p. 
24). 
    Table 7, columns 1 – 4, 6, 8, 10: Date; In thousands; Geometric mean; 
According to the Stirling interpolation formula; The same, %% with respect 
to i″; The same, with respect to i; column 10 = column 8 
    The last line: The mean absolute values 
    Table 8, columns 1, 3, 4, 9 – 12: Date; in 1012; in 106; The same, for 
separate months from first day to first day; The same, from 15th day to 15th 
day; From 15th day to 15th day; Deviation of J′ from J; in per cents. 
    Line after 1.1: Total; Last line: Mean error 
    Footnote: We had no index for 15 Dec. 1922 and replaced it by the 
geometric mean of the indices for 1 Dec. 1922 and 1 Jan. 1923 
    Table 9, column 1: Date. The last 8 columns: Per cents. 
    Line after XII: Total; Last line: Mean values 
    Footnote to December, column 2: Actual magnitude unavailable and 
therefore calculated by applying the index interpolated for mid-December as 
a geometric mean; it is equal to the corresponding J1A′. 
    Table 10, columns for m, M and J: τ given in weeks. 
    Last line: Total 
 

Notes 
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    1. Slutsky applied the Euler – MacLaurin summation formula. He made a mistake in its 
second term on the right side: the sign should have been plus rather than minus, see Korn & 
Korn (1968, § 4.8.5). After correction, the error studied by him changed its sign but 
retained its absolute value. O. S. 
    2. Slutsky’s symbol for the natural logarithm was lge; sometimes, however, it was simply 
lg, which is the standard Russian notation for the common logarithm. Believing that Slutsky 
always applied natural logarithms, I kept to the Russian (extremely convenient, in my 
opinion) notation ln. O. S. 
    3. In 1930, Bazarov (real name, Rudnev) was called an exposed saboteur (Sheynin 1998, 
p. 537) and his fate could have only been tragic. O. S. 
    4. I was unable to understand the derivation of formula (38). O. S.  
    5. This formula is not readily found in the general mathematical literature whereas Korn 
& Korn (1968, § 20.5.3) provided it in a complicated form. O. S. 
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VII 

 

Mathematical Notes on the Theory of Emission
1
 

 
Matematicheskie zametki k teorii emissii.  

Ekonomich. Bull. Koniunkturn. Inst., No. 11 – 12 (26 – 27), 1923, pp. 53 – 60  
 

1. Pattern and Notation 
    The emission of government paper money can be thus described in a 
general way. An authorized organ of the government issues an appropriate 
act transferring a certain amount of money to some administrative body. 
Banknotes thus become legally existing as money; until then, they had only 
been not yet prepared manufactured technical means. Now, they are money 
issued by the government. To us, none of the subsequent technical details 
are of any consequence: where is the money kept; how much time does it 
take to make it available to local authorities when it concerns provinces; 
how much longer does it still stay in the special storehouse or any other such 
place; is it loaded into railway cars and transported, or is it already at the 
designed place, etc. 
    We will consider that, as soon as the act was issued, i. e., from the 
moment of the emission, it is entered into a government bank. We are only 
interested in the time when the money is paid out to employees, contractors 
et al, and thus put into circulation. In short, the money is issued by the 
government when coming into its bank, then kept there for some time, and, 
finally, when going out, is put into circulation. 
    We will call all the money that comes into a government bank until some 
moment t the grand issue and denote it by ut; all the money coming into 
circulation until that moment, the small issue, mt; and all the money kept at 
that moment in government banks, wt. Obviously, 
 
    ut = mt + wt.                                                                                      (1) 
 
    We certainly will not consider either money collected by taxes etc. or 
issued instead of worn-out banknotes believing that those operations are 
entirely separated from issuing it. 
    The magnitude denoting the multiplier by which the general level of 
prices had risen, as compared with the moment for which the value of the 
money is considered equal to 1, is called the index and denoted by it. The 
value of all the money put into circulation is then the quotient of the small 
issue divided by the index: 
 

    .t
t

t

m
M

i
=                                                                                             (2) 

 
    We will understand the revenue of the government from the emission as 
the sum of the values of money obtained by it during a certain time interval 
at the moments the money had been taken from the banks and put into 
circulation. If the sums of the money issued were ∆1m, ∆2m, …, ∆nm and the 
index at the respective moments was i1, i2, …, in, the revenue J will be 
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    Denote the value of all the money put into circulation at the beginning of 
a given period by M0, then, following Prof. Falkner (1923), we will call the 
ratio 
 

    
0

η
J

M
=                                                                                           (4) 

 
the relative efficiency of the emission. 

 

2. The Forms of the Movement of Emission 
    Money comes into banks in separate amounts and in general several times 
daily, and leaves them in separate amounts as well, and in countless separate 
payments across the nation. A rigorous investigation of the form of the 
movement of the grand issue is only possible by a detailed study of the 
ledgers of the appropriate central office of Credbil2; investigation of the 
small issue demands a still more difficult study of the ledgers of the local 
banks, only possible by sampling. This cannot yet be accomplished and we 
must restrict our goal to hypotheses. The following statement seems to be 
sufficiently close to reality. 
    Emission flows discontinuously, but its separate partial masses are 
random fluctuations around some smooth continuous curve which can 
replace up to a vanishing error the real process that we are impossible to 
study directly. 
    Further preliminary hypotheses based on considerations of the behaviour 
of appropriate curves are: 
    1) For sufficiently short periods of time a straight line can sufficiently 
precisely represent the logarithm of the amount of paper money put into 
circulation (lg m).  
    2) For sufficiently short periods of time a straight line can sufficiently 
precisely represent the temporal change of the value of the entire amount of 
money put into circulation (M). 
    The former statement can to some extent be [additionally] based on O. 
Yu. Schmidt’s study (1923); the latter can be checked by any graph of an 
appropriate function over a short interval of time and is partly based on the 
coincidence of the pertinent calculations below with reality. Hypothesis 1) 
means that 
 
    lg mt = c + gt.                                                                                  (5) 
 
    Let us assume a month, say, as a unit of time and denote mt = m0 at t = 0 
and mt = m1 at t = 1. Denote by n the multiplier showing how many times 
had the amount of money put into circulation risen during unit time and call 
it the rate of the (small) emission. Then 
 

    1

0

.
m

n
m

=                                                                                           (6) 
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    By issuing from (5) it is not difficult to derive now that 
 
    mt = m0e

gt, g = ln n.                                                                    (7; 8) 
 
However, it is sometimes convenient to replace (7) by 
 
    mt = m0n

t.                                                                                      (9) 
 
    Then, it follows from hypothesis (5) that  
 
    Mt = a + bt                                                                                  (10) 
 
and, taking into account (2) and (7), we find that 
 

    0 0
gt t

t

m e m n
i

a bt a bt
= =

+ +
.                                                                     (11) 

 
For 0t =  and 1 formula (10) provides 
 
    a = M0, b = M1 – M0.                                                                  (12) 
 
    Had we assumed that the level of prices changes proportional to the 
amount of money put into circulation, i. e., that 
 

    
0 0

t ti m

i m
= ,                                                                                     (13) 

 
then, owing to (9), we would have had 
 
    0

t
ti i n= .                                                                                     (14) 

 
    Now, equation (11) can be written in another way. Replace a and b by 
their expressions (12), then  
 
    0M  = m0/i0 and M1 = m1/i1.                                                      (14*a, b)  

 
Then, denoting the rate of the rise in the price level by 
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0

i
k

i
= ,                                                                                       (15) 

 
we will arrive after simple transformations at 
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+ − 
 

,                                                                        (16) 

 
which will be transformed into (14) if n k=  (if the rate of emission 
coincides with that of the price level). 
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3. Revenue from the Emission and Relative Efficiency 
    We begin by admitting that the level of prices changes proportionally 
with the emission. Then the elementary revenue will be dJ = dm/i. However, 
taking into account (13) and (14*a), 
 

    0 0

0 0 0

i m m m
i

m i M
= = = , 

 
so that  
 

    0

dm
dJ M

m
= .                                                                             (17) 

 
Integrating from 0m m=  to tm m= , we find that 

 

    0
0

ln tm
J M

m
= .                                                                            (18) 

 
    The studied period can be assumed as a unit, and m1/m0 = n, the rate of 
the emission, so that 
 
    0 lnJ M n= .                                                                              (19) 

 
Recalling (4), we obtain for the relative efficiency the expression 
  
    η ln n= .                                                                                      (20) 
 
For 2n <  we have the known formula 
 

    ( ) ( ) ( ) ( )
2 31 1

ln lg 1 1 1 1 1
2 3

n n n n n n= + − = − − − + −  

 
and for n near to 1 that efficiency will be near (n – 1), i. e., near to the norm 
of the increment of the emission3. However, if, for example, n = 2, that norm 
is 100% and the relative efficiency 69,3% since ln 2 = 0.693.  
    If the change in the price level is not proportional to the emission, and 
admitting both hypotheses of § 2, we have from (7) 
 
    0 0
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and, dividing it by i from equation (11), 
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Owing to (7) and (12) and noting that 0t tb M M= −  follows from (10), we 

arrive at 
 

    ( )0
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J M M

m
= + ,                                                               (21) 

 
an expression similar to (18), only 0M  is replaced here by the appropriate 

arithmetic mean. For unit time 
 

    ( )0

1
ln

2 tJ M M n= + .                                                                  (22) 

 
Removing 0M  from the brackets and replacing M0 and M1 within the 

brackets according to formula (2) and recalling also formulas (6) and (15) 
[M0 certainly remains within the brackets in the denominator], we come to 
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and the relative efficiency will now be  
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.                                                                        (24) 

 
    We see that if n > k, i. e., if the rate of emission is higher than that of the 
prices, the relative efficiency must be higher than ln n, and otherwise lower. 
We may therefore somewhat tentatively call normal relative efficiency the 
magnitude expressing the relative efficiency when these ratios are equal to 
each other, see formula (20).  

 

4. The Revenue from the Emission  

and the Relative Efficiency in 1922 
    In our literature devoted to studying emission, it is often assumed that the 
time that the money is kept in banks (and during journeys) is two weeks. 
Therefore, the figures of the grand issue for the first day of the month, – and 
until 1 Sept. 1922 only they were known, – are supposed equal to the figures 
of the small issue for the middle of the month and the revenue from the 
emission is calculated according to an approximate formula  
 

    1 1 0
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−
=                                                                            (25) 

 
    Here, m0 and m1 are the small issues for the middle of the first and second 
months respectively, and i1/2 is the index for the middle of that period, i. e., 
for the first day of the next month. 
    In our previous work [vi] based on hypotheses 1) and 2) of § 2 we proved 
that formula (25) is erroneous not more than by 2% for the period when the 
emission is increasing less than twofold and mostly not more than by 1% 
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when applied to monthly periods; and if hypothesis 2) is valid, this holds 
independently from the rate of the index. 
    Here, I only provide as an illustration the revenue J1 calculated according 
to formula (25) for 11 months of 1922 (from 15 Jan. to 15 Febr., from 15 
Febr. to 15 March, …, from 15 Nov. to 15 Dec.) and compare it with the 
revenue J calculated for those same periods according to formula (22).  
    Note that I calculated J separately for each halfmonth by issuing from the 
indices provided by Statistika Truda (Statistics of Labour) which I 
interpolated bringing them to the middle of the appropriate months. Table 1 
thus provides figures calculated by adding up the appropriate results in 
pairs. 
    The proximity of the figures determined by such different methods is an 
empirical check of the initial hypotheses. An almost complete coincidence 
of the results provides a cause for thinking that the monthly fluctuations 
include random elements [components] smoothed when being summed up. 
Without a more detailed investigation, carefulness does not allow more 
categorical conclusions. 
    In Table 2 we offer the result of our calculations [vi, Table 3]: the rates of 
the emission and index (n and k), the normal relative efficiency (ln n) and 
the theoretical and empirical relative efficiency, formulas (24) and (4). All 
the figures are calculated for monthly periods, from the first day of a month 
to the first day of the next one. The figures of the revenue J were calculated 
by the method described above, and as near to reality as was possible. The 
result is shown on Fig. 1. 
    Theoretical efficiency is very near to the empirical, and they both are 
situated higher than the curve of the normal relative efficiency when the rate 
of the emission is higher than the rate of prices (from May to September) 
and lower otherwise (January – April and October – November). When the 
rates coincide, the mentioned curves completely or almost coincide with the 
curve of the normal relative efficiency (April and December). The chosen 
period belongs to those with most sharp oscillations and the acceptability of 
the empirical check apparently testifies that our hypotheses reflect reality 
without considerably corrupting it. 

 

5. The Pattern of the Movement of Money in the Banks 
    The fate of the banknotes in government banks can be thus sketched. 
Arriving in a bank, they move from entrance to exit as a current in a 
channel, but in such a manner that all the separate drops preserve their 
relative positions; those entering first, exit earlier and vice versa. This 
pattern does not corrupt reality since we are interested not in the banknotes 
in the technical sense, but rather understanding them as units of purchasing 
power, in how one banknote can replace another one as though transferring 
to it the role of a representative of the emission at a given moment. 
    Let a, b, …, r, s be banknotes ordered in time, each at the moment of its 
issue, i. e., of its entering the bank; k is the banknote exiting at some 
moment t, and s, is entering at the same moment. Then all the amount of 
money put into circulation up to a given moment, that is, m4, will be 
represented in our pattern by letters a – k, and all the money in the bank, by 
letters l – s with letters a – s being the total of all the issued banknotes, i. e., 
the grand emission u. Let the distance in time from k to s be τ, or the interval 
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of time between the banknote k entering the bank and exiting from it, that is, 
the time it is kept at the bank.  
    And so, if t is the moment of its entering, the moment of its exit, and 
simultaneously of the last banknote s entering the bank, will be t + τ. At 
moment t all the issued banknotes (the grand emission) were exhausted by 
the series a, b, …, k; and at moment t + τ those same banknotes represent the 
totality of money exiting the bank and put into circulation. At those 
moments their sum should be denoted by ut and mt+τ, and we have thus 
arrived at the main equation of the movement of money in the bank, 
absolutely independent from any particular suggestion about the rapidity and 
rate of the emission: 
 
    ut = mt+τ.                                                                                       (26) 

 

6. Determining the Period during which  

Money Is Kept in the Bank in the General Case 
    Let (Fig. 2) AB and A′B′ be the curves of the grand and the small issue, u 
and m. The amount of money entering the bank, u, and put into circulation, 
m, are marked off parallel to the vertical axis, and time, parallel to the 
horizontal. Let us take some point C on AB and draw a straight horizontal  
 

 
Fig. 2. Curves of the grand and the small issues 

    Horizontal axis: with letters A1, C1, C′1, and B1 
    Vertical axis: with letters O, A2, C2, B2; u(m) means u or m  
    Curve near horizontal axis: with letters A″, C″, B″ 
    Curve near vertical axis: with letters A, B, C, each with three strokes 
    Main curves: with letters A, C, B, and A′, C′, B′ 
    Intervals t = C2C, τ = CC′ 
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line passing through it until meeting A′B′ at some point C′. The segment CC′ 
will be the small issue mt+τ at a later moment when mt+τ = ut. From the 
above, it follows that CC′ = τ, the time interval during which the elementary 
amount of money entering the bank at moment t is kept there. 
    For differing amounts of money entering the bank at different moments 
that magnitude will generally vary, but it is always equal to the distance as 
measured along the horizontal line between the indicated curves. When 
transferring these distances to the abscissa and ordinate axes as shown on 
Fig. 2, we will have two figures. The area of the first one divided by the 
base of the figure A1B1 = t2 – t1 is the mean time interval for the money 
entering the bank, then to be kept there. Equal weight will be here assigned 
to equal elementary time intervals of the entering. The area of the second 
figure divided by the base of the figure A2B2 = 

2 1
 t tu u−  will also be the 

mean duration of the money kept in the bank, but weighted by the amounts 
of the entering money.  
    In other words, we will obtain the first mean by separating the period 
under discussion into equal intervals, determining τ separately for each of 
them taking the simple arithmetic mean of all those values and establishing 
the limit to which that magnitude tends when the number of the intervals is 
being increased. The second mean will be the arithmetic mean of all the 
values of τ corresponding to each entering rouble. Those means do not 
generally coincide, and their logical meaning differs; the first of them seems 
more suitable for characterizing various periods of the emission. 
    As an example, we will determine the mean duration (of the first kind) of 
the grand issue for the period from 1 Oct. 1922 to 1 July 1923. Owing to the 
kindness of the Currency Directorate, we have unpublished data for that 
time. Namely, we have the figures for the grand issue u for the first day of 
each month and of the small issue m on the 1st, 8th, 16th and 23th day of 
each month. These figures are shown in Table 3. Shown in bold type is each 
least figure of the small issue out of the two, between which the 
corresponding figure of the grand issue of the previous first day of the 
month is situated.  
    The method of calculation is determined by the data. We have to 
interpolate for the moment when m = u; the intervals roughly equal to a 
week are rather short, and we have only applied simple interpolation. Thus, 
the moment when m is equal to the grand issue for 1 March (3652.7) is5  
 

    
3652.7 3449.9

7 8 7 8 0.7685 13.148 days.
3713.8 3449.9

−
+ = + ⋅ =

−
 

 
    I carried out similar calculations in all the cases allowing for the period 
being sometimes seven and sometimes eight days. I increased each of the 
numbers thus obtained by 3 days because m actually represents the amount 
of money not put into circulation, but entering the bank’s working fund 
which may keep money needed for three days. We have no information 
about how the banks are using that possibility and presume that in the mean 
the money is kept in that fund exactly 3 days. 
    For τ calculated above we therefore have 16.148 days. All the magnitudes 
thus obtained are entered in column τ of Table 4 [but still without adding 
those 3 days]. The next column contains the arithmetic mean of the two 
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values of τ for the beginning and the end of the appropriate month 
representing the approximate values of the duration of the emission of the 
appropriate month in the banks.  
    The same figures are shown in the last column in mean “weeks” which 
we understand as 1/4 of the mean month during the period from 1 Oct. 1922 
to 31 July 1923. That interval is 304 days, so that the mean month is 30.4 
days, and the mean “week” is 7.6 days. We thus see that in cases known to 
us the time that money had been kept in the bank fluctuated between τ = 7.2 
and 38.5 days (column τ) or between 9.07 and 31.79 days (next column) or, 
finally, between 1.19 and 4.18 of the “mean” quarter of month. The general 
mean is 17.667 days = 2.32 mean “week” = 0.581 of mean month, that is,  
(1/2 month + 21/2 days). 
    It thus occurs that at least for the considered period in the mean the 
hypothesis, which several authors applied in our literature for various 
calculations concerning the half-month duration of time between issuing the 
money and its coming into circulation, apparently reflects reality. Whether 
that mean can be attributed to the entire period of 1918 – 1922 or not, we 
ought, however, to leave unanswered. 

 

7. Determination of τ for the Normal Movement of the Emission 
    Had the movement of the emission been uniform and at the same rate for 
both the grand and the small issues, the ratio of the money in the bank to the 
entire amount of the emission would have remained constant, and the time τ 
that the money is kept in the bank could have been determined directly from 
equation (26), see below.  
    Under constancy of the rates of both emissions and their equality to each 
other we should have, according to equation (9),  

 
    mt = m0n

t so that ut = u0n
t,                                                        (26*) 

 
but then it would have followed that 
 

    0

0

    Const (= λ).t

t

u u

m m
= =                                                      (27) 

 
    Denote the ratio of the amount of money kept in the bank to all the money 
put into circulation by β, 

 

    βt

t

w

m
= ,                                                                                     (28) 

 
and divide equation (1) by tm , then 

 

    1t t

t t

u w

m m
= + , 

 
and, owing to (27), 
 
    β = λ – 1.                                                                                  (29) 
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    In this case the equation (26) is solved very easily. First of all, since any 
moment can be assumed as being initial, we choose 0t = , then it will take 
the form 
 
    0u mτ= .                                                                                    (30) 

 
Then, owing to (26*),  
 
    τ

τ 0 ,m m n=  τ
0 0u m n= .                                                            (31; 32) 

 
    Dividing both parts of (32) by 0m  and recalling (27) we will have 

 

    τ λn = , 
lg λ

τ
lg n

= .                                                                     (33; 34) 

 
As an illustration, we apply this formula for determining τ by issuing from 
the data provided in § 6. However, since our empirical magnitudes do not 
obey the indicated conditions quite strictly, we ought to represent (33) in a 
somewhat modified way. Indeed, under the premises admitted above, the 
rates of both issues are the same, so that we may assume n equal either to 
m1/m0 or u1/u0, and λ equal to u1/m1 or u0/m0 or uτ/mτ. For the empirical data, 
however, it is not so.  
    Returning to the strict equation (30), we consider expressions (9) or (31) 
as an approximate formula. Then, τ is not yet known and that expression 
cannot be applied for deriving n. We therefore assume that during the 
appropriate month (which is the unit of time) the rate of the small issue 
remains roughly constant. Denoting the value of that issue in the beginning 
and end of month by m0 and m1, we thus approximately have n = m1/m0. 
    Equation (32) will then be 
 

    

τ

1
0 0

0

m
u m

m

 
=  

 
, 

( )
( )

0 0 0 0

1 0 1 0

lg / lg lg
τ

lg / lg lg

u m u m

m m m m

−
= =

−
.                      (35) 

 
For example, in Nov. 1922 0 1217,6u = ·1012 nominal roubles, 0 1095,5m = , 

1 1479,2m = , 

 

    
lg1217, 2 lg1095,5

τ 10,572
lg1479,2 lg1095,5

−
= =

−
 days. 

 
    As indicated above, 3 more days should still be added to provide 13.572 
days. After such calculations for all months from Oct.1922 to July 1923 we 
obtain Table 5 similar to Table 4. When comparing the tables with each 
other, we see that our method provides rough, but not entirely unsatisfactory 
approximations, whereas in the mean we arrive at almost the same value of 
τ: 2.23 of a mean “week” instead of 2.32. Instead of τ = 1/2 of month + 21/2 
days, here τ = 1/2 of month + 13/4 days, the difference only being 3/4 days.  
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    The changes in time are absolutely similar as seen in the comparison of 
the two curves of τ on Fig. 3. This method can apparently be applied if the 
data are insufficient for making use of the more precise first method. 

 

8. The Size of the Working Fund 
    We know absolutely nothing about it, and its estimate is only possible by 
assuming that the local institutions are fully enjoying the right to keep an 
amount of cash necessary for three days. It is hardly possible to ignore that 
sum when determining the amount of money in circulation since (see below) 
it can reach almost 10% of a monthly emission. 
    We considered the small issue (m) as money put into circulation. Now, 
we will take a stricter look and consider it, as it is in reality, the amount of 
money put into the working fund as into the final stage before being actually 
circulated. Now, we denote by m the amount of money really put into 
circulation, whereas the small issue, i. e. the money put into the working 
fund until the given moment, will now be u′. Then, the cash in the working 
fund is ∆, and in the bank (and en route) without the working fund, w′ and 
the total cash, w = w′ + ∆. The grand issue will be denoted as previously by 
u, then  
 
    u = m + w, u = u′ + w′, u′ = m + ∆.                                    (36a, b, c)  
 
    It is not difficult to realize that all the equations (36) are similar to each 
other and the magnitudes occupying the same places can be mutually 
changed. For example, equation (9) will become 
 
    u = u0n

t, u′ = u′0n
t, m = m0n

t, 
 
with n being u1/u0, u′1/u′0, and m1/m0, respectively. For (36c) equation (30) 
will be  
 
    0 τu m′ = .                                                                                  (38) 

 
    Since 

 
    ( )τ τ

τ 0 0 0m m n u n′= = − ∆ ,  

 
we have from (38) 

 

    ( ) τ
0 0 0u u n′ ′= − ∆ , 0 0

1
1u

nτ

 
′∆ = − 
 

.                                      (39) 

 
    We will derive from (39) a convenient approximation for a sufficiently 
small τ (for example, τ = 1/10 of a month). Representing 1/nτ = nτ as 

τ lne n− , we will have6 
 

    ( ) ( )
2 3

τ

1 1 1
1 τ ln τ ln τ ln ...

2 6
n n n

n
− = − + −                           (40) 

 
In our data n ≤ 2, therefore ln n < 0.693 and 
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    1 – (1/21/10) = 0.06931 – 0.00240 + 0.00055 – 0.00001 + … 
 
provides the upper boundary of error. Neglecting all terms of (40) beginning 
with the second one, we will approximately have  
 
    0 0τ lnu n′∆ = .                                                                        (41) 

 
    For a month, the small issue is 1 0 u u′ ′−  and we may write 

 

    ( )0 1 0
0 1 0

1 0 1

u u u
u u u

u u n

′ ′ ′−
′ ′ ′= − =

′ ′− −
.  

 
Inserting this expression into (41) we finally have 
 

    ( )0 1 0

ln
τ

1

n
u u

n
′ ′∆ = − ⋅

−
. 

 
The first factor, ( )1 0τ u u′ ′− , is the part of the monthly issue proportional to τ, 

the second one is a correction, or coefficient equal, as it is not difficult to 
prove, to 0 / mu u′ ′  where the denominator is the monthly mean of the small 

issue7. The value of that coefficient is given in Table 6. 
    For a month of 30 days and the working fund then receiving 100·1012 
roubles at the beginning of the month that fund will have not (1/10)·100·1012 
roubles, but, for n = 2 and 1.7, only 6.93·1012 and 7.58·1012, etc. 
 

Explanation of Tables and Figures 
    I am only explaining them; one exception is Fig. 2 inserted into the text above. O. S. 
    Table 1 (§ 4). Shows months of 1922, J1, J and ∆J. 
    Table 2 (§ 4). See explanation in text. 
    Fig. 1 (§ 4). See explanation in text. 
    Table 3 (§ 6). Shows the months from Oct. 1922 to June 1923, u and m. 
    Table 4 (§ 6). Explanation in text. 
    Table 5 (§ 7). As explained in text, it is similar to Table 4. 
    Fig. 3 (§ 7). Shows almost coinciding broken lines of the mean duration 
of money in banks as calculated by both methods and summarized in Tables 
4 and 5 respectively. 
    Table 6 (§ 8). Shows n = 1.1(0.1)2.0, ln n and ln n/(n – 1). 
 

Notes 
    1. The first half of this paper is a brief description of some of my main previous findings 
[vi] and the second half (§§ 5 – 8) is a natural continuation of the first §§ 1 – 4. E. S. 
    2. This is obviously an abbreviation of Creditnye Bilety (Certificates of Credit, 
promissory notes, banknotes). O. S. 
    3. This explains the mistake made by Prof. Falkner (1923, p. 54) who called the norm of 
the increment the rate of the issue (which is hardly advisable) and considered it, i. e., our (n 
– 1), so to say a normal measure of relative efficiency. E. S. 
    4. Slutsky wrote out all the intermediate letters except j. The letter m that appeared 
separately has nothing in common with banknote m. O. S. 
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    5. Calculations with superfluous digits are frustrating the more so since Slutsly later adds 
3 days very roughly estimated. Same comment is valid for § 7 below and will be made in 
more detail in Note 6 to [xiv].  
    3449.9 in the following calculation is the figure for 8 March (provided in bold type, see 
explanation in text) and 3713.8, the figure for 16 March. O. S. 
    6. The right side of (40) is the expansion of  
 
    1 – e–τln n = 1 – exp (ln n–τ) = 1 – (1/nτ) 
 
which is the expression contained in (39). Just above (40) something is wrong in 
“Representing …”. O. S. 
    7. Indeed,  
 

    

1

0
0 0 0 0

0

1 ln1 ,  . E. S.
ln ln 1

t
un n nt

u u n dt u um
n n u nm

′−
′ ′ ′ ′= = = =∫

′ −
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VIII 

 

On the Law of Large Numbers 
 
K voprosu o “Zakone Bol’shikh Chisel”. Vestnik Statistiki, No. 7 – 9, 1925, pp. 1 – 55 

 

I 
    1. The very idea of the “law of large numbers” is based on a concept that 
had been until quite recently left unnamed in spite of our acquaintance with 
it for more than two hundred years, that is, from the time that Jakob 
Bernoulli’s celebrated Ars Conjectandi was published. The matter concerns 
the relation between magnitudes owing to which one of them is the limit in 
the probability-theoretic sense, or, shorter, is a stochastic limit1. That 
concept was not clearly defined or separated as such in proper generality 
and had not therefore been distinctly noticed in each necessary instance. As 
it always occurs in such cases, neither did it attract the deserved attention. 
Consequently, extremely elementary [easy to notice] gaps had been left even 
in the first chapters of the calculus of probability. They would have been 
certainly bridged long ago had the notion of stochastic limit been named in 
due time. 
    Thus, the courses in that discipline lack theorems similar to those of the 
doctrine of usual limits: the limit of the sum (of the product) is equal to the 
sum (the product) of the limits, etc. At the same time, an even much more 
general theorem can be extremely easy proved, viz., that the stochastic limit 
of a function is equal to the function of the stochastic limit provided that that 
function is continuous at least near the appropriate value of the argument 
and its parameters do not depend on the relevant argument2.  
    In general, the sole formulation of the concept of stochastic limit suggests 
a number of theoretical issues, clearly distinguishes the corresponding kind 
of problems and as though all by itself reveals the lack of generality in a 
number of statements. A name is not an empty word; what is left in science 
without it cannot possess completeness of being. 
    I consider the mathematical theory of stochastic limit elsewhere. Here, I 
only aim at sketching its general concept so as to revise on that basis some 
aspects of the problem of the LLN3. 
    2. For revealing the essence of the stochastic limit I consider the situation 
necessary for the existence of the Bernoulli theorem and I allow myself to 
remind readers its premises. A number of trials is made in each of which 
some event can either occur or not. Its probability p is one and the same in 
each; it does not depend on the outcome of previous trials whose series can 
be continued indefinitely. This is illustrated by the known pattern of 
extracting white and black (say) balls from an urn, returning each extracted 
ball back and “properly” shuffling the urn’s contents before each subsequent 
trial.  
    Suppose that n trials are made and the event happened m times. The 
magnitude m/n, i. e., the frequency of the event, ought to take some of the 
following values 
 
    0/n, 1/n, 2/n, …, (n – 1)/n, n/n                                                   (1) 
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with each of these cases possessing a certain probability that can be 
calculated according to known rules. Frequencies near the probability p will 
have maximal probabilities and the further they are from that p, the lower 
will be their probabilities.  
    It is possible to look for the probability that the frequency will be not less 
than p – ε and not greater than p + ε, that is, that its deviation from 
probability will not exceed ε in absolute value. Denote that probability by 
 

    (ε)
(0) | |

m
P p

n
−                                                                                  (2) 

 
which means that these deviations will take some values between 0 and ε. 
For deriving it, we ought to separate cases corresponding to the condition 
 
    0 ≤ |(m/n) – p| ≤ ε                                                                        (3) 
 
from the pattern (1) and to add up their probabilities.  
    The Bernoulli theorem is known to mean the following. When 
determining that probability given an infinitely increasing number of trials, 
n1, n2, …, the corresponding probabilities  
 

    (ε) (ε)
(0) (0)

1 2

| |,  | |,  ...
m m

P p P p
n n

− −                                                  (4) 

 
will constitute a series of magnitudes boundlessly tending to unity whatever 
is the value of ε chosen beforehand. However small is that ε, it will be 
possible to determine such a number of trials n that, given any greater, the 
difference between the corresponding probability and 1 will remain less than 
any given beforehand ε.  
    Compressing all this into a short formula, we arrive at the following 
formulation of the Bernoulli theorem: Given a boundless series of 
independent trials in each of which the probability of some event is one and 
the same constant magnitude, the probability of the deviation of the 
frequency m/n from the probability of its happening in a separate trial p will 
not exceed in absolute value any arbitrarily chosen and however small 
magnitude ε if the number of trials n tends to infinity, has a limit equal to 1, 
or  
 

    (ε)
(0)lim | |  1,  . 

m
P p n

n
− = → ∞                                                   (5) 

 
    And we ought to indicate that it seems highly inexpedient that no shorter 
expression by means of some suitable term and its symbol is in existence for 
such a complicated relation (5) between a number of magnitudes. It is just as 
inexpedient as having to repeat entirely every time the definitions of limit, 
derivative, integral instead of using these terms. Indeed, we are dealing with 
such a relation that plays an important role in a number of chapters of the 
calculus of probability and has to be discussed very often. Surprisingly this 
circumstance had been for so long unnoticed.  
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    Formula (5) tells us (to express it more briefly) that the probability of 
deviations not exceeding a given value tends to 1. As a corollary, we may 
conclude that the boundaries of the deviations to be expected with a definite 
probability however near to unity are ever nearer approaching each other. 
That form allows us to perceive especially vividly the similarity of the 
considered relation with the notion of limit. Keeping for the time being to 
the same example, we will therefore say that under the conditions of the 
Bernoulli theorem the probability p of the occurrence of the event in a 
separate trial p is the limit in the probability-theoretic sense for the event’s 
frequency m/n, given an infinitely increasing number of trials n. 
    Or, more briefly: probability p is the stochastic limit of frequency m/n as 
n → ∞. And still more briefly: 
 
    p = limB (m/n), n → ∞.                                                              (6) 
 
The letter B distinguishes the new notation from the usual symbol of limit. I 
propose that notation in honour of Jakob Bernoulli as an abbreviated 
expression of a parallel term, stochastic or Bernoullian limit, limes 
stochasticus vel Bernoullianus. When a magnitude [a number] C is the usual 
limit of some magnitude z, we may write down an approximate equality4 
 
    z ≠ C, t → ∞                                                                                (7) 
 
valid for sufficiently large values of the independent variable t and 
reminding that in the process of its unbounded increase the error of (7) 
unboundedly decreases. 
    From the above follows a relative [see below] rightfulness of the method 
of expression proposed by Prof. V. I. Romanovsky. Concerning the 
magnitudes involved in the Bernoulli theorem it offers a stochastically-
approximate equality4  
 
    p ≠ m/n, modo Bernoulliano, n → ∞.                                        (8) 
 
    It ought to be implied here that, given an infinitely increasing n, the 
boundaries of the errors to be expected with any given probability however 
near to 1 infinitely approach each other. Rigour of such notation will only be 
maintained when applying a special sign for approximate equality, as we 
have done it in (7) and (8), and indicating the infinitely increasing 
independent variable.  
    In any case, similar to the logically main symbol 
 
    lim z = C, t → ∞ 
 
being in the largest number of instances most convenient, only the symbol 
 
    limB x = C, n → ∞ 
 
directly corresponds to the essence of stochastic limit whereas the symbol of 
the formula (8) should be considered as derivative and supplementary. 
Indirectly this idea is corroborated by the fact that essentially the same 
symbolical notation as that, provided by V. I. Romanovsky, had occurred 
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long ago but disappeared with absolutely no trace. Thus, in Poisson (1837,                                      
p. 139, in passing) we meet more than once with the expression: such-and-
such a magnitude is equal to another one à très peu près et très 
probablement (almost precisely and highly probably). Formally speaking, 
this is not quite clear, but in essence it certainly implies the same idea of a 
stochastically approximate equality. 
    3. The presence of some connection between the probability of an event, 
its frequency and the number of trials was certainly noted even before Jakob 
Bernoulli. It is unquestionable, however, that he was the first to bring to 
complete clarity the logical structure of the relevant relations. When 
discussing the empirical determination of probabilities of events by 
observing their frequencies, Bernoulli himself (1713/2005, Chapter 4 of pt. 
4, p. 29) remarked that that method was “not new or unusual”, and he 
acknowledged that  
 
    Neither can anyone fail to note also that it is not enough to take one or 
another observation for such a reasoning about an event, but that a large 
number of them is needed. Even the most stupid person, all by himself and 
without any preliminary instruction, being guided by some natural instinct 
(which is extremely miraculous), feels sure that the more such observations 
are taken into account, the less is the danger of straying from the goal. 
 
    His next phrase throws light on how he perceives his aim: 
 
    Although this is known by nature to everyone, its proof, derived from 
scientific principles, is not at all usual and we ought therefore to expound it 
here. However, I would have estimated it as a small merit had I only proved 
that of which no one is ignorant. Namely, it remains to investigate 
something that no one had perhaps until now run across even in his 
thoughts. 
 
    When pondering this over, and especially bearing in mind the following, 
we will understand what had the author wished to say. His idea was 
undoubtedly that the situation as it existed before him was not such that 
“proof derived from scientific principles” had only to be found for some 
proposition.  
    The subject itself was not yet made clear and the relations between the 
appropriate magnitudes were perceived vaguely. Had the problem been 
formulated as a purely mathematical exercise in the theory of combinations5, 
some aptitude would yet be required for achieving the aim, but we would 
not have been then surprised by the author’s genius. He himself (Ibidem, pp. 
30 and 31) turns our attention to the circumstance that his discovery consists 
in the formulation itself of the problem: 
 
    It certainly remains to inquire whether, when the number of observations 
thus increases, the probability of attaining the real ratio between the 
number of cases in which some event can occur or not, continually 
augments so that it finally exceeds any given degree of certitude. Or [to the 
contrary], the problem has, so to say, an asymptote; i. e., that there exists 
such a degree of certainty which can never be exceeded no matter how the 
observations be multiplied. 
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    To avoid false understanding, it ought to be noted that the ratio between 
the numbers of cases which we desire to determine experimentally, is 
accepted not as precise and strict (because this point of view would have led 
to a contrary result and the probability of determining the real ratio would 
have been the lower the more observations we would have taken)6, but that 
this ratio be accepted with a certain latitude, that is, contained between two  
limits [boundaries] which could be taken as close as you like. 
 
    I allowed myself to include these long extracts so as to show to what 
extent did Bernoulli value his merit exactly in analytically revealing the 
problem and how clearly did he establish all the indications characterizing 
the connection between a magnitude and its stochastic limit. Historical 
fairness demands that we acknowledge not only the authorship of the 
celebrated theorem named after him, but also his discovery of the concept of 
stochastic limit. Exactly that term is too expressive and convenient for not 
being evaded and I thought it would be proper to attach to it the parallel 
name of Bernoullian limit by assuming the symbol limB and establishing it 
with all the necessary degree of generality7. 
    4. When defining the notion of stochastic limit in general, it is of course 
necessary to abstract ourselves from the conditions of the particular case 
which we considered for the initial introduction of that stochastic formation. 
We ought to go in several directions beyond the boundaries within which 
that notion is usually applied.  
    a) First of all, it is clear that not only frequencies, not only arithmetic 
means but an immeasurable number of other magnitudes can also have a 
stochastic limit. For example, denoting expectation as usual by E we will 
have the correlation coefficient between random variables x and y 
 

    , 2 2

E( E )( E )

E( E ) E( E )
x y

x x y y
r

x x y y

− −
=

− −
                                                      (9) 

 
and its empirical ersatz, the only calculable, given a series of empirical 
values of those variables in n trials, 
 

    1
,

2 2

1 1

(1/ ) ( )( )
ρ

(1/ ) ( ) (1/ ) ( )

n

i i
i

x y
n n

i i
i i

n x x y y

n x x n y y

=

= =

− −

=

− −

∑

∑ ∑

.                          (10) 

 
    Here,  and x y  are the arithmetic means of the corresponding magnitudes. 
The coefficient (10) is not an arithmetic mean, but it certainly is a random 
variable. Depending on the random choice of the elements of the appropriate 
samples, it can take various values with different probabilities for one and 
the same coefficient (9). It is proved (Chuprov 1922, p. 267/2004, beginning 
of § 4.2A; 1924, p. 42) that the expectation of (10) is not in general equal to 
(9). However, with a constant rx,y, and an increasing number of trials, it 
tends to rx,y as to its limit. 



 105 

    The following relations will therefore take place. Suppose we have s 
samples of n trials each from one and the same urn and denote the arithmetic 
mean of the s empirical coefficients of correlation by ,ρ .x y When increasing 

the number of samples s, it will stochastically approach Eρx,y as its limit 
 
    , ,lim ρ Eρ ,  .B x y x y s= → ∞                                                           (11) 

 
If, according to another pattern, we will infinitely increase the number of 
cases in a sample,  
 
    limB ρx,y = rx,y = lim Eρx,y, n → ∞.                                             (12) 
 
    I think that this example shows sufficiently clearly how wide can the 
notion of stochastic limit be applied. When formulating it, we should 
therefore mention not some separate kinds of random variables, but a 
random variable in general. That will be a problem not of defining stochastic 
limit, but of its theory; viz., of establishing conditions under which a random 
variable has a stochastic limit. 
    b) The magnitude that is a limit should not be burdened by superfluous 
restrictions either. We ought not to be tempted by the fact that until now in 
all known cases such limit was an expectation, or, as in the last example 
above, its limit. Even be that restriction always valid, it should not have 
been mentioned in the definition but rather constitute the subject of a special 
theorem. It is not difficult, however, to prove that it is not so.  
    Let the possible values of a random variable and their probabilities be 

         

                  I                 II                               III                          IV

:                      1 1/                        1 1/                        

:           /    

x n n n n

p a n

− − +

      (1/2)[1 ( 1) / ]    (1/2)[1 ( 1) / ]    1/a n a n n− + − +

 (13) 

 
This pattern can be illustrated by an urn having n balls, a of them of the first 
kind, one ball of the fourth and an equal number of balls of the two other 
kinds. Let the numbers of the first line represent the loss of a gambler in 
case I and his gains in the other cases when a ball of the corresponding kind 
is being extracted.  
    Suppose also that after each game one ball of the II and one of the III kind 
are added, but the number of balls of the other kinds remain constant. The 
sum of the probabilities in the two cases, II and III, will evidently become 
arbitrarily close to 1 so that the probability of winning will also behave the 
same way.  
    And so, the stochastic limit of gain is 1 whereas, when multiplying the 
corresponding numbers of both lines, we will obtain the expectation of gain 
equal to 
 
    Ex = – (a – 2) – (a + 1)/n.                                                          (14) 
 
For a = 1 
 
    lim Ex = 1 – limBx, 
 
and, if a > 2, 
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    lim Ex = – (a – 2) < 0. 
 
    Its absolute value differs from the stochastic limit arbitrarily much if only 
a is taken sufficiently large. A banker, the partner of our gambler, will have 
a positive expectation of gain, but the gambler will win almost certainly. 
    c) Our last example also illustrates a third point that should be paid 
attention to when formulating the notion of stochastic limit. Namely, the 
consecutive values of probabilities taken in some arbitrarily narrow 
boundaries of deviations can be a function not of the number of trials, but of 
some other independent variable. In the last example above that variable 
was the number of balls in the urn. True, it increased with the number of 
trials, but that condition may be abandoned without changing anything in 
the result. 
    Or, here is another example. The probability of an event occurring all n 
times in n trials, given a constant probability p of its happening in a separate 
trial, is pn and tends to unity if n is constant and p approaches 1. Denote the 
number of occurrences of the event in n trials by m, then 
 
    (ε)

(0)lim | | 1,  lim ( ) ,  1.BP m n m n p− = = →                               (15; 16) 

 
    What we are discussing now can be essentially important for correctly 
formulating many propositions in most various fields. Thus, for an 
unbounded space with matter spreading in it from a single centre, the 
probability of having a certain number of molecules in a unit volume 
situated at a given distance from that centre should lower. Certain premises 
are possible for that probability to lower unboundedly but never to vanish 
completely. It would have been wrong to say then that the limit of density of 
the matter is zero; rather we ought to state that the stochastic limit of that 
density equals zero as the distance from the centre increases unboundedly. 
Distance will be the independent variable. 
    d) Finally, the example covered by formulas (15) and (16) shows that the 
independent variable does not necessarily tend to infinity; it can take a 
number of values and, for example, approach some finite magnitude. 
Allowing for that circumstance as well, we may rigorously formulate the 
notion itself of that limit. 
    5. If for each value of a magnitude as well as for each interval of its 
values there exists a definite corresponding probability, that magnitude will 
be a random variable. It is possible to simplify that definition since 
condition x = c is a particular case of a ≤ x ≤ b, namely when a = b = c. 
That formulation covers both the case in which the random variable can 
only take definite discrete values, so that the probability of its being situated 
in any interval not including any of them is zero, and the case in which it 
can take all values in some continuous interval or even all real values from – 
∞ to + ∞. 
    The entire set of probabilities uniquely corresponding to intervals (or 
values) of a random variable x constitute its distribution of probabilities; 
denote it by Ωx. Consider some independent variable φ and let each of its 
values uniquely correspond to a definite distribution of some random 
variable so that a definite sequence 
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    (1) (2) ( )Ω ,  Ω ,  ..., Ω ,  ...i
x x x                                                                (17) 

 
will correspond to each sequence of values of φ 
 
    φ(1), φ(2), …, φ(i), …                                                                   (18) 
 
    Now we may say that the distribution of a given random variable x is a 
function of a given independent variable φ, and x is stochastically connected 
with φ8. If one and the same distribution corresponds to any values of x, we 
say that x is stochastically independent from φ and stochastically dependent 
otherwise. Let in addition a boundless sequence  
 
    φ1, φ2, …, φi, …                                                                         (19) 
 
be given. For a definite value of φ, it is possible to determine the probability 
that the deviation of x from some constant will not exceed in absolute value 
some arbitrary ε. Then an unbounded sequence of probabilities 
 
    

1 2

(ε) (ε) (ε)
(0) φ = φ (0) φ = φ (0) φ = φ| | ,  | | , ..., | | , ... 

k
P x c P x c P x c− − −       (20) 

 
will correspond to sequence (19). If for any however small ε and α such φk 
can be found that for any φn, n > k, the corresponding probabilities (20) will 
be higher than (1 – α), the constant magnitude c will be the stochastic limit 
of x for the sequence (19). 
    Shorter, if a random variable x is stochastically connected with an 
independent variable φ and 
 
    (ε)

(0) 1 2lim | |  = 1, φ = φ ,  φ ,  ... P x c−                                        (21) 

 
where c is some constant and ε some positive arbitrarily small magnitude, 
then  
 
    limB (x) = c, φ = φ1, φ2, …                                                      (22) 
 
    6. The notion of stochastic limit, whose rigorous definition is given just 
above, can still be extended in an extremely important direction. Instead of 
deviations of a random variable x from some constant c we will consider its 
deviations from some variable v being a function of the independent variable 
φ stochastically connected with x. After all these explanations, I hope that 
the following short definition will be absolutely clear: 
    If a random variable x is stochastically connected with an independent 
variable φ in such a way that  
 
    (ε)

(0) 1 2lim | |  = 1, φ = φ ,  φ ,  ... P x v−                                       (23) 

 
where ε is a positive arbitrarily small magnitude and v = f(φ) is some 
function of φ, then we call v a stochastic (or Bernoullian) asymptote of the 
random variable x: 
 
    asB (x) = v                                                                                (24) 



 108 

 
where asB (x) means asymptota Bernoulliana. 
    It is the analogy with non-stochastic concepts that compels us to introduce 
the term asymptote since limit in its usual sense is always only understood as 
a constant to which the relevant variable infinitely approaches. When two 
functions are approaching each other in that same way, so that the limit of 
their difference is zero, asymptotes are introduced, and this term is therefore 
suggested all by itself for describing the stochastic relations under 
consideration. And it is not difficult to prove that, if v1, v2, …, vk are 
asymptotes of each other in the usual sense, and if one of these magnitudes 
is a stochastic asymptote of a random variable x, all the others will also be 
its stochastic asymptotes and I call them equivalent. A random variable 
having a stochastic asymptote will certainly have an incalculable number of 
them, but it cannot have two such asymptotes not equivalent to each other, i. 
e., not being usual asymptotes for one another. Therefore, if some stochastic 
asymptote has a limit, all the other ones have the same limit which will be 
the stochastic limit of the same random variable. 
    On the contrary, if a random variable has a stochastic limit, each of the 
latter’s asymptotes, i. e., any variable having it as its usual limit, will be a 
stochastic asymptote. And, recalling the example in § 4, we see that the 
empirical coefficient of correlation ρ, given an unbounded increase in the 
number of empirical indications n on whose basis it was calculated, will 
have the theoretical coefficient r as its stochastic limit. At the same time, we 
know that the expectation Eρ is a magnitude which varies as the number of 
trials n increases and infinitely approaches the theoretical coefficient of 
correlation: 
 
    limB (ρ) = r, lim Eρ = r, asB(ρ) = Eρ                                  (25; 26) 
 
which means that the expectation of the empirical coefficient of correlation 
is its stochastic asymptote.  
    Least interesting is the case in which a stochastic asymptote has a limit. 
The demand of introducing the concept of stochastic asymptote is 
necessarily mainly based on the circumstance that we can thus consider 
cases which do not yield to be studied by the idea of stochastic limit. Those 
are the instances in which a random variable stochastically approaches some 
magnitude which does not tend to any (finite) limit but either oscillates 
within some boundaries or infinitely increases (decreases).  
    We will at first offer a purely formal illustration. Let the distribution of 
probabilities be 
 

    
4 3 3 4

φ φ φ 1 φ 2
:   sinφ   sinφ   sinφ  sinφ  sinφ, ...
φ 2 φ 1 φ φ

:        1 / 2             1 / 2        1/ 2        1/ 2            1 / 2 ,  ...

x

p

+ +

+ +  (27) 

 
where φ is an independent variable. The term sin φ in the upper row has 
probability differing from 1 by 1/2; together with both its adjacent terms 
they have probability differing from 1 by 1/4, etc. It is thus possible to 
isolate a group of terms containing that middlemost term and an equal 
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number of them in each direction from it so that their probability however 
little deviates from 1.  
    Then, the difference between sin φ and each of the extreme terms of that 
group infinitely decreases with an infinite increase in φ; therefore, it will be 
always possible to find such a large value of φ that, for a however small ε, 
the probability of the deviations lying within [sin φ – ε; sin φ + ε] differed 
from 1 less than by an arbitrarily small magnitude α. Indeed, it is always 
possible to isolate such a group of terms with sin φ in its middle having 
probability higher than (1 – α). Then, increasing φ, we can always bring the 
extreme terms of the group however near one to another. 
    And so, it is proved that as φ infinitely increases, the probability that the 
value of the random variable will be however near to sin φ will approach 1. 
Nevertheless, that magnitude, sin φ, is not constant but variable, 
continuously and periodically oscillating between – 1 and 1; there can 
certainly be no mention of a stochastic limit, but it will be a stochastic 
asymptote of x; and, for sufficiently large values of φ, x will almost certainly 
deviate from it however little.  
    7. This example only formally illustrates our idea, but we will see that the 
concept of statistical asymptote is very important in problems of another 
kind closely connected with issues of statistical theory and practice. 
    Suppose that a series of trials stochastically independent one from another 
is made. Let the probability of the occurrence of some event be p1, p2, … 
with a possible infinite extension of that series. The event occurred m times 
in n trials. It can be easily proved, see for example Markov (1900/1924, pp. 
98 – 100), that, when the number of trials indefinitely increases, the 
probability of arbitrarily small in absolute value deviations of frequency m/n 
from the mean probability p  however closely approaches 1: 
 

    (ε)
(0)lim | | 1,  .

m
P p n

n
− = → ∞  

 
    If x  is constant (for example, if in each group of n trials the given 
probabilities will be repeated equally often), p  will be the stochastic limit 
of the frequency: 
 

    lim ( ).B

m
p

n
=                                                                          (29) 

 
And if x  is not constant but has a limit, it will be the stochastic limit of the 
frequency: 
 

    lim lim ( ).B

m
p

n
=                                                                    (30)  

 
    However, if x  does not have a limit at all, but only oscillates within some 
bounds, which is the most ordinary case, if only the opposite is not assured 
by a special arrangement or some regularity dominating the given field of 
phenomena, then the formulations above are not applicable. However, in 
any case, owing to (28), the stochastic limit of the difference between the 
frequency and the mean probability vanishes  
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    lim ( ) 0,B

m
p

n
− =                                                                    (31) 

 
and the mean probability is a stochastic asymptote of the frequency 
 

    ( ).B

m
p as

n
=                                                                             (32) 

 
    Similar conclusions are valid for the arithmetic mean of the values of a 
random variable. Let x1, x2, …, xn, … be the independent random variables 
in the respective trials, each with its own distribution of probabilities. If xi 
can take values 
 
    (1) (2) ( ) (1) (2) ( ),  ,  ...,  with probabilities ,  ,  ..., ,k k

i i i i i ix x x p p p  

 
then  
 

    ( ) ( )

1

E .
k

j j
i i i

j

x p x
=

=∑                                                                     (33) 

 
    If only the mean square values of our random variables, i. e. the 
magnitudes 
 

    2σ E( E )i i ix x= − ,                                                               (34) 

 
do not increase infinitely, then (Markov 1900/1924, pp. 116 – 118) the 
probability, that the difference between the arithmetic mean x  of the 
empirical values and that of their expectations will be however small, 
approaches 1 arbitrarily nearly.  
    Denoting the empirical values in consecutive trials by 1 2,  ,  ...x x′ ′  we will 

therefore have  
 

    (ε)
(0)

1

lim | (1/ ) E |  1,    .
n

i
i

P x n x n
=

− = → ∞∑                             (35) 

 
If the mean expectation is constant or tends to some limit, then either it or its 
limit will be the stochastic limit of the arithmetic mean. However, in the 
general case we can only say that x  has a stochastic asymptote, so that  
 

    
1

(1/ ) E ,  .
n

B i
i

as x n x n
=

= → ∞∑                                                   (36) 

 
    The stochastic limit can be certainly included in the notion of stochastic 
asymptote as its particular limiting case so that (36) will be the general 
expression following from (35), or, finally, from the statement that, given a 
sufficient number of independent trials and a restricted scatter of the 
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appropriate random variables, the arithmetic mean will almost certainly 
however little differ from the arithmetic mean of their expectations. 
    We will only properly understand this important theorem after indicating 
that it does not depend on the constancy of the mean of expectations or the 
existence of its limit, that is, after perceiving that that limit is, generally, a 
stochastic asymptote. This result becomes all the more important when 
recalling that it can also be extended to cover a number of cases of 
stochastically connected random variables as shown by Markov9. Especially 
important is that kind of connections when each term of a series is only 
connected with a restricted, even if a very large number of adjacent terms, or 
if that connection, although spreading infinitely, weakens with the distance 
between the terms even according to a however slow geometric progression 
[with common ratio near but less than unity]. All series of events 
consecutively arranged in time unquestionably belong here.  
    By these investigations Markov had extremely widened the importance of 
the arithmetic mean for studying reality, but it is necessary to stress once 
more that such an almost universal covering of the appropriate theorems 
would have been practically reduced to insignificance had they been only 
applicable under “constancy of the relevant objective conditions”, – an often 
mentioned expression that should be understood as the constancy of the 
appropriate expectations. 
    Indeed, Markov (1900/1924, p. 117) did not assume such constancy. For 
example, one of his theorems ends in the following way: 
 
    We thus easily ascertain that under the condition stated above and for 
sufficiently large values of S the probability of the inequalities 
 

    
... ...

 ε  <   ε
X Y W a b l

S S

+ + + + + +
− − <  

 
will be higher than (1 – η) however small are the given positive numbers ε 
and η. 
 
    Here, X, Y, …, W are random variables whose number S can increase 
infinitely and a, b, …, l are their expectations. The arithmetic mean of these 
expectations is not subjected to any restrictions, neither is it necessary for it 
to be constant or to have a limit. Therefore, in our notation Markov’s 
conclusion is  
 

    
... ...

[ ] ,  .B

X Y W a b l
as S

S S

+ + + + + +
= → ∞                         (37) 

 
    The notion of stochastic limit was indirectly contained in the Bernoulli 
theorem and the further development represents a number of propositions 
implicitly containing the concept of statistical asymptote. 
    8. Markov, however, was not the first who applied it. Already Poisson 
proved propositions mentioned in the beginning of § 7 about stochastic 
asymptotes of frequencies and means in case of independent trials. We 
ought to dwell on that circumstance since otherwise it will be impossible to 
estimate properly the central idea of his entire concept. This is all the more 
necessary because exactly on this point Prof. V. I. Bortkevich, the most 
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authoritative interpreter of his ideas, explained Poisson’s opinion in a way 
that I am absolutely unable to consider correct. 
    Leaving aside the arithmetic mean since everything stated below can be 
applied with appropriate changes to it as well, I will restrict the discussion to 
the case of frequency, and, correspondingly, to the mean probability, and 
allow myself to recall the sense of two terms coined by Bortkevich. Suppose 
we have an infinite series of independent trials with the probability of the 
occurrence of some event only taking values 
 
    p1, p2, …, pk.                                                                              (38) 
 
    Suppose also that these values in turn have constant probabilities of 
taking place equal to π1, π2, …, πk, independent both from the probabilities 
concerning previous trials and from the results of those trials. Then the 
probability of the occurrence of the event in each separate trial p0 will be 
constant: 
 
    p0 = π1p1 + π1p1 +…+ πkpk,                                                     (39) 
 
which is a weighted mean of pi. 
    Bortkevich called p0 mean probability in its proper sense. We will have to 
deal with it if, for example, each time before an extraction from an urn it is 
selected by extracting tickets from a supplementary urn with an invariable 
set of those tickets. 
    Consider now another case. Suppose that an infinite series of trials 
consists of subseries with s trials each, that in each such subseries trials with 
probabilities (38) occur exactly s1, s2, …, sk times and denote 
 
   g1 = s1/s, g2 = s2/s, …, gk = sk/s. 
 
For each subseries and each series of trials consisting of a whole number of 
them we will have the mean probability 
 
    1 1 2 2  ... .k kp g p g p g p= + + +                                               (40) 

 
    Bortkevich calls it the mean probability of a constant composition. In the 
particular case in which all the numbers gi are unity and k = s, it will be the 
arithmetic mean of pi. Here, however, all the probabilities (38) must be 
repeated in each subsequent subseries of s trials even if in another order 
(Bortkevich 1894 – 1896, 1894, pp. 649 – 651)10. He (1917, pp. 49 and 54) 
believes that Poisson’s LLN represents some proposition about the mean 
probability in the proper sense based on a lemma considering mean 
probabilities of a constant composition. This latter statement seems wrong 
to me. The mentioned lemma does not deal with such a mean probability, it 
rather concerns other probabilities for which I would not wish to provide 
here a special term, but which in this context could have been likely called 
mean probability of an arbitrary composition11.  
    I have in mind the case discussed in the beginning of § 7; there, a series of 
independent trials was introduced with each of them having quite arbitrary 
probabilities of the occurrence of some event, p1, p2, …, pn, …, in that order. 
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The arithmetic mean of the first n of them was indeed that which Bortkevich 
applied in the proposition which he called the lemma preceding the LLN.  
    Poisson (1837, § 52) mentioned that same proposition, then proved it in 
§§ 94 and 96, pp. 138 – 139 and 246 – 254. In neither place did he say that 
the same probabilities ought to be repeated in the next n trials, nor did he 
state that p  should be constant which is a most essential point. He 
formulated his result on p. 254: 
 
    Therefore, it is almost absolutely certain that, given a very large number 
n of trials, the [frequencies – E. S.] will very little deviate from the mean 
chances (probabilities) […] which they will approach ever more nearer the 
more is n increased still further, and with which they would have coincided 
had it be possible for n to be infinite12. 
 
    Therefore, we are not justified to introduce restricting conditions into the 
general theorem proved by Poisson. In our terminology, it can only be 
formulated thus:  
 
    The frequency of the studied event in a series of independent trials whose 
number n can be infinitely increased, always has the mean probability (of 
the relevant probabilities) as a stochastic asymptote:  
 

    
1

1
( )  ,  .

n

B i
i

m
as p n

n n =

= → ∞∑                                                 (41) 

 
    Poisson also proves a similar proposition about arithmetic means. For the 
sake of briefness we will call both these theorems taken together Poisson’s 
Theorem I; his Theorem II will be that concerning “mean probabilities in the 
proper sense”. Their relative importance, as well as that of Theorem I in the 
absolute sense ought to be radically reappraised.  
    Had the latter been, as Bortkevich thinks, a proposition about “the mean 
probability of a constant composition”, then, indeed, we would have been 
compelled to state that its role in interpreting reality was comparatively 
modest. As described above, however, it is a proposition of great generality 
only recently being superseded by Markov’s theorems. Its applicability is in 
any case much wider than that of Theorem II13. 

 

II 
    9. Leaving aside the history of the interpretation of the LLN, a possible 
subject for a special investigation, it is still necessary to mention that no 
single concept which could be considered generally acceptable has even yet 
crystallized out of the discord generated by that term14. As it always occurs, 
in each meaningful debate about some term the essence certainly concerns 
not the word, but the nature of problems connected with it and not 
sufficiently made out. 
    In this case, the use of that expression remains essentially shaky and 
diffuse although some “centres” have been outlined long ago. I begin with 
one such tendency, namely with that, observable in writings of a number of 
authors having a definite mathematical inclination. I think that after 
specifying and modifying it, we may reach an acceptable concept. 
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    Markov (1900/1913, p. 70n; 1924, p. 98) says that, according to his 
opinion, “we should understand the law of large numbers as the totality of 
all the generalizations of the Bernoulli theorem”, but this formulation 
certainly cannot be called successful. Already Bortkiewicz (1917, pp. 53 – 
54, note 13) quite rightfully remarked that it was inconvenient to call a 
totality of theorems a law; that such a totality is usually called a theory. 
    Although Markov undoubtedly did not precisely interpret his idea as 
represented in a number of places in connection with describing various 
theorems15, it nevertheless contains a notion whose main kernel deserves 
much attention. 
    Prof. V. I. Romanovsky (1924, NNo. 4 – 6, p. 15n) apparently discovered 
an expression much more adequate to the essence of the matter:  
 
    Perhaps, however, it would be best of all in accordance with a long ago 
established custom, now almost impossible to change, to leave the term law 
of large numbers as a general name for many theorems of the calculus of 
probability in which a large number of some conditions or trials is essential. 
 
    It seems that our results stated in the previous Chapter allow to restrict in 
a definite way those propositions here implied. Any generalization of the 
Bernoulli theorem in which the number of trials is an independent variable 
has the form 
 
    asB (x) = f(n), n → ∞                                                                (42) 
 
where x is some definite random variable and f(n) some one-valued function 
of the number of trials. The notion of function here means a definite relation 
between definite values of n and of f(n)16.  
    Each time when x and f(n) are definite magnitudes (one of them is 
random, but not the other one)17 expression (42) will represent by its logical 
form some proposition which must therefore be either true or false. 
However, when understanding x and f(n) as just any magnitudes, some 
random variable and some function of the number of trials, that expression 
ceases to be a logical proposition, a correlate of possible opinions, and only 
becomes a pure form into which many propositions can be included, namely 
all those to whom, given that form, correspond definite logical values of x 
and f(n).  
    The difference is expressed in that (42) cannot now be either true or false, 
it is not a proposition (propositio) but only its form, a propositional 
function. From our point of view, any general stochastic proposition 
reducible to that form will be a LLN18. And so, we suggest to consider as 
that law any (of course true) general stochastic proposition that a random 
variable having such-and-such property (or, more general, properties) must 
necessarily have a stochastic asymptote (respectively, a stochastic limit). 
    And the random variable can be not only one-dimensional, with which 
case we only have dealt previously, but any stochastic formation that can be 
interpreted as that notion by its reasonable extension: a randomly variable 
vector in an n-dimensional continuum (Mises 1919a; 1919b), a randomly 
variable geometric figure, etc. 
    The suggested use of the word law is not anything new. Such expressions 
as law of nature, causal law, etc deal not with some definite law but with a 
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definite kind of laws, and the expression law of large numbers can also be 
applied as a generic term. If a random variable does not obey any law of 
large numbers, we may briefly express it as not obeying that law19. 
    10. The idea underlying our concept of the LLN would have been 
altogether corrupted had it been understood as only purely mathematical. 
Pure mathematics knows nothing, and cannot know anything about events, 
trials, probabilities. These things are as alien to it as electrons, light waves, 
celestial bodies, space and time. Mathematics is entirely oriented at the 
formal, in the strict sense, for instance thing (something), ratio, set, number, 
the whole, a part, etc. The doctrine of sets [set theory], the theory of groups, 
arithmetic, – these are the typical chapters of pure mathematics. From here 
also issues that surprising universality of mathematics, its applicability to 
any material contents absolutely independently from it if only the relevant 
forms of categories are in existence (Husserl 1900, pp. 247 – 254/1913, pp. 
20 – 23). It seems to me that after all the work in justifying mathematics 
done during the latest decades at least its formal essence should be 
unquestionable. 
    The fate of geometry is especially instructive. Pure geometry, as first 
constructed by Hilbert (1899/1903), is already certainly not a doctrine of 
space forms. The meaning of space which we attach to it is there 
intentionally eliminated. Points, straight lines and planes are dealt with, but 
no material contents is connected with them, they are so-called points, 
straight lines and planes of that geometry, simply some “things” in the wide 
sense of logical “something”. No restricting premises about their essence are 
introduced.  
    Just the same, when further the relations such as “a point is situated on a 
straight line”; “a straight line passes through a point” are discussed, it is not 
at all demanded to attach there our usual (or any whatsoever) vivid ideas. A 
point could have been replaced by “some thing A” and the straight line by 
“some thing B” and the relations above formulated as some R1 and some R2. 
The axiom that “if a point is situated on a straight line, then the line passes 
through that point” can describe in that system an absolutely formal 
assumption: “given a relation AR1B, the relation BR2A is also given”. 
    This, or any such proposition about unknown relations between unknown 
things cannot evidently be justified as being true. Instead, if admitting 
absolutely conjecturally that a number of such “axioms” is valid, an 
immeasurable set of theorems can be purely deductively derived from them. 
Given one system of premises, we obtain a system of propositions 
corresponding to the Euclidean geometry; issuing from another system, we 
arrive at the Riemann or Lobachevsky geometry, etc.  
    Correspondence should be understood in the sense that indefinite symbols 
of one or another system are transferred to the language of a known field of 
things by means of some dictionary (A = point, B = straight line, R1 = lies 
on, etc); in this case, to the language of space forms20. And it ought to be 
noted that in each case such a deductive hypothetical system in principle 
admits an infinite set of translations. If, concerning some system of things of 
a definite kind, we convince ourselves that those relations are formally 
admissible in some system of axioms, that system becomes a system of the 
main laws of the appropriate field and the entire construction of the 
deductive theorems when being translated into the appropriate language, 
immediately acquires a worth equal to deductively established laws. 
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Revising the axiomatic basis of geometry and separating a purely 
mathematical discipline from it creates therefore the necessary premises for 
studying space as such, and it would have been more proper to call that 
discipline not geometry, but a doctrine of manifolds 
(Mannigfaltigkeitslehre). In our time, the solution of that problem 
understood as a problem of physics is being looked for. We are unable to 
discuss it here, but it is evident that the problem thus formulated does not 
already belong to pure mathematics. 
    11. The situation with the “calculus of probability” is absolutely similar. 
A radical formalization of that discipline is necessary as a preliminary and 
indispensable condition for perceiving in essence the issue of its 
applicability to real life, to understand it up to its initial basis. After 
becoming a purely mathematical discipline, the calculus of probability will 
have to lose also its historical appearance. Indeed, the numbers that it has to 
consider as being in a one-to-one conjunction with terms of a disjunctive 
relation (or A, or B, …, or S) are deprived of the meaning of probabilities 
and can only acquire it in some applications; moreover, in other applications 
that meaning can be different. 
    Conjecturally call those probabilities valencies, then the goal of the 
corresponding [of the emerged] calculus will be the revealing of some 
valencies by issuing from other valencies and making use of the appropriate 
axioms. In accordance with the main relation characterizing the connection 
between the considered elements, a provisional name of disjunctive calculus 
may be suggested for such a purely mathematical discipline21. 
    The doctrine of probabilities of random events can be named stochastics, 
see Note 1. For that materially determined field the axioms of the 
disjunction calculus as well as propositions deduced from them will become 
its laws. Whether they are prior or based on experience, is their significance 
unconditional, as it obviously follows from the nature of their contents, or 
they themselves just as all empirical laws are only more or less probable, – 
let all that be still debated. In any case, there certainly exists a logical abyss 
between those propositions and the formal statements of the disjunctive 
calculus.  
    As we understand it, the LLN is obviously not a purely mathematical 
theorem22; mathematics itself cannot justify its applicability to one or 
another field. If that law is valid, it is only because and insofar as the known 
purely mathematical theorems are applicable to calculation of the 
probabilities of random events. The essence of those latter should include a 
basis enforcing the appropriate propositions and transforming them into 
laws of the corresponding field of reality23. 
    It would be easy to formulate the Bernoulli theorem (say) in such a form 
that nothing is said about either events or probabilities. For attaining that 
aim, it is sufficient to consider infinite series of pairs of numbers  
 
    (1, 0); (1, 0); …; (1, 0) conjugated  
    with valencies (p, q), (p, q), …, (p, q)  
 
(q = 1 – p), with any sequence 1, 1, 0, 1, 0, 0, …, 1 where 1 occurs m times 
and 0, (n – m) times, conjugated with valency pmqn–m. Then, after 
considering all possible sequences of 1 and 0 having n terms, we can ask 
about the sum of valencies of those satisfying the condition 
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    We will infer that for any however small ε and an infinitely increasing n 
that sum will have unity as its limit. This will indeed be the Bernoulli 
theorem in its purely mathematical kernel, i. e., a theorem of the disjunctive 
calculus. It is not however that same theorem in its historical appearance in 
the sense attached to it by its author; it is its shadow, its pattern devoid of all 
its stochastic contents. 
    In its real significance, the Bernoulli theorem assumes that natural events 
can have probabilities, that it does make sense to apply the notion of 
probability to nature (and therefore to opinions about it) although Bernoulli 
himself did not yet perceive what was, properly speaking, the relation 
between probability and occurrence of the corresponding event, – and 
neither is it understandable even to us in the 20th century, as indicated by 
radically diverging opinions. 
    In any case, the Bernoulli theorem assumes the existence of such a 
relation. But then, what it states is also a proposition about the connection of 
probability and frequency, and namely about what probability corresponds 
to known frequencies when the number of trials infinitely increases. At the 
same time, it is a proposition about the frequencies themselves. Indeed, had 
it been possible to establish that under such-and-such conditions frequencies 
ought to obey inequalities 
 

    ε    ε,
m

p p
n

− ≤ ≤ +                                                                (43) 

 
that restriction would be about frequencies, it would be a law concerning 
them. And the Bernoulli theorem states the same, only not in such an 
absolutely categorical form. Instead of saying frequencies should not go out 
of any however tight boundaries, it states that they will almost certainly not 
go out of them. Or, in another form,  
    Given an infinitely increasing number of trials, the deviations of 
frequency from probability will almost certainly be included in infinitely 
tightening boundaries. 
    It cannot be gainsaid that those were statements about frequencies, only 
not absolutely certain although approaching such a certainty when the 
number of trials is infinitely increasing. When saying that all such 
propositions concern not frequencies, but only their probabilities, exactly 
that intimate connection between probability and the object whose 
probability it is, is overlooked; missed, therefore, is the nature of the entire 
empirical knowledge. Husserl (1900/1913, Bd. 1, pp. 13 – 14; translated [by 
Slutsky] from its Russian translation of 1909, pp. 9 – 10) says that 
 
    The most perfect indication of truth is obviousness; for us, it is as though 
a direct mastering of truth itself. In the greatest majority of cases we are 
deprived of that absolute understanding of truth; its ersatz is […] the 
obviousness of that higher or lower probability of the corresponding 
situation with which, providing an “essential” degree of probability is 
gained, a definite and decisive opinion is commonly connected. 
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    [I delete further quotations. Slutsky concludes:] The situation described 
by Husserl is valid for any empirical knowledge. 
    12. I consider the defended [the substantiated] concept of the LLN as 
purely stochastical and oppose it to all the attempts of representing that 
regularity as a law of frequencies. The most direct method for achieving it 
[?] would have been to reduce probability itself to frequencies; however, the 
abyss between these notions cannot be bridged, and there is no essential 
difference between the more artless constructions of the empiricists of the 
English school (Ellis, Venn) and modern asymptotism. On the contrary, a 
clearer mathematical formulation allows to perceive more distinctly the 
radical unfeasibility of those intentions. 
    The issue is reduced to the question of whether it is admissible to 
determine probability as the limit of frequency as the number of trials 
infinitely increases, see for example Mises (1919b, p. 55). Its solution ought 
to be searched on the path recently well formulated by Cantelli (1917a, p. 
40): is such a definition compatible with the calculus of probability? He 
himself did not apply his indication. 
    Suppose we have an infinite series of independent trials and p is the 
probability of the occurrence of some event in each separate trial, not 
depending, consequently, on the results of previous trials. As above, let the 
number of occurrences of the event in n trials be m and its frequency 
therefore m/n. The conditions of the Bernoulli theorem are satisfied, so that 
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compatible with (44)? What is a limit in mathematics? No indefiniteness is 
present here, the notion of limit is strict, rigorous and established. If equality 
(45) is really true, then, having chosen any arbitrarily small positive number 
ε, we always ought to find such a large finite value of n, n0 say, that for any 
n > n0 the inequality 
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will be satisfied. 
    The matter, however, is that exactly this inequality is not compatible with 
the conditions of the problem. Indeed, if it is valid for any n > n0, its 
probability will be 
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and the probability of the opposite 
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    However, under conditions of the Bernoulli theorem either (47) or (48) do 
not take place given any finite number n of trials. Indeed, if the trials are 
independent, the occurrence of the event after any previous sequence of 
outcomes remains equally possible with the same probability p and its 
failure with the same probability q. Therefore, it is not allowed to consider 
impossible even its occurrence, as well as its failure all n times (with 
frequencies 1 and 0 respectively) however large is n. Calculus of probability 
provides the respective probabilities, pn and qn. It is wrong to state that the 
occurrence of the event more than n0 times (say) in succession is impossible, 
that would be tantamount to saying that the probability of its occurrence in 
the (n0 + 1)-th trial was zero, i. e., that the trials are not independent. 
Absolutely the same concerns the impossibility of lesser deviations [?]. 
    To state that probability is the limit of frequency means to assert that, 
given an arbitrarily small number ε, it is possible to find such a large 
number of trials, that, for any larger number of them, some series of 
occurrences (or failures) of the event, namely those for which the 
inequalities  
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do not hold, become impossible. 
    Thus, for independent trials the equality 
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is a nonsense (in the strict sense of a formal logical contradiction). For 
defining probability as the limit of frequency it is therefore necessary to 
justify as some universal and prior law the impossibility of independent 
trials, but this, however, is nonsense24. 
    13. Chuprov’s construction based on some of Cournot’s ideas is a 
logically incomparably more careful attempt in which, however, that same 
empirical tendency as previously cannot be missed. The subject of proof 
considered as the contents of the LLN is that, given a large number of trials, 
“the frequencies of events are keeping close to their probabilities” (Chuprov 
1909/1959, p. 167; a similar statement is on p. 164). The proof is based on 
two lemmas the second of which representing a mathematical theorem of 
the Bernoulli or Poisson type, whereas the first one, constituting the 
peculiarity of that concept, is this: “Events whose probabilities are very low, 
will not occur often” (1909/1959, p. 166); or, elsewhere (1909, p. 229)25 
“Low probability conditions rarity”. Then (1909/1959, p. 167), 
 
    Out of these lemmas we indeed come to the law of large numbers. At first 
we show that a low probability conditions rarity. Then we prove that, given 
a large number of trials, large deviations of frequencies of events from their 
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probabilities are unlikely. It follows that such deviations are rare and, as a 
rule, frequencies are keeping near their probabilities. 
 
    We have to discuss the first lemma since it plays here the main role. 
Those theorems, in which we see the true essence of the LLN, do not satisfy 
Chuprov (1900/1959, p. 168):  
 
    They state that, when there is a large number of trials, it is unlikely for 
frequencies of events and their probabilities to differ much. But a new 
premise is needed, – the first lemma, establishing the connection between 
low probability and rarity, – for moving from the world of probabilities, 
high or low, to the field of frequencies. It is that premise which serves as the 
base for the move from mathematics to statistics and constitutes the subject 
of the law of large numbers. 
 
    Let us return to propositions discussed above. In our understanding, the 
LLN (Chuprov’s second lemma) states that, under such-and-such premises 
and having a large number of trials, the deviations of frequency from 
probability beyond any however tight boundaries become arbitrarily 
unlikely. In our opinion, the connection of probabilities with frequencies 
consists here in that 
    1) Almost certainly, and the nearer to absolute certainty the larger is the 
number of trials, that in any given trial such deviations will not occur. That 
almost certainly is based on actual data of the appropriate branch of 
knowledge in some peculiar way. We may say that any law of nature based 
on some empirical data is almost certainly valid. Here, however, it is 
possible that this statement does not represent the truth, it has a different 
essence. If we happen to be wrong, and the statement which we (almost 
certainly) considered as a law, is false, than it, as an ideal timeless entity, is 
refuted once and for all rather than rarely admitting exceptions. 
    It is ever clearer when considering instead of a law of nature a 
mathematical theorem whose complicated and difficult proof was attained 
and checked by a number of knowledgeable persons. In such a case, it is 
possible to assume that all of them would have hardly missed a mistake, and 
the proof will almost certainly be true. If, however, our assumption will not 
be justified, that theorem will be called false and deleted from the edifice of 
knowledge. 
    Concerning the LLN, that almost certainly has another meaning. It takes 
into account not that a given general proposition can as such occur to be 
false, it rather provides for possible exceptions in some separate case. In 
addition, the LLN, when applied to such very unlikely deviations, furnishes 
for us the following almost certain knowledge: 
    2) Those deviations about which we know almost certainly that they will 
not occur in any given trial, will almost certainly occur in some very long 
series of trials, usually with a very low frequency (whose measure will 
roughly correspond to that probability which distinguishes the former almost 
certainly from certainty). And it is this proposition included in the LLN that 
represents the logically rightful kernel of Cournot’s first lemma. That 
proposition is indeed stating that  
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     Very unlikely events will “almost certainly” occur very rarely, whereas 
the lemma throws out that specification and simply tells us that such events 
will not occur often. 
    This, however, is exactly something we are not at all empowered to 
assume, it is indeed an unlawful exit from the stochastic ground. It is 
unlawful since being a refusal of an absolutely certain statement that at best 
we only have an “almost” rather than absolutely certain knowledge of the 
rarity of unlikely events. 
    The Laplacean definition [justification] of probability by the principle of 
“insufficient reason” was repeatedly criticized; it was indicated that by 
means of the calculus of probability knowledge could have been then 
acquired out of ignorance. I think that no one will yet defend that viewpoint 
at face value; everyone agrees that the conclusions arrived at by that 
calculus assume some initial knowledge. However, it should not be missed 
that, when dealing with stochastically posed problems, we never acquire 
absolutely complete knowledge. It follows absolutely inevitably, as it seems 
to me, that absolutely certain knowledge cannot be elicited out of 
stochastically given premises since that would again be recoining ignorance 
into knowledge. 
    We are only able to make practically harmless the indefiniteness rooted in 
the incompleteness of our knowledge. This aim is achieved by discovering 
the circumstances left almost intact by the mentioned indefiniteness and 
about which we can therefore know something, almost certainly augmenting 
our knowledge as that becomes necessary and possible by (again) almost 
certain knowledge of frequencies of exceptions, of exceptions from 
exceptions etc. 
    However, until our problem remains stochastic, we will never be able to 
throw away that almost. This radical demand made by the very essence of 
the stochastic is the true main principle of the logic of stochastics. I do not 
dwell on its exact definition since that will divert us too far from our main 
subject; see Höfler (1922, pp. 668 – 669 and 739). 
    14. In addition to these essential considerations which seem to me 
decisive, we can approach Cournot’s first lemma somewhat differently. First 
of all, it is permissible to ask about its logical essence: is it nomological or 
only ontological? The interpretation of the relevant passages is somewhat 
difficult and leaves room for both assumptions. Let us consider them. 
    When supposing that that lemma is nomological, we inevitably contradict 
the theory of probability, i. e., the main principles of stochastics and 
deductions made by it. Can we say that events whose probability are very 
low, will not occur often in the sense that they cannot occur often? The 
answer seems doubtless and negative if only we properly understand that 
proposition. It is yet possible to admit that all unlikely events cannot occur 
often, but that is self-evident.  
    If a billion numbered balls are in an urn, then, during a billion trials, each 
can be extracted rarely, for example only once, or, some of them will be 
extracted a million times each thus depriving millions of their companions 
of being extracted even once. The Cournot lemma certainly assumes not 
such cases, but supposes that no unlikely event will occur often. And so, to 
repeat, when interpreting that denial nomologically, as cannot, we arrive at a 
contradiction. Any event, having an arbitrarily low probability of 
occurrence, can occur however often in any series of trials. Thus, in a 
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roulette game, the probability of the outcome of red 1010 times in succession 
is not at all zero (i. e., it is not an impossibility, but a very small positive 
magnitude). In any sufficiently long (although practically unfeasible) 
number of series of 1010 trials each, we can expect with probability however 
near to certainty that some (although exceptionally small) part of them will 
only consist of red.  
 
    Even the most lowest probability essentially differs from impossibility and 
we are unable to bridge that gap however increasing our numbers [of 
trials]26.  
 
    The remark just made in the Note should be restricted. Suppose that the 
probability of an event is p = 1/2. The probability of its occurring twice in 
succession is 1/4, of three and four times, 1/8 and 1/16. All these numbers 
are of one and the same order if order is understood as a power of 10 
(1/2:1/16 = 8 < 10). However, an occurrence of that event 10 times in 
succession has probability (1/2)10 = 1/1024, of a higher, although not 
excessively so, order. But then, if the probability of the event is itself very 
low, for example 1/1000, its occurrence twice in succession already has 
probability 1/106, of 10 times, 1/1020, of 100 times, 1/10300.  
    Even if such an event can occur each second, it will almost absolutely 
certainly fail during the entire history of mankind. Here, we therefore have 
yet another truth about [another property of] the often occurrence of unlikely 
events: they can occur however often but that will constitute an event whose 
probability is a small magnitude of a much higher order. Or, shorter: an 
often occurrence of an unlikely event is a superunlikely event27. That almost 
certainly will happen unimaginably rarely. 
    As it seems to me, exactly from Cournot’s point of view it cannot be 
upheld that such a statement only deals with probabilities but not at all with 
frequencies. (I am here abstracting myself from the considerations offered at 
the end of § 11 and in § 13.) Indeed, Cournot defended the view that each 
proposition about probabilities of frequencies deals with the latter:  
 
    Then mathematical probability becomes a measure of physical possibility 
[…] which directly indicates the existence of some relation […] that takes 
place between the things themselves, a relation upheld by nature and 
revealed by observation when the trials are sufficiently repeated28. 
 
However, I cannot discuss here the complicated concept of objective 
possibility which Cournot touches in the passage just above (Kries 1886)29. 
    15. Since the nomological interpretation of the Cournot lemma is so 
resolutely contradicting, as it seems to me, the principles of the theory of 
probability, the issue of its possible ontological interpretation becomes more 
pressing30.  
    The statement that events whose probabilities are very low will not occur 
often can not only express some law necessarily taking place always and 
everywhere, but a fact, an actual structure, an actual constellation of 
elements of our world or of its part surrounding us, and, again, not always, 
but only during a given epoch observed by us. 
    It is impossible to dispute that such an approach is logically lawful; along 
with laws, initial facts are necessary for understanding and explaining 
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events. Already Mill (1843/1898, Book 3, Chapter 16, § 4, p. 310) stated 
that collocations cannot be reduced to any law. What is true concerning 
particular cases and their explanation, is true for the universe as a whole31. 
Thus, in addition to laws of the causal type, the essence of the space of our 
world is a fact, as random in principle as any other, only of an 
immeasurably greater importance.  
    The necessary connections between phenomena following from it will be 
laws of our world, although not causal but structural. So what does the 
discussed proposition mean according to such an approach? Suppose that 
among all generally possible arrangements of the elements of the universe 
there are such in which most unlikely (when considered from our usual 
viewpoint) events are taking place not because of a regular connection, but 
only owing to that chance, actually to a given constellation, as though 
contrived by a demonic force, occur such results as warming of some bodies 
by cooling of other bodies, as some parallelism between the aspects of 
heavenly bodies and the fate of men, etc.  
    According to our modern understanding, such a world is not impossible, 
but only unlikely. Unlikely? Too weak an expression! There are no means to 
explain how unlikely it is. Perhaps the following image will provide some 
idea. If, wishing to write down the number (1010 to the power of 10)10 as a 
unity with a number of zeros, an inkwell as big as the observable universe 
will not hold enough ink for achieving that. And the insignificant probability 
of that extraordinary monstrous world seems to be immeasurably less than 
unity divided by the number mentioned. Even comparatively modest 
approximations to that extraordinariness are expressed by absolutely 
unimaginably small numbers. 
    It would be possible to attempt understanding Cournot’s lemma as 
follows: the actual world is ordinary rather than most rare and imagined. 
This is an expression of the actual structure of the world as far as it is known 
to us from both daily and more subtle scientific experience. That, however, 
is not a law, but a fact just as the fact of our Earth having a satellite. 
    That our world is ordinary can be also presented otherwise. Even the 
ancients noted two principles in the world: as a whole, it is the cosmos, an 
orderly unity subjected to unshakeable laws; chaos, an element of 
disarrangement and lawlessness, is taken prisoner, restricted to certain 
boundaries, and dashing about in its entrails.  
    These ideas are also included in our science. Each cell of the cosmos, 
down to its last atom, is subjected to strict and stable laws leading to well-
proportioned complicated edifices: solar systems, climatic belts with their 
flora and fauna of highly developed creatures. Basically, however, along 
with the laws, chaos is also governing: separate tiniest elements of the world 
form gatherings where the regular life of an individual is going on beside 
but unconnected to the similar life of another one. The incoherent 
irregularity of gas molecules appropriately follows from their previous, just 
as incoherent and random arrangement. That chaos is a prisoner of cosmos 
and serves its aims. Exactly owing to irregularity the laws, for example, the 
second law of thermodynamics, are realized32. 
    What would follow from the existence of one of those extraordinary 
arrangements of elements mentioned above? Chaos will remain chaos, its 
cells will be somehow arranged not because of some law but actually so. 
That random arrangement will create an illusion of order, compelled to 
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suppose an existence of a law, of definite causes. Submitting to laws and 
being ordered, chaos will become a cosmos. We cannot distinguish an 
ordered chaos from cosmos.  
    Here then is an important principle of knowledge. Indeed, whereas we 
cognize the laws of numbers, logical connections, some laws of space 
forms, etc, owing to their obviousness since they are more or less 
observable, the laws of nature are understandable without such inner 
comprehension. Repetitions of the same under the same conditions, – that is 
the main and irreplaceable guide of the practice of empirical knowledge. 
Had random rarest and most unlikely in principle “lawless” repetitions 
sometime occurred, we would be unable to distinguish that fact from the 
action of a regular cause.  
    Suppose that some deviation with probability 1/1000 is repeated twice, 
three, four or five times, not to mention a larger number. Our knowledge of 
nature and its laws, our penetration into the depth of facts is yet so 
insignificant, that we will believe and firmly keep on believing that there 
exists a lawful explanation of such an occurrence and will decidedly reject 
the hypothesis of having encountered a rarest randomness. 
    The hypothesis that our world is ordinary can therefore be expressed as an 
assumption of an unorganized chaos. The principle of unknowable of the too 
unlikely exists alongside as a principle of stochastic cognition. Not being the 
main or unprovable, it still deserves to be specially mentioned. It tells us 
that, even had unlikely events occurred often, that fact would have remained 
unknowable because we would have no reason to consider the 
corresponding events really unlikely33. 
    And, finally, the last series of considerations. Being empirically justified, 
the hypothesis of the ordinariness of the world is only substantiated for the 
past. In principle, it does not allow any conclusions concerning the future. 
Indeed, since we deal with chaos, that is, with unconnected phenomena, the 
probability of any of their combinations beginning exactly at this moment, is 
the same for any moment.  
    No exceptional anomalies in proper dealings out of arbitrarily large 
numbers of games of cards was observed up to now, which does not at all 
secure against their occurrence34. Let us provide an example. Knowing the 
yearly number of games taking place in the world and their distribution over 
the methods of dealing out the cards, it will be possible to calculate the 
probability that during the next year the cards will be always randomly 
distributed among the gamblers so that each has only one suit. This 
probability, almost immeasurably insignificant, nevertheless differs from 
zero and the suggested occurrence ought to be admitted as possible.  
    However, since each dealing is independent from the others, that 
probability will not depend on the outcomes of former games [dealings]. 
Therefore, the totality of observations of previous unconnected events does 
not in principle have anything in common with their future. At the same 
time, Cournot’s lemma is peculiar exactly in its orientation towards future 
events. Not without reason it is formulated accordingly: events whose 
probabilities are very low, will not be often repeated. Without that property 
it would have been lacking any value as a basis for the LLN. 
    It is thus impossible to equate the Cournot lemma and the hypothesis of 
the ordinariness of the world. The latter can only be justified as an empirical 
proposition reflecting the ontological structure of the past whereas the 
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former claims to be important for the future. As a nomographic proposition, 
that lemma contradicts the principles of the theory of probability, as an 
ontological proposition it lacks in principle empirical substantiation. Indeed, 
to repeat, it claims to throw light on the field of future stochastically 
independent events where the past is not a law for the future, where the 
future remains in principle obscure, where ontology is in principle 
inapplicable. 
    There is another standpoint allowing to state that the hypothesis of the 
world’s ordinariness can also be formulated for the future. If we, being 
continually threatened with the destruction of the habitual cosmos by the 
rebelled forces of chaos, pay no attention to that danger as though it does not 
exist, it is only because chaos as such is radically blind and its unconnected 
forces can only by chance constitute an army dangerous for the cosmos. 
That case is however so incredibly unlikely that we sleep peacefully. Thus, 
that hypothesis cannot justify the LLN. 
    On the contrary, only the latter in its purely stochastic understanding 
essentially clarifies it when the past is concerned and justifies its 
applicability to the future. As far as the Cournot lemma is true, it is only true 
in the purely stochastic sense as a corollary or a particular case of the LLN, 
again understood purely stochastically. However, that nullifies it as a lemma 
and negates the deductions which it should have served.  
    16. If I am not greatly mistaken, the method applied above consisted in 
earnestly taking into account the terms of probability theory, that is, to 
consider the words probability and certainty not as though unchangeable 
paper money in whose face value only sometimes trust naïve people, but as 
reliable promissory notes in which every word is law. 
    For us, probability, certainty, trial and event were coins of standard 
weight and full value just as points and straight lines of the usual geometry 
rather than in Hilbert’s sense of pure mathematics. The idea of disjunctive 
calculus all by itself therefore allows to perceive the difference between 
pure mathematics and stochastics. 
    It also seems that the above should not be understood as an attempt at 
creating new logical theories about probability or at substantiating the 
theory of probability (= stochastics). The approach was quite different and 
in a sense logically more primary. Before justifying, it is necessary to know 
what really should be justified, i. e., to ascertain the real sense of the 
relevant propositions whereas it seems to me, although proving it will be 
likely difficult, that many statements were made and debates carried out 
about the theory of probability without perceiving each time that sense 
sufficiently distinctly.  
    How could have otherwise emerged the opinion that the Bernoulli 
theorem and other similar propositions only represent purely mathematical 
theorems? Had the sense of the statement that, given a sufficiently large 
number of observations, we know almost absolutely certainly that the 
frequencies will behave in such-and-such a way, been allowed for most 
seriously, – how was it then possible to miss that something is stated here 
about frequencies in general and therefore about frequencies of real events 
in real time and space? This I am unable to understand. 
    That proposition can be considered false and be rejected, – such a 
viewpoint is understandable, but to consider that we only have here a 
statement about probabilities, but not frequencies, it is necessary, as it 
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seems, not to consider seriously the sense of the words probability and 
certainty. We rejected some viewpoints about probability and some attempts 
to justify the LLN, and we only did it by issuing from the sense of the 
notions of the theory of probability itself.  
    We conclude that it is impossible to justify probability by that approach, 
and neither are we able to substantiate the propositions based on it: here, we 
encounter an inner contradiction. He, who wishes to insist on the 
propositions criticized by us, ought to reject the theory of probability (but 
perhaps not the calculus of probability understood in the sense of our 
disjunctive calculus). And who wishes to justify the theory of probability by 
objectively and impartially studying its basis rather than accomplishing a 
task formulated beforehand, must consider its real sense and the true 
structure of its propositions. 
    17. Let us consider now one more circumstance connected with the LLN 
at least in the sphere of causality but without inquiring whether that sphere 
is the only one here relevant. As a concrete example, I imagine two cubic 
containers of equal volumes, each divided by an imagined wall into left and 
right halves. There is one molecule, whose velocities certainly change with 
the temperature of the walls, in each container. One of these is here, on the 
Earth, the other one on Mars or even further.  
    At definite moments separated by equal intervals of time, very long as 
compared with the velocity of the molecules, we observe whether the 
molecules are situated in the same or in differing halves of their containers. 
Call the first case coincidence and count the number of those in n observed 
trials. Independence of trials and a prior probability of coincidence equal to 
1/2 are apparently secured, so that, according to the LLN, after a sufficiently 
large number of trials the frequencies [observed after various numbers of 
trials] will be almost absolutely certainly situated within boundaries 
specified by known rules. Let us somewhat more attentively study all this. 
    The movement of each molecule is determined by the laws of nature (A) 
and some initial conditions (B) (by collocations, according to Mill). Since 
the latter are given, the fate of each molecule is determined uniquely and 
necessarily from the beginning of time to eternity, as is consequently the 
frequency of coincidences. Knowing almost certainly the boundaries within 
which the frequencies will be situated, we thus know almost certainly that 
they will necessarily be there. Having known A and B, we would have been 
able to do away with the restriction almost certainly, but the conditions 
known to us (independence of trials and the probability of the separate 
events equal to 1/2) do not allow that because they do not quite determine 
the future. The unknown will, however, become the less important the more 
is the number of trials. 
    Considering an indefinite set of sufficiently long series of trials rather 
than one such series with conditions (A1; B1), (A2; B2), (A3; B3)

35, … we 
will know almost certainly that almost all initial conditions only satisfying 
simple stochastic premises necessarily determine certain circumstances 
concerning frequencies. Abstracting ourselves from special conditions and 
restrictions introduced for obviousness of illustration, we may formulate our 
idea in the following way. 
    If the premises of the LLN are satisfied, then, given a sufficiently large 
number of trials, almost certainly, almost in all cases some behaviour of 
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frequencies (and means) must necessarily occur, accompanied by a 
corresponding very low frequency of exceptions, etc. 
    This aspect of the LLN therefore allows us to perceive its deep similarity 
with absolute certain (at least in principle) strict laws establishing necessary 
rather than only actual relations. The more is the number of trials the nearer 
are the prior indications of the LLN to absolute certainty and to absolute 
strictness of necessary connections. Such an approximation to certainty and 
strictness can become arbitrarily near so that the particular cases of the LLN 
are thus themselves arranged by the steps of their approximation and have 
limiting absolutely certain and absolutely strict laws. 
    This, as I believe, justifies the application of the very term law in the 
expression LLN since the idea of law, when properly and strictly used, 
suggests the notion of necessity, if not revealed unconditionally and 
obviously, then at least reasonably conjectured as in the case of inductive 
laws of nature36. It seems that there are no appropriate causes to reject the 
understanding of the LLN in the sense just described and especially for 
transforming that term to the fact of approximate stability of statistical 
frequencies (and means) if those are based on sufficiently large numbers and 
constant or weakly varying general conditions as Bortkevich (1917, pp. 56 – 
57) had recently suggested37. 
    Apart from all possible logical objections to apply law for denoting fact, 
in our case, as it seems to me, neither are objections terminologically 
necessary since facts can be here conveniently integrated into statistical 
terminology as the fact of statistical stability38. Some possible 
misunderstandings are easily excluded just as all of them are by converting a 
usual polysemantic word or phrase into a scientific term with a fixed 
meaning. And a general fact is also easily specified: stability of mean 
frequencies, of large or small numbers39, etc. 
    When eliminating the word fact from the Bortkiewicz definition, and 
determining the LLN as an empirical and inductively established “law of 
stability”, we encounter another, and as it seems to me, insurmountable 
difficulty. Being ignorant of the theory of probability, we would have 
certainly established and suitably formulated such a law. Experiments with 
tossing coins and dice, extracting lots etc, and, most importantly, the 
behaviour of large gatherings of molecules would have provided a sufficient 
inductive base.  
    The transition from the fact of the observed approximate regularity (the 
only kind of regularity observed in any field of the empirical) to a strict law 
with its underlying idea of necessity would have been a natural step 
incessantly taken by science in all the branches of studying nature. In 
essence, little would have changed even if we formulate a law as an 
approximate or limiting as the number of repetitions increases rather than as 
a strict regularity.  
    Unfortunately, it would not be true in any of the three cases, and the 
theory of probability would have compelled to abandon that law and replace 
it by the LLN in the stochastic sense. Indeed, as we saw above, any 
proposition about the behaviour of frequencies of independent events can 
only be formulated when essentially connected with some statement about 
the corresponding probability, that is, at best, almost certain.  
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    18. The expression LLN is known to be due to Poisson. What contents did 
he himself insert in that notion? Here is his statement (Poisson 1837, p. 7; 
translated by Hald 1998, p. 576): 
 
    Things of every kind are subject to a universal law that we may call the 
law of large numbers. It consists of this: If we observe a very considerable 
number of events of the same nature, depending on constant causes and on 
causes varying irregularly, sometimes in one way, and sometimes in 
another, that is, without their variation being progressive in a deterministic 
sense, we will find that the ratios between these numbers are very nearly 
constant. For every kind of things these ratios will have a special value from 
which they deviate less and less the more the series of events increases, and 
which they would reach if it were possible to prolong this series to infinity. 
 
    If (see pp. 7 – 8) the observations were continued sufficiently, then, by 
comparing empirical deviations one with another, it will be possible to 
calculate according to known rules  
 
    The probability that that special magnitude to which those ratios tend to 
converge, is comprised in boundaries however near to each other. And, if, 
when making new experiments, we will discover that those same ratios 
notably deviate from their final value determined by the previous 
observations, it will be possible to conclude that the causes, on which the 
observed facts are depending, had experienced a progressive variation or 
even some sharp change during the time interval between the two series of 
experiments. 
 
    Poisson then indicates that an interpretation of the results of such 
comparisons should be based on the calculus of probability since otherwise 
wrong conclusions are possible. He provides a number of examples of the 
action of the LLN and concludes (p. 12): 
 
   Those examples taken from most various fields indicate that for us the 
universal LLN, being the result of never questioned observations is already 
a general and incontestable fact40. […] However, owing to its importance it 
was necessary to prove it directly, and that I have attempted to accomplish. 
And I believe that I have finally succeeded, as will be seen in the further 
exposition. 
 
    All those passages are contained in the Préambule and should be 
therefore only considered as the author’s preliminary explanations. 
However, some definite conclusions can be already made. First, it is seen 
that Poisson regarded the LLN as a law of nature rather than an algebraic 
theorem. I note in passing that the Bernoulli theorem, as he (pp. 12 – 13) 
believed, “coincides with that LLN in the particular case in which the 
chances of the event remain constant during a series of trials”.  
    Second, he thought that the LLN is corroborated by experience. Third, it 
can also be derived deductively, and he promises to accomplish that. See 
similar remarks on pp. 137, 143 and 246. Fourth, the LLN has some tight 
connection with the calculus of probability, but it is not yet clear what kind 
of connection that is. Finally, a reader inclined to epistemology could have 
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concluded that the LLN is apparently a prior law. Indeed, how can that law 
be refuted by experience if the author clearly indicates that a divergence of 
the empirical results not agreeing with the LLN points out that the 
conditions whose constancy is a premise of that law had changed in a way 
inaccessible to direct observations. The author himself later agrees with that 
conclusion41. 

    These simple observations concerning Poisson’s text decidedly forbid me 
to agree with Bortkevich’ opinion that Poisson’s LLN  
 
    According to its literal sense (seinem Wortlaut nach), is none other than a 
statement concerning the stability of the corresponding statistical numbers 
without specific indications about the degree of that stability42. 
 
    Stability as a fact and a deductively justified universal law of nature are 
certainly logical categories infinitely remote from each other. 
    19. In the sequel we find a more precise formulation of the LLN. 
Suppose, says Poisson, some event occurred m1 times in a very large 
number of trials µ1, then m2 times in µ2 also very large number of trials. 
Then (p. 139), “almost precisely and highly probably” (à très peu près et très 
probablement) 
 

    1 2

1 2

.
µ µ

m m
=                                                                               (51) 

 
    After explaining the sense of a similar equality of the arithmetic means, 
s1/µ1 and s2/µ2, Poisson (p. 143) proves the following definition: 
 
    And so, the LLN is contained in these two equations 
 

    1 2 1 2

1 2 1 2

,  
µ µ µ µ

m m s s
= =                                                                 (52) 

 
applicable to all cases of physical and moral things. 
 
(Maintenant la loi des grands nombres réside dans ces deux équations […] 
applicables à tous les cas d’éventualité des choses physiques et des choses 
morales.) 
 
    Taking into account his explanation that those equalities should be 
understood as approximate and only probable rather than certain, and that 
both the degree of approximation and the probability unboundedly heighten 
with the increase in the number of trials, we may write them down as 
 

    1 2 1 2

1 2 1 2

lim ( ) 0,  lim ( ) 0.
µ µ µ µB B

m m s s
− = − =                                (53) 

 
That is, the stochastic limit of the difference between the frequencies (the 
arithmetic means) is zero as the number of trials increases infinitely. 
    Poisson (p. 246) refers to these definitions and explanations when directly 
commencing to prove [the LLN]. Note that in the indicated places he 
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determines that law as a stochastic connection between empirically 
knowable magnitudes, means and frequencies, rather than between these 
latter and empirically (in principle, always, practically, in most cases) 
unknowable expectations of magnitudes and probabilities of events. That 
difference is not, however, essential since the connection between 
frequencies or means, which Poisson calls the LLN, is not direct but 
accomplished through the same unknowable in principle stochastic 
magnitude. Indeed, the stochastic limiting relations between frequencies or 
means (52; 53) will be valid only with a constant mean probability 
(expectation of a random variable).  
    A violation of these equalities does not yet testify to the inobservance of 
law but to an essential difference of mean probabilities (expectations) in the 
appropriate series of trials. Poisson repeatedly says so both in his Préambule 
and the main text. For my part, I note that both theoretically and, likely, 
practically, the stochastic connection between frequencies (means) and their 
mean probabilities (or, in general, expectations) should be given priority. 
Even to say nothing about their being logically more primary, the LLN is 
practically important for us mostly not because of its possible conclusions, 
given that the premise of constant conditions (expectations) constituting its 
basis is never strictly fulfilled, but owing to the provided possibility, when 
there is a sufficient number of observations, to estimate both the magnitude 
and the constancy or degree of change of exactly those principally 
unknowable quantities. 
    It was repeatedly stressed how important were experiments with urns, 
tossing of coins, etc for convincing us in the empirical reality or 
applicability of the LLN. Not so often was the attention possibly turned to 
the fact that only that law allows us to conclude by issuing from those 
experiments that the practical means invented for maintaining constancy and 
independence of chances (shuffling of cards, rotating lottery wheels, etc) are 
with a rather good approximation practically sufficient for that goal43. 
    That is an empirical fact, impossible to establish without experimenting. 
No prior considerations can replace here the experiment, but to understand it 
and formulate appropriate conclusions is only possible on the basis of the 
prior LLN. Its formulation as applied to somewhat narrowed problems will 
be therefore 
 

    0lim ,  lim E .
µ µ µB B

m s s
p= =                                                (54) 

 
Here, Poisson’s notation is made use of in order to compare this formula 
with (52) and (53).  
    His own formulation is, however, only a particular case of our more 
general formula 
 
    limBx = c                                                                                     (55) 
 
because, for constant p0 and expectation E(s/µ), formulas (53) can be written 
as 
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lim ( ) E( ) 0
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m m m m
− = − =                                              (56) 

 
and similarly for arithmetic means. 
    Poisson himself was not a stranger to the generalization of the notion of 
LLN to relations of the type of (54). At least in the Préambule he formulates 
it in exactly that sense. Thus, see the beginning of our § 18 [and end of § 8], 
he says: 
 
    These ratios will have a special value from which they deviate less and 
less the more the series of events increases, and which they would reach if it 
were possible to prolong this series to infinity. 
 
    He certainly had in mind the relation of the type 
 
    limBx = c, n → ∞,                                                                      (57) 
 
cf. (55), rather than  
 
    limB(x – x1) = 0.                                                                         (58) 
 
    Our interpretation is corroborated since somewhat further Poisson (pp. 12 
– 13) calls the Bernoulli theorem a particular case of the LLN, the theorem 
that again, being expressed by 
 

    lim ,  B

m
p n

n
= → ∞                                                                 (59) 

 
is of the type of (57). 
    Since the author himself of the LLN thus hesitated over two formulations, 
it seems natural to conclude that he did not attach such an essential 
importance to the difference between them so that we, remaining true to his 
main ideas, may choose that which is apparently more important, more 
simple and general. Below, we will call them formulations I (given in the 
Préambule) corresponding to formulas (54) and (57) and II.  
    20. Turning now to the proof of the LLN provided by Poisson, we can 
only indicate his main idea. First of all, he proves it not in the more general 
formulation I, but in the narrower formulation II. For the sake of brevity, we 
only consider the case of frequencies, and we will be able to understand his 
point of departure by contemplating that formulation itself, cf. formulas 
(56): 
 

    1 2

1 2

lim ( ) 0.
µ µB

m m
− =                                                                   (60) 

 
    What are the conditions for that equality to be valid? When abstracting 
ourselves from the idea of a variable asymptote about which Poisson 
apparently did not think (although, as we remarked above, it was the 
mathematical logic of the computation itself that led him to formulate the 



 132 

asymptotic approximation in the stochastic sense), and it is only possible to 
admit as a premise that, cf. (56), 
 

    1 2

1 2

lim lim ,
µ µB B

m m
=                                                               (61) 

 
which in turn assumes the equality of the appropriate expectations, i. e., in 
this case, of the mean probabilities.  
    Constant probability, that is the Bernoulli case, is only a particular 
instance; mean probability of a constant composition will hardly occur 
anywhere beyond artificially arranged experiments (see however below). 
Mean probability of an arbitrary composition will most likely differ 
from series to series. Only one case, mean probability in the proper 
sense, is apparently left for being admitted as a premise for explaining 
observed statistical regularities. 
    Consequently, choosing that case as a basis for a deductive 
justification of the LLN in its formulation II, Poisson acted absolutely 
properly. However, he missed two circumstances. First, the case he 
considered was not the only one; second, his justification only 
concerned the formulation II. We will consider both points. 
    When discussing the Bernoulli theorem, Poisson (pp. 137 – 138) 
indicated that it most often happens in various applications of the 
calculus of probability that the probability of the occurrence of an 
event changes from trial to trial, and, once more most often, extremely 
irregular. That theorem is therefore not sufficient for studying such 
problems:  
 
    Nevertheless, there also exist other more general propositions 
which are valid however the consecutive chances [probabilities] of 
events are changing, and which are the basis of the most important 
applications of the theory of probability. 
 
    Then Poisson adds that he will prove them in the next chapters but 
that now he preliminarily describes them and, by issuing from them, 
will derive the LLN “as a universal fact following from observations 
of phenomena of most various nature”. 
    Propositions mentioned above are Poisson’s theorems about mean 
probability of arbitrary composition and mean probability in the 
proper sense. Curiously, he contrasts them with the LLN as with a 
proposition not coinciding with, but only derivable from them. This is 
the literal sense of Poisson’s words that cannot be ignored; if not 
contradicting the context or his other statements, it should be seriously 
allowed for. This is indeed the case. Poisson (pp. 137 and 139) states 
that the LLN is derived (déduire) from definite theorems which he 
indicates (including that about the mean probability in the proper 
sense) but it “almost precisely and highly probably” resides (p. 143) in 
the equality 
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i. e., in 
 

    1 2

1 2

lim ( )  0.
µ µB

m m
− =                                       (63) 

 
    Poisson repeatedly mentions the LLN and most decidedly expresses 
its universality and applicability to phenomena of most various nature, 
and it therefore seems unquestionable that the indicated difference 
between the formulation of that law and its proof means none other 
but his proper feeling (if not definite conviction) that the former is 
logically more general than the latter. I would have therefore never 
agreed with the opinion that Poisson clearly regarded the name LLN 
as referring to the case of mean probability in the proper sense and 
that to replace this by [mean] probability of a constant composition 
would be tantamount to “absolute misunderstanding” (eine gänzliche 
Verkennung) of his viewpoint, see Bortkevich (1917, pp. 53 and 54).  
    Defending his views, Prof. Bortkevich (pp. 54 – 55) indicates that 
for Poisson, the task consisted in constructing a probability-theoretic 
pattern adequate to real, namely to “irregular change of random 
causes”, whereas the pattern of mean probability of constant 
composition is its exact antithesis since the appropriate probabilities 
are included in the mean in fixed proportions. 
    However, a complete constancy of probabilities is a still more 
extreme special case whereas Poisson clearly considers the Bernoulli 
theorem as a particular case of the LLN; he (pp. 12 – 13) only believes 
that it does not cover “continually varying chances”44. It follows that 
“an irregular change of random causes” is not a constitutional 
indication of the notion of the LLN. However, if nevertheless asking 
what was Poisson’s “task” when he pronounced the idea of his law, it 
would be certainly necessary to dwell on somewhat indefinite 
formulations in his Préambule, or still deeper on some vivid image of 
order in a chaotic change appearing in his mind in one, then in another 
formulation, gradually acquiring ever more definite mathematical 
forms until finding such in which the LLN can become the subject of a 
strict deduction. 
    There is one more place where, as it seems to me, the motif of 
introducing the idea of mean probability in the proper sense is seen 
absolutely clearly. Directly after the last-quoted passage above 
formula (62), Poisson reports the result of his investigations of the 
mean probability of arbitrary composition. Suppose that the 
probabilities of the occurrence of an event in consecutive trials are p1, 
p2, …, pµ. Then, when having a sufficiently large number of 
observations, the frequency m/µ will be as near as desired “almost 
precisely and highly probably” equal to the mean probability. And, 
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given a sufficiently long series of observations, it will be an 
approximate expression of that mean probability, Poisson says. But, he 
(p. 138) continues, for that magnitude to determine approximately the 
frequencies in another series of trials, it is necessary, or at least very 
probable, for the mean probability in that series to be the same or 
almost the same. And exactly that he wishes to prove by his second 
theorem on the mean probability in the proper sense.  
    Suppose we tell Poisson that the same equality of the mean 
probabilities will be achieved under the assumption of mean 
probability of a constant composition, he certainly would not have 
formally rejected that indication by saying that it is not his LLN, but 
only noted that it is [its] particular and likely rare case as that of the 
Bernoulli theorem. And it is of no consequence that that theorem is 
directly derived from the theorem about the mean probability in the 
proper sense as a particular case under some definite assumption 
whereas the case of mean probability of constant composition is not 
thus derivable. It is more important that that latter case is a particular 
instance for which the equality (63) is valid. Poisson understands it as 
a form of expressing the LLN.  
    Suppose that molecules of s kinds are mixed in some substance 
proportionally to g1, g2, …, gs with g1 + g2 + … + gs= 1. If the 
probabilities of the explosion of one molecule in unit time are p1, p2, 
…, ps, the mean probability will be 
 
    g1p1 + g1p2 + … + gsps.                                              (64) 
 
Then, if there are n molecules in a studied piece of that substance, unit 
time will be equivalent to n trials with the same mean probability, the 
mean probability of constant composition. The frequencies of 
molecular explosions and decompositions per unit time almost 
precisely and highly probably will be equal to (64) and to each other. I 
think that it will be absolutely unlikely that Poisson, having 
acknowledged the Bernoulli theorem as a particular case of the LLN, 
would have differently regarded that or a similar example rather than 
welcoming it as a still new confirmation of the universality and scope 
of his law. 
    However, the issue concerning mean probabilities of constant 
composition is secondary as compared with the widening of the notion 
of LLN occurring when moving from Poisson’s formulation II to 
formulation I. And we saw that he, in his Préambule, kept exactly to 
that wider sense. The narrowing [that occurred in the main text] can 
only be considered as his oversight. Perhaps he thought that in its 
more special form that law covered all the conditions which can 
happen in reality but in any case we are unable to follow him here.  
    When formulating the notion of LLN as a general name for any 
proposition stating that the stochastic limit of the difference between 
such-and-such random variable and some other magnitude is zero as 
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the number of trials infinitely increases, we cover all cases answering 
both formulations. And, almost without deviating even from the literal 
expression of his most general formulations, we thus extend the notion 
of the LLN to many cases that Poisson had not envisaged.  
    Anyway, the most essential, constituting the basis of his intention, 
remains invariable: the idea of statistical limit and of the prior essence 
and widest applicability [of the LLN] to most various fields of reality. 
Even the greatest man is never able to formulate such an idea that later 
generations will not have to restrict it in some directions and widen it 
in other directions. To reject a name initially provided by the author of 
an idea means tearing the living connection which that name was 
bound to keep so as to prevent “ungrateful oblivion from penetrating 
the scroll of time”, which is an excellent expression due to St. 
Augustine. 
 

Notes 
    1. The term stochastics is due to Jakob Bernoulli who applied it as a synonym of ars 
conjectandi, of the art to measure the probability of things as precisely as possible. His 
treatise thus entitled is, however, a systematic exposition of the doctrine of probabilities 
issuing from principles and art (in our understanding, and from practice only dealing with 
applications). It would be therefore more correct to say that Bernoulli equated stochastics 
with the [not yet existing] theory of probability. It is in this sense that I would consider it 
advisable to apply that term but to distinguish stochastics and calculus of probability as a 
purely mathematical discipline which it can and should become after the final demarcation, 
see my §§ 10 and 11.  
    Bernoulli himself did not consider his celebrated theorem as a purely mathematical 
proposition like the theorems of the theory of combinations etc, since, when separating the 
purely algebraic structure of the proof, he stressed that logical step by a clear declaration 
(Bernoulli 1713/2005, Chapter 5 of pt 4, p. 33): “I will attempt to reduce everything to 
abstract mathematics”. 
    Prof. Bortkevich had recently revived the term stochastics, and it has all chances to 
become firmly rooted. He himself understands it as  
 
consideration of empirical totalities oriented toward the theory of probability and therefore 
based on the “law of large numbers”.  
 
Chuprov says that he applies stochastics as a synonym of the expression based on the 
theory of probability and he also provides here another, narrower meaning which is hardly 
expedient bearing in mind the principle of definiteness of terminology. See Bernoulli 
(1713); Bortkevich (1917, [p. x and] p. 3); Chuprov (1923, p. 461; 1924, pp. 6 – 7 and 32). 
E. S. [See also Sheynin (2009, Note 1 to Chapter 3.]. E. S. 
    2. When considering also that in an overwhelming number of cases the stochastic limit is 
expectation, and ascertaining the conditions for that to take place necessarily, the theorem 
mentioned easily leads to a proposition similar to that recently proven by Bohlmann (1913) 
on the limit of expectation of a function only based on a lesser number of premises. E. S. 
    In a letter of 1923, Chuprov (Sheynin 1990/1996, § 7.5.1) introduced the expression 
(never used by anyone) convergence modo Bohlmann (1913) for Ef(x) → f(Ex). The 
stochastic limit, as Slutsky called it, corresponds to convergence in probability. See also 
next Note. O. S. 
    3. I had come to the idea of stochastic limit by thoughts about the reports of Prof. 
Romanovsky delivered in 1922. He had applied the expression  
 
    x = c, modo Bernoulliano  
 
and thus, when formulating the stochastic relation now under discussion, he used an 
analogy with an approximate equality which can under certain conditions become ever 
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more precise. There, as it seemed to me, I perceived a stricter and more direct similarity 
with the [general] mathematical notion of limit. E. S.  
    [See Chuprov’s response to Romanovsky’s report in Sheynin (1990/1996, pp. 50 – 53). 
O. S.] 
    It turned out, however, that, being completely cut off from foreign literature, I did not 
then know that the Italian statistician Prof. Cantelli had expressed that idea already in 1916. 
At the end of 1924 Prof. Chuprov kindly brought it to my notice; already in summer 1923 
he had friendly acquainted himself with the initial sketch of my paper (1925) whose relation 
with current literature could not have been clear to me owing to the conditions then being 
experienced [by Russian citizens] and I take this opportunity to express him my most 
heartily felt gratitude for that and for extremely valuable critical indications. 
    See Romanovsky (1922) and Cantelli (1916a, a paper I was still unable to see; 1916b; 
1917a; 1917b; 1923). Cantelli’s priority is doubtless; however, I have obtained a number of 
results not covered by his works with the very notion of stochastic limit, as far as I can 
judge, being more generally and wider developed. E. S. 
    4. The unusual notation for approximate equality was perhaps due to Markov 
(1900/1924, p. 62). O. S. 
    5. See Bernoulli’s phrase quoted in Note 1 I will attempt to reduce everything to abstract 
mathematics. E. S. 

    6. The maximal term of the binomial (p + q)n is approximately equal to1 / 2π  npq and 

therefore decreases with an increasing n as 1 / n , see for example Feller (1950, § 3 of 
Chapter 6). O. S. 
    7. Cantelli (1916b, p. 339) suggests leaving symbol lim for the limit in the usual sense 
and applying Lim for the stochastic limit. It seems to me that such difference in notation is 
here not sufficiently expressive, and, in addition, that the custom of applying both symbols 
in the same sense is too rooted. E. S. 
    8. See Chuprov (1924, pp. 12 – 17/1960, pp. 167 – 174). As I see it, he made an 
extremely important logical step by distinguishing stochastic connection and stochastic 
dependence, cf. Chuprov (1922, pp. 241 – 242/2004, § 1.2). The former is the premise both 
for the latter and for independence. It only seems to me that his concept should be 
somewhat modified as I did it in my text for quite ascertaining his idea. Chuprov defines 
the notion of stochastic connection by opposing it to the concept of functional dependence.  
    If the value X being determined, the value Y will be random, the connection is stochastic, 
otherwise functional. First of all, that alternative is not complete. Chest measures of 
inhabitants of London and Paris are not connected either functionally or stochastically until 
it is somehow ascertained which individual should be compared with which. Such a 
comparison is a logical premise for further questions about the kind of connection, about 
dependence or independence, etc. In my definition, the relation between the notions of 
stochastic and functional connections is restricted to considering a random variable, that, 
unlike an independent variable, has a distribution of probabilities and therefore remains 
random when the values of the independent variable are fixed. In this aspect my definition 
does not differ from that of Chuprov. However, considering all the logical difficulties 
connected with the notion of function, and especially when comparing the two definitions, I 
intentionally left that notion alone. E. S. 
    9. In a number of memoirs beginning with (1906), and summarized in the posthumous 
edition of his treatise (1900/1924, p. 119ff). See also Chuprov (1918 – 1919, 1919, pp. 199 
– 211/1968). E. S. [The page number is obviously wrong. O. S.]  
    10. I did not repeat the definitions literally but translated them into the language of other 
terms; nevertheless, I hope that their essence is provided quite correctly. E. S.  
    11. It seems to me that Bortkiewicz’ terminology should be revised, but here I am unable 
to consider that task. Mean probability in the proper sense is in essence not at all mean in 
the statistical sense, it is the expected value of probability p, itself a random variable with 
possible values p1, p2, …, pk, with their own probabilities π1, π2, …, πk. E. S. 
    That terminology only describes the behaviour of the separate probabilities when they are 
constant (mean of constant composition). The other case is the only main alternative, but it 
can be further separated into sub-cases. Then, nothing is said about the possibility of 
unknown probabilities which Poisson certainly also envisaged. For that matter, it was 
Bortkiewicz himself who noted that point (Sheynin 2009, § 8.7). O. S. 
    12. On p. 139 I find Poisson’s statement: the mean chance (probability) of E (of the 
event) should be considered the same for two or more series each of them consisting of a 
very large number of trials. O. S.  
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    13. When describing that theorem, Bortkiewicz (1917, p. 55) notes that “the 
corresponding probabilities pk enter into the mean in fixed (feststehenden) proportions”. We 
saw that Poisson did not assume that, so that neither does his theorem quite correspond to 
his task of establishing the pattern for studying phenomena influenced by absolutely 
arbitrarily changing causes, cf. Bortkiewicz (1894 – 1896, p. 655; 1917, p. 55). Poisson’s 
examples to which Bortkiewicz refers, illustrate his another theorem (on mean probability 
in the proper sense) and are therefore not conclusive, see Bortkiewicz (1894 – 1896, 
Ibidem). After all, for understanding what should be called such-and-such Poisson theorem, 
it is only important to note what did he actually prove rather than what he thought or 
possibly thought about it. In that sense, the problem as it seems to me is solved absolutely 
unquestionably. E. S. 
    14. See Chuprov (1909/1910), Bortkiewicz (1917) and Keynes (1921), a source 
containing valuable studies including investigations on the history of the LLN. I was still 
unable to acquaint myself with it. E. S. 
    15. See the remark extremely typical of him (Markov 1900/1924, p. 2n): 
 
    I think that various notions are defined not so much by words each of which can in turn 
demand definition, but rather by our attitude towards them which is being ascertained 
gradually. E. S. 
 
    Here is Markov’s no less telling statement (1911/1981, pp. 149 – 150): 
 
    I shall not defend these basic theorems connected with the basic notions of the calculus 
of probability […] since I know that one can argue endlessly on the basic principles even of 
a precise science such as geometry […]. O. S. 
 
    16. The modern notion of function coincides with that of correspondence (Den moderne 
Begriff einer Funktion deckt sich mit dem einer Zuordnung); Carathéodory (1918, p. 71). E. 
S. 
    17. If x and y are random variables stochastically connected with one and the same 
independent variable n, then, if also 
 
    limB(x – y) = 0 as n → ∞, 
 
x and y will be random statistical asymptotes for y and x respectively. I do not dwell on 
them here; incidentally, representing a considerably different stochastic formation, they 
ought to be otherwise symbolically noted. E. S. 
    18. Propositions mentioned in Note 17 are also included here since the difference of 
random variables is generally itself a random variable. E. S. 
    19. Above, see my remark connected with Note 15, I have indicated that Markov’s 
unfortunate formulation did not adequately represent his own idea. Indeed, after having 
proved that, under such-and-such assumptions the arithmetic mean of expectations was a 
stochastic asymptote of the arithmetic mean of the corresponding number n of values taken 
by a random variable, see above formula (37), Markov (1900/1924, p. 117) says: “in that 
does the LLN consist; its applicability to the series of magnitudes X, Y, Z, … considered by 
us we wished to establish”. This is nearer to our formulation than to his own. See also his 
pages 116, 121, 134, 173, 174.  
    Without referring to other authors, I only indicate as an illustration, the typical title of § 6 
of Mises (1919b): The Laws of Large Numbers. Chuprov (1918 – 1919, 1919, p. 208) [the 
page number is obviously wrong – O. S.] says that “under such conditions, the LLN finds 
no applications for itself”, and as far as I can judge, he thus expresses the same, or almost 
the same idea. See also Cantelli (1916b, p. 343). E. S. 
    20. Weber & Wellstein (1913) properly ascertained, and, for that matter, in a 
comparatively very popular way, the essence and sense of the entire upheaval. Their 
philosophical commentary, on the other hand, leaves much to be desired. E. S. 
    21. I [iii] discussed the calculus of alternatives. Owing to various considerations, the 
term disjunctive calculus, kindly suggested later to me by Prof. Bortkiewicz in a private 
letter, seems to be more convenient. Regrettably, in 1922 I was not acquainted with 
Bernstein (1917) where the indicated ideas had already been realized, and more formally at 
that. That contribution deserves to be most seriously studied. E. S. 
    22. Chuprov (1909/1959, p. 168) stated that  
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    All these mathematical constructions beginning with Bernoulli’s initial theorem [as well 
as in Laplace’s elegantly dressed form] up to the more general Poisson’s law of large 
numbers, the even more general Chebyshev theorem, and the constructions by Nekrasov 
and Bruns, the most general of all of them, are separated by an abyss from the law of large 
numbers that establishes the connection between probabilities of phenomena and their 
frequencies. They are only theorems from the field of the theory of combinations. 
 
Kries (1886, p. 91) expressed himself similarly. E. S. 
    Above, I have inserted the statement about Laplace which Slutsky had omitted. Note that 
Chuprov did not mention De Moivre. 
    Markov was “astonished” that Nekrasov’s name thus appeared together with 
Chebyshev’s, but Chuprov reasonably answered that he did not at all compare their 
scientific merits. Thus begun their correspondence, extremely profitable for both scientists 
(Ondar 1977, Letters 1 and 2 of 1910). O. S. 
    23. As it seems, Bortkiewicz (1894 – 1896, p. 665, Note 2) too severely admonishes 
Poisson for insufficiently understanding the physical interpretation of the LLN in the 
epistemological sense. It should be borne in mind that exactly in that sense the problem 
cannot up to now be considered sufficiently ascertained and the best testimonial is the huge 
volume of investigations, Meinong (1915). There, on p. 599, we read (my own 
underscoring): “The basis of the LLN is still as obscure as the Bernoulli theorem is clear”. 
E. S. 
    24. The attempts made in this direction were not serious. See D’Alembert (1767, pp. 
275ff, 298) as referred to by Czuber (1903/1908, p. 145); Marbe (1899, pp. 30 – 39) as 
quoted by Bortkiewicz (1913, p. 145ff; 1903). On p. 82 in the last-mentioned source 
Bortkiewicz remarks that Mill had apparently noted that he would have to abandon the 
theory of probability if “seriously admitting that, so to say, purely statistical interpretation 
of the notion of mathematical probability”. See also Bortkiewicz (1923, pp. 14 – 15). My 
criticism in the main text does not essentially represent anything new as compared with 
Kries’ (1886, Kap. 1, NNo. 5 – 6) thoughtful considerations. I think that Meinong (1915, 
pp. 597 – 598) absolutely unconvincingly defends Marbe’s viewpoint. E. S.  
    25. I have not found the corresponding page in the edition of 1959. O. S. 
    26. Kries (1886, p. 21). The previous example is also his; I only replaced 1000 by 1010. 
In principle, there is no difference between series of repetition twice, or 10, or a thousand 
times, or even (1010 to the power of 10)10 times. E. S. 
    27. This expression is due to N. S. Chetverikov. E. S. 
    28. Cournot (1851/1912, p. 45 [§§ 33 – 35, 38, 51 – 52]). Only the first underlining is 
due to him. I note in passing that he was hardly successful when contrasting physical or 
factual impossibility and mathematical or metaphysical, also rational or absolute 
impossibility. There is no transition from one to another, and that is a significant 
acknowledgement. Physically impossible is an event having one chance against an infinity 
of all the chances; mathematically or absolutely it is possible, but not physically, believes 
Cournot (1843, §§ 43 – 44 and 240.5 – 240.8), but his explanations are insufficiently clear. 
On infinitely low probability see Ch. Lagrange (1901). E. S. 
    29. Even such a “subjectivist” as Stumpf (1890, p. 110, in passing) was unable to manage 
without the notion of “real chances”. In spite of its being one-sided, his work is subtle and 
transparent and, as everything penned by him, it represents an important contribution to the 
logic of probability. E. S. 
    30. Chuprov’s own standpoint should apparently be understood exactly in that sense. 
This is being hinted both by his careful wording of the “lemma” without a direct indication 
of the nomological sense, and a clear statement that the LLN “represents a synthesis of 
nomographic and ontological elements” (1909/1959, p. 168). E. S. 
    31. So where is ontology here? O. S. 
    32. Here, the difference between our outlook from the views of the ancients does 
apparently exist. Teophratus sympathetically quotes Heraclitus of Ephesus and believes that 
it is absurd to think that the most beautiful order of the world is a randomly scattered 
rubbish heap (Makovelsky 1914, Heraclitus, Fragment 124, p. 167). E. S. 
    33. Cf. Zilsel (1921). It is surprising that an author, after formulating propositions 
tantamount to the two just exposited, can believe that his construction makes the stochastic 
viewpoint unnecessary. E. S. 
    Kolmogorov’s remark (1972) directly bears on the issue of revealing the meaning of 
information obtained, although in a very special imagined case. He stated that messages 
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sent by much higher developed creatures living somewhere in the universe will be 
attributed to random noise. O. S.  
    34. Matthiesen(1867) reported that in a game of whist each of the four participants got 
cards of one and only one suit. His testimony certainly cannot be checked. O. S. 
    35. How could have the laws of nature changed? O. S. 
    36. When Boutroux [perhaps Boutroux (1908)] mentions randomness of the laws of 
nature themselves, his idea belongs to quite another order of ideas and can only be 
understood in the light of the concept of absolute randomness [?]. E. S. 
    37. [Bortkiewicz’] reference to the established usage of words in statistics is not 
convincing. Statisticians have sinned too much by confusing facts and laws. He himself 
(1918, p. 115n), when arguing against Bienaymé, wrote: “That he did not object to consider 
empirical coefficients as laws of nature is not anymore surprising”. E. S. 
    38. Not law of stability, as Romanovsky (1924, No. 4 – 6, p. 15n) suggests. E. S. 
    39. Slutsky indirectly refers to the then still popular law of small numbers; see, however, 
Sheynin (2008). O. S. 
    40. Poisson left many of his examples without any proof; in such cases, he simply stated 
that the pertinent phenomenon was stable. O. S. 
    41. “Owing to the importance of that law, it would have been good to see it proved as a 
prior proposition” (p. 138). E. S. 
    I do not see any connection of this Note with the text. It rather has to do with the 
reference from pp. 12 – 13 above. O. S. 
    42. Bortkiewicz (1917, p. 58 with his emphasize). We should agree that some of 
Poisson’s phrases can be interpreted in that sense, but his exposition is not at all a specimen 
of condensed strictness and is written contrary to the style of strict mathematical, logical or 
legal formulations where each word and phrase are thought out. There are only a few 
authors who could have repeated what Lipps (1893, p. viii) said about himself: “ I am only 
asking always to bear in mind that each word in this book is properly considered”. 
    As to Poisson (1837), a general rule is that each phrase should be understood not only 
literally, but in the general context, together with other relevant places. Regarding the 
degree of stability, Poisson, already in his Préambule, refers in a general sense to his 
deductions in connection with the LLN, i. e., to his long calculations in Chapter 4. E. S. 
    43. This is questionable. Thus, many Americans had been doubting that the extraction of 
tokens from an urn was not “uniformly” random (Fienberg 1971). See Muller (1978, p. 
841) for further sources. I also note that Slutsky’s (and Chuprov’s) problem about the 
applicability of the LLN should have been specified: actually, it was necessary to find out 
whether the premises of that law were obeyed in reality. O. S. 
    44. I translated the last phrase from Poisson’s own text. O. S. 
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IX 

 

Al. A. Tschuprov 
 

Z. f. angew. Math. u. Mech., Bd. 6, 1926, pp. 337 – 338 
 
    Aleksandr Aleksandrovich Tschuprow died in Geneva on 19 April of the 
present year at the age of 52 years after a serious and protracted heart 
disease. The statistical science has thus lost a theoretician of the very first 
rank, a man who devoted his life to revise essentially the logical and 
probability-theoretic foundations of statistics.  
    How early had A. A. Tschuprow come to perceive his scientific aim is 
proved by his entering the mathematical faculty of Moscow University at 
the age of 18 with a quite definite intention of mastering mathematics and 
then of applying it to social sciences. After graduating, he studied those 
sciences in Berlin and Strasbourg, mostly under L. von Bortkiewicz1 and G. 
Knapp. The former helped the young scholar, who had already developed 
many of his early ideas in his Moscow [student] dissertation, to delve deeper 
in the new Lexian direction. To Knapp’s school Tschuprow owed the 
perfection of his ability to assimilate facts. 
    His teaching began already in 1902 as chair of statistics at the Economic 
faculty of the then newly established Petersburg Polytechnic Institute and 
lasted very successfully until 1917. In summer of that year he went 
holidaying abroad for the last time not ever to return.  
    It is impossible to honour here the great wealth of his scientific merits. 
His Ocherki (1909) whose main ideas became also accessible to German 
readers owing to his papers (1905; 1906), already was an achievement in a 
big way. He synthetically and brilliantly described a number of the main 
problems of statistical theory and organically fused together the ideas of 
Windelbrand, Rickert, Cournot and Knies with the Lexis – Bortkiewicz 
direction [of statistics] and his own deep thoughts2. 
    Tschuprow’s study (1916) showed him as a real master of empirical 
investigation. However, what earned him a great reputation and ensured him 
a place in the history of statistics as one of its creative thinkers was a 
number of logical and mathematical studies which he accomplished during 
his last decade. A clear separation of prior and posterior elements of 
statistical science based on probability theory; a definite grasp of various 
problems occurring during examination of the former by means of the 
empirical data concerning the latter; the further construction of the 
Chebyshev – Markov method of expectations and its application to the most 
difficult issues of the stability of statistical series3; moments of densities and 
problems of the correlation theory, – these were the subjects of the scholar 
carried off from us by such an early death amid work yet envisaged to last 
for a long number of years. The unification of the English and Continental 
directions in the theory of statistics can be already considered successful and 
in many main features an accomplished fact4. 
    High appraisals of Tschuprow’s scientific merits are not lacking either. 
From long ago he was Member of the International Statistical Institute; in 
1917 he was elected Corresponding Member of the Petersburg [Petrograd] 
Academy of Sciences, and in 1923, Honourable Fellow of the Royal 
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Statistical Society. During his journeys to Scandinavia in 1924 when he 
delivered reports on correlation theory, one in Copenhagen, and several in 
Oslo, he was happy to perceive a full and solemn acknowledgement of his 
ideas. 
    Tschuprow was deeply knowledgeable and subtly felt for arts and at the 
same time he was gifted in displaying his real sympathy and intimate 
understanding when dealing with those surrounding him. Although the 
entire way of his life was with great skill and endurance adapted to scientific 
studies, his correspondence during his last years with his [former] students 
and colleagues had been occupying an essential part of his working time. 
And he, who knew how to satisfy skilfully all his requirements, did not wish 
to cut down here. And thus will he live further in our memory: not only as a 
great scientist and distinguished teacher, but also as a great noble person. 
 

Notes 
    1. This is doubtful. In 1897 Chuprov wrote to his father (Sheynin 1990/1996, p. 37) that 
Bortkiewicz “cannot be my mentor […], the difference in knowledge between us is 
insufficiently large […]”. O. S. 
    2. See Foreword. O. S. 
    3. Chuprov did apply the method of moments, but hardly constructed it “further”. O. S. 
    4. An explanation lacking here is that that unification was Chuprov’s main goal. An 
author, acting on the request of Oskar Anderson, Chuprov’s former student, decided in 
1955 that the application of the analysis of variance was going side by side in both schools 
but did not tend to unification and reasonably remarked that, unlike their British 
counterparts, Continental statisticians had been concentrating on nonparametric statistics. 
See Sheynin (2009a, § 15.3). I think that also in general the situation was similar. O. S. 
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X 

 
On the Distribution of Errors [On the Law of Distribution]  

of the Correlation Coefficient in Homogeneous Connected Series 
 

O raspredelenii oshibok koeffizienta korreliatsii v odnorodnykh sviazannykh riadakh. 
Zurnal Geofiziki, vol. 2, 1932, pp. 66 – 98 

 
Summary [in its original English]1 

 
    1. The Technical terms. We shall call the chance values x0, x1, …, xn 
associated with the values 0, 1, 2, …, n (or 0, h, 2h, …, nh) of an 
independent variable (time, etc) a chance series or a chance function. It will 
be called a random series if its terms are mutually independent, and a 
coherent series in the contrary case. The chance series will be called a 
homogen[e]ous one, if the low [law] of probability for a single value is 
constant, and if the low of probability for every set of s values of xα, xβ, xγ, 
…, xν is depending only on the differencies of indices β – α, γ – α, …, ν – α. 
    In many cases it is sufficient to suppose a relative homogen[e]ity of the 
order m defined by the analogous suppositions relating to the moments of 
any order k < m. 
    2. Thema probandum. In a former paper I (1930) have deduced the 
formulae for the standard error of the correlation coefficient in the case of 
homogen[e]ous coherent chance series and developed a method for their 
practical application to the empirical series. In this paper I propose to give 
an empirical verification of the hypothesis that in the case of homogen[e]ous 
coherent chance series with the terms, the values of which have a 
distribution not very different from the normal one, the distribution of the 
Fisher’s function z = Arctanh r obeys very nearly to the normal low [law] 
with (I) the centre in a point tending to the theoretical (a priori) value 
Arctanh (v)ρ [?] when the number (n) of terms of the resp. series indefinitely 
increases and with (II) a standard deviation σs being a function of σr, ρ and 
n, ρ being the theoretical correlation coefficient. 
    3. The series used. To prove our hypothesis, the following series were 
used. (I) Model I′ consisting of two series: xi, yi, i = 1, 2, …, 1050, described 
in the paper cited above, p. 68. The correlation coefficient ρxy(0) = 0. (II) Sir 
Beveridge’s Index Numbers for wheat in Western Europe [1922], N = 360. 
The correlation coefficients ρx(t) between xi and xi+t for t = 10 are 
presumably 0, this assumption being based on an investigation which will be 
published on another occasion. 
    (III) The model imitating Beveridge’s series having the same moments 
m1, µ2, µ3, µ and the same serial correlations from rx(1) till rx(10). N = 1251. 
The method of construction will be described on another occasion. (IV) 
Model V described in the paper cited above (pp. 72 – 73) consisting of two 
series xi, yi, i = 1, 2, …, 1000. ρxy = 0.814. 
    (V) Model V′ constructed according to the scheme practically coinciding 
with the scheme of model V, the corresponding chance variables being 
consequently also practically identical. The details see above § 8. This 
model consists of 280 partial models mutually independent and consisting 
each of two series xi, yi, i = 1, 2, …, 20 the a priori correlation coefficient 
being ρxy = 0.816.  
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    4. The verification of the hypothesis. Let n be the number of the pairs of 
values from which the correlation coefficient r is determined and m the 
number of the correlation coefficients obtained. In some cases cited below 
several partial sets of the values zi

(k), k = 1, 2, … ns; i = 1, 2, …, s, 
corresponding to the given ri

(k) for different values of n1 = n, n2, …, n [?] 
were reduced to one set of values by calculating the values of ( ) / σsz z−  the 

number of which is also designated by m. N is the total number of values or 
pairs of values in the corresponding series, ρ is the theoretical correlation 
coefficient. χ2 is the Pearsons criterion and P the corresponding probability. 
The results are given in the table below (Table 13). One remarks that the 
results are very favourable for our hypothesis in all cases but one, namely 
that under number 8 (model V). 
    5. The negative instance. In the first stage of this work the case of the 
model V was the last one. It came to mind that all the correlation 
coefficients being found not especially for this paper they could be regarded 
in every case as a set of chance values mutually correlated in the manner not 
consisting with the theory of χ2 for usual distributions. To elucidate this 
point a coherent chance series was obtained consisting of 1280 terms being 
a realization of a chance variable with the possible values 0, 1, 2, 3, 4 the 
corresponding probabilities 1/16, 4/16, 6/16, 4/16, 1/16 and the serial 
correlations r(1) = 1/4, r(2) = 1/2, r(3) = 1/4, r(t) = 0 for t ≥ 4. 
    Table 8 shows the values of χ2 for one set of 1280 values, for two series 
of 640 values and so on. It is evident that the results are incompatible with 
the usual theory of χ2. In absence of the adequate formula for χ2 it seems 
however probable that the correlation between the terms of a series must in 
the most cases rather exag[g]erate the value of χ2 than to diminish it. To 
prove strictly at least the case of model V (a negative instance) the model V′ 
(practically identical with V) was constructed in such a manner that the 
correlation coefficients should be mutually independent. The result being a 
positive one our hypothesis can be regarded as non-contradicted by all the 
material involved in the investigation. 
    6. On the standard deviation of z. The theory of the standard deviation of 
r being given in the paper cited above, we need the means to find σ2 [σs] as a 
function of σr, ρ and n. Assuming that the error of centring the distribution 
of z in arctanh ρ can be (for n great) neglected, we obtain at once the 
distribution function of z given by the formulae 20 – 22 whence the 
distribution of r will by given by (24) and the mathematical expectation of 
F(r) by (25) or by (26). By rather a lengthy algebra we get the 
semiconvergent series for σr (see formula 56) the inversion of which gives 
the semiconvergent series for σs, see formulae (62; 63; 64) and Table 12. 
For practical purposes one can use the Abac of Fig. 1. 
 
    Table 13 provided the summary lists of ρ with indices xy, xi,i+t, xi,i+1, xi yi, 
then N, n, m, χ2 and P for the different models. O. S. 
 

1. Introductory Remarks 
    It is only possible to discuss the correlation coefficient in the true sense 
with regard to magnitudes about which we certainly know or hypothetically 
presume on some grounds that it is worth applying to them the concepts and 
patterns of the theory of probability. Assuming that condition, we will begin 
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by recalling several main definitions, either generally known, or introduced 
by me in my previous papers.  
    Let x be a random variable, i. e., a magnitude taking definite numerical 
values x1, x2, …, xs with definite probabilities p1, p2, …, ps; here, we do not 
need a more general definition. The sum ∑pixi is called the expectation of x 
and denoted Ex. The mean square deviation of x is 
 

    2σ E( E ) ,x x x= −                                                                          (1) 

 
and 
 

    
( E )( E )

ρ
σ σxy

x y

E x x y y− −
=                                                                 (2) 

 
is the coefficient of correlation between random variables x and y. 
    For calculating ρxy, it is obviously necessary to know not only the 
distributions of probabilities [laws of distribution] of x and y, but also the 
probabilities of a joint occurrence of each pair of their possible values. A 
simplest case, in which the exact value of the correlation coefficient can be 
known beforehand, is for example the following.  
    There are n urns and tickets contained in them are somehow numbered in 
the same way. They are extracted with replacement and n series of numbers, 
of the results of independent trials made on n identical random variables, are 
thus obtained. Separate all these series into three parts of m, g and g series 
(m + 2g = n) and form two series, x1, x2, … and y1, y2, … by combining the 
first part with the second, then with the third. Then any xi and yi will have 
(m + g) terms, m of them being common, and it is not difficult to show that 
the coefficient of correlation between x and y will be m/(m + g). 
    Lacking such a favourable situation, we cannot calculate the correlation 
coefficient, but in many cases we will be able to derive its statistical 
analogue, the empirical coefficient of correlation, or (L. March’s 
suggestion) coefficient of covariation2. Suppose that series 
 
    x1, x2, …, xn and y1, y2, …, yn                                                     (3) 
 
are given. Then the empirical mean square [deviations] will be 
 

    
2 2( ) ( )

,  i i
x y

x x y y
s s

n n

− −
= =
∑ ∑                                       (4) 

 
and, according to the known Pearson formula, the covariation (the empirical 
correlation coefficient) will be 
 

    
(1/ ) ( )( )

.i i
xy

x y

n x x y y
r

s s

− −
=

∑                                                       (5) 

 
    If the parameters of probability and connection, or, otherwise, the 
stochastic conditions for the appearance of the appropriate magnitudes 
remain constant over each of the series (3), then, calling such series 
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homogeneous, we state that under some additional conditions the so-called 
law of large numbers will take place. And, when n increases unboundedly, 
the magnitudes 
    , , , ,  and  will have E , E ,σ ,σ ,  and ρx y xy x y xyx y s s r x y   

as their stochastic limits. In other words, for a sufficiently large n each of 
those magnitudes will differ from its limit less than by an arbitrarily small 
magnitude ε except cases whose probability is less than a no matter how 
small magnitude η3. 
    An investigator is interested in the stochastic conditions of a 
phenomenon; for example, not in the actual mean, but in the level about 
which the mean is fluctuating; not the actual coexistence, but the conditions 
of connection , etc. since it is important to know the mean square error of 
the statistical summary characteristics and in particular that of the 
correlation coefficient. For the case of unconnected series x1, x2, … when 
any xi (or yi) and any other xj (or yj) are independent in the stochastic sense; 
when in addition any xi is only connected with yi, but not with yj, j ≠ i, – then 
the mean square error of the correlation coefficient is expressed by the 
known Pearson formula 
 

    
21 ρ

σ .r
n

−
=                                                                                 (6) 

 
    For a more or less considerable n we may obtain its approximate estimate 
when replacing ρ by the empirical magnitude r (or by any other hypothetical 
value, for example 0) if wishing to find out how likely is it that ρ differs 
from 0. It is important to note, first, that formula (6) only represents the first 
term of some expression and that therefore it is only suitable for a 
sufficiently large n (say ≥ 30 if ρ is not large and n ≥ 100 if ρ, although 
large, is not very near to 1). 
    And, second, that formula supposes that x and y obey the so-called normal 
law; third, that, as stated above, the series xi and yi are internally 
unconnected and only connected by terms with identical indices4. 
Considering point 2, it is possible to remark that experience shows its 
practical harmlessness since in an overwhelming number of cases the 
deviation from the normal law is not large enough for the formula (6) to 
become useless. With respect to the second assumption we ought to say that 
for small values of n or in dubious cases that formula should be replaced by 
a method due to Fisher, see below. As to the third condition, it is necessary 
to stress that its violation does not at all exclude the use of the Pearson 
formula (6) when n is large, or the Fisher method otherwise. 
 

2. On the Mean Square Error of the Correlation Coefficient  

for Homogeneous Connected Series 
    I have deduced the approximate formula in a previous paper (1927). It is 
simplified under the assumption of normal correlation but even then it still 
remains considerably more complicated than the Pearson formula. Indeed, 
instead of one magnitude ρxy, it involves three functions, ρx(t), ρy(t), and 
ρxy(t) which express the values of the coefficient of correlation between xi 
and xi+t, yi and yi+t and xi and yi+t. I will only provide my most important 
results.  
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    For normal correlation we have  
 

    
1

2

1

σ (1/ ) {ρ ( )ρ ( ) ρ ( )ρ (  ) 2ρ (0)[ρ ( ) ρ ( )]}
n

xy x y xy xy xy x y
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=− +
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                                                                                                             (7) 
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−
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    For terms of one and the same series separated by distance τ that formula 
becomes 
 

    
1

2 2

1

σ (τ) (1/ ) {ρ ( ) ρ (τ )ρ (τ ) 4ρ (τ)ρ ( )ρ (τ )}
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1
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1

(1/ )ρ (τ) {ρ ( ) ρ (τ )}  ...
n
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n t t
−
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+ + +∑                             (8) 

 
    Now, if the terms of (3) are not at all connected with each other, i. e., if 
no xi depends on any yj, the correlation coefficient ρxy = 0 and the empirical 
coefficient of correlation rxy will fluctuate about 0 with mean square error5 
 

    
1

2

1

σ (1/ ) ρ ( )ρ ( )
n

xy x y
t n

r n t t
−

=− +

= ∑                                                          (9) 

 
where the limits of summation can be replaced by – ω and ω if at t > ω at 
least one of the functions ρx(t) or ρy(t) vanishes. It can also be shown that if 
ρx(t) = 0 at t > ω, then, for τ > 2ω (for τ > ω if the correlation is normal) the 
mean square error of rx(t) is expressed by a simple formula 
 

    
ω

2 2

ω

σ (τ) (1/ ) ρ ( ).x
t

r n t
=−

= ∑                                                              (10) 

 
    For applying formulas of the type indicated it is obviously not sufficient 
to find a number of empirical correlation coefficients rx(1), rx(2), …, ry(1), 
ry(2), … since we do not yet know where each of those series should be 
terminated and instead of the vanishing terms ρx(ω + 1), ρx(ω + 2), … 
included in the formula we will have rx(ω + 1),  
rx(ω + 2), … generally not equal to 0 and the result will be corrupted. 
    The method proposed in the cited work consists in that the given series 
are partitioned into intervals having n1, n2, … terms. We will obtain m1, say, 
correlation coefficients calculated from n1 pairs of magnitudes, m2 
coefficients from n2 pairs etc. Suppose the magnitudes in each pair will be xi 
and xi+τ, then, for a sufficiently large τ, it can be admitted from general 
considerations about the appropriate phenomena that the correlation 
coefficients ρx(τ), ρx(τ + 1), …, ρx(2τ), … should vanish or be near zero. 
Then, calculating the empirical mean square magnitudes 2 2

1 2,  ,...s s by issuing 

from the correlation coefficients of the first, the second, … series, we should 
obviously obtain by formula(10) the approximate equalities 
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ω ω

2 2 2 2
1 1 2 2

ω 1

... ρ ( ) 1 2 ρ ( )x x
t t

n s n s t t
=− =

≈ ≈ ≈ = +∑ ∑ .                              (11) 

 
    It will not be difficult now to derive the approximate value of ω by 
summing consecutively the squares of the empirical correlation coefficients6 
and ωy and ωxy are calculated in a similar way7.  
    Examples easily show that in the sense interesting to us an essential 
difference can exist between unconnected and connected series. Suppose 
that the random variable xi is obtained by taking m moving sums of two 
terms at a time of some unconnected homogeneous series. Then (Slutsky 
1927, p. 54) it is not difficult to determine the correlation coefficient  
 
    2 2ρ ( ) :m t m

x m mt C C+=                                                                     (13) 

 
and for t > 2m according to formula (10) the square error of the empirical 
correlation coefficient rx(t) will be 
 

    
2

2 2 2
2 2

0
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m

i m
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i

C n C
=

=∑                                                        (14) 

 
    Applying the Stirling formula, it is not difficult to find an approximate 
expression 
 

    
4 π / 2

σr

m

n
=                                                                           (15) 

 
instead of 1/√n as it turns out by the Pearson formula at ρ = 0. For example, 
if m = 12, σr = 2.08/√n, twice larger than provided by the usual formula. Or, 
σr is the same as for a four times shorter unconnected series. 

 

3. The Issue of the Distribution of Errors  

of the Empirical Correlation Coefficient 
    The above sufficiently clearly describes the case of the correlation 
coefficient for connected series. According to the very essence of the 
phenomenon no simple formula such as the Pearson expression is here 
thinkable. A further development of the problem will perhaps lead to some 
simplification of the pattern of calculation, but in any case at present we 
have to agree that the determination of the mean square error should be 
eliminated from usual practice, and can only be included as a special 
investigation when having sufficient data and prompted by important 
incentives.  
    I think that such cases will inevitably occur in most various applications 
of statistics to geophysics; indeed, a critical appreciation of results obtained 
is, and will continue to be a vital demand without whose implementation 
scientific work cannot be imagined. And practical applications under the 
immense and [still] ever increasing scale of socialist construction and 
planning will in turn raise the issue of reliability of the estimates and the 
practical boundaries of their suitability. In spite of the difficulties 
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encountered, the problem of the error of the correlation coefficient in 
connected series cannot be therefore abandoned. 
    If so, we have to recall that the calculation of the mean square error does 
not in general solve the issue of estimating the possible error. Indeed, when 
is the knowledge of the square error sufficient? Then, and only then, when 
the errors are distributed according to the normal (Gauss – Laplace) law, so 
that it is possible to find out how probable is any deviation exceeding the 
square error8 by such-and-such a factor just by looking at a table of the 
integral of probabilities.  
    If the number of cases made use of when calculating the empirical 
correlation coefficient was large, and íf that coefficient was not too near to 
its extreme values – 1 or 1, then it is possible to assume that the distribution 
of errors was more or less normal, but otherwise such an assumption will 
lead to considerable mistakes, to blunders. It is easy to understand why. The 
normal curve of probabilities extends to infinity in both directions whereas 
the correlation coefficient cannot be less than – 1 or exceed 1.  
    If the square error σr is not very small, then, and especially when |r| is 
near to 1, the distribution of errors becomes sharply asymmetric. This 
circumstance is especially felt when the number of observations is small, 
and we must remember that this is indeed what we mostly have when 
dealing with connected series. And even if our series are comparatively 
long, owing to their connection the error of the correlation coefficient can be 
of the same order as in the case of unconnected series sometimes several 
times shorter. 
    Let us recall Fisher’s solution of the problem given a small number of 
observations (for unconnected series whose terms themselves obey the 
normal law). Fisher introduces a supplementary variable denoting it by z for 
the empirical, and by ς for the theoretical correlation coefficient, such that 
 

    
2

2

1 1 1
tanh ,  arctan h ln .
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z

z

e r
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− +
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                    (16; 17) 

 
    Now, z is distributed very close to the normal law even for a so small 
number of observations as n = 9 or 10, and its mean square error is 
expressed extremely simply: 
 

    
1

σ .
3

z
n

=
−

                                                                           (18) 

 
    When wishing to find out whether r essentially differs from 0, and choose 
as a practical boundary 2σ or 3σ, it is only necessary to establish the 
corresponding r as provided by the appropriate table. Suppose we derived r 
= 0.90 and need to estimate the likely boundaries within which the true 
value of the correlation coefficient ρ is supposed to be, for example to find 
out the 3σz boundaries (and the corresponding quite definite probability). 
We find 1) The value of z corresponding to the given r; 2) Then σz; 3) And 
then z1 = z – 3σz  and z2 = z + 3σz; 4) Finally, the magnitudes r1 and r2 
corresponding to those z1 and z2. More precisely, the magnitudes ρ1 and ρ2 
the deviation from which in either direction the given z could have been 
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provided with a definite probability. The problem is thus completely 
solved9. 
 

4. The Hypothetical Law of Distribution of the Errors of the  

Empirical Correlation Coefficient for Connected Series 
    It seems that Fisher’s solution of the problem for unconnected series 
becomes very complicated if the series are supposed not to be unconnected. 
I at least was still unable to overcome the difficulties. But it is possible to 
recall that experiment proved to be essential in the history of the problem of 
errors for a small number of observations. 
    Time and time again it indicated beforehand the correct or nearly correct 
solution, then corroborated [how?]. I have collected not quite a small 
amount of empirical material that can be used for solving the problem of the 
error of the correlation coefficient and I therefore allow myself to formulate 
here a hypothesis corroborated by it. Namely, there are grounds for thinking 
that also in the case of connected series the magnitude z that I calculated by 
formula (17) is normally distributed if the corresponding random variables 
(3) themselves obey the normal law10. And the mean square error can be 
determined as a function of the mean square error of r and the theoretical 
value of the correlation coefficient ρ; in practice, we replace ρ by r if we do 
not have to test other hypotheses. And the centre of the distribution of z is 
some magnitude generally differing from ς but more or less rapidly 
approaching it with the increase of the number of terms of the series so that 
this circumstance is apparently not practically important. 
    If that hypothesis is valid, and I think that it is possible to admit it as an 
approach to the truth, z is calculated by formula (17) just as in the case of 
unconnected series after σr is found by means of the indicated methods. 
Then σz is determined by the formula 
 

    
2
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σ
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r

z
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−
                                                                              (19) 

 
where q is a function of ρ and σr, see formulas (20) and (21) below. In very 
many cases q is near 1 and in general it can be obtained with practically 
sufficient precision from an applied diagram (Fig. 1)11. Otherwise, the 
Fisher method remains valid. 
 

5. Testing a Hypothesis 
    Ia [Model I′]. I borrow the data for model I from my previous work 
(1929). The model consists of two independent from each other connected 
series xi and yi each of which is obtained by moving sums, ten terms at a 
time, of a supplementary series whose terms take the values 0, 1, 2, …, 9 
with equal probabilities. It is easy to determine that each such series will 
have correlation coefficients  
 
    rx(1) = 0.9, rx(2) = 0.8, …, rx(9) = 0.1, rx(10) = rx(11) = 0, etc. 
 
and the distribution of probabilities will be characterized by the Pearson 
coefficients β1 = 0 and β2 = 2.878, not very remote from β2 = 3 as in the case 
of the normal law.  
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    We had 1050 pairs of (xi; yi); by separating their series into intervals 
containing 10 pairs, it was possible to obtain 105 correlation coefficients, 
see Slutsky (1929, pp. 99 – 100). Table 1 indicates the values of the function 
z taken as the boundaries of the intervals (column 1). In the next columns, 
are the corresponding values of r; the actual number of cases n′i in the 
appropriate interval if the absolute values of the correlation coefficient are 
issued from; the theoretical number of cases ni for a suitable normal curve; 
and, finally magnitudes (n′i – ni )

2/ni needed for calculating the criterion χ2 
which occurred to be 6.68. For the number of groups n′ = 10 the probability 
of the same and less probable random deviations is P = 0.73. The 
concordance between the distribution of z and the normal law of distribution 
is quite satisfactory. The distribution itself is shown on Fig. 2 where the 
distribution of r is also provided. This latter, as the reader will see, sharply 
differs from [has nothing in common with] the normal law.  
    Ib. We separate the numbers in the same model in intervals containing 20 
pairs partly overlapping each other so that we obtain a new series of 207 
correlation coefficients. Since the theoretical distribution is strictly 
symmetric (because the true correlation coefficient ρ = 0), we again restrict 
our investigation to the distribution of the absolute values of z, and, 
correspondingly, of r. See the values of r for these groups of 20 and the data 
for the next section (n = 30 etc) in Slutsky (1929, p. 100). We obtain Table 
2, and the concordance is again better than satisfactory, see also Fig. 3A. 
    Ic. To exhaust the material of the discussed model, we ought to consider 
all the other groupings. We have (Slutsky 1929, p. 100) 69 correlation 
coefficients for groups of 30; 51, 41, 34, 29, 25, 22 and 20 for groups of 40, 
50, …, 100. These groups are comparatively scanty, and we will apply an 
appropriate artifical trick. For each of these 291 coefficients we calculate the 
corresponding z (we round off both r and z to 2 decimal points); determine 
the boundaries of each group according to the pattern 0 – 0.3sz; 0.3sz – 0.6 
sz; etc, count the number of the coefficicnts in each interval and compile 
Table 3, see also Fig. 3B. 
    Once more we find that the concordance is quite satisfactory. Thus we 
conclude our investigation of the discussed series. It is, however, 
worthwhile to mention in addition that the square error of the correlation 
coefficient, since the two series are independent from each other so that their 
correlation functions coincide, is calculated according to formula (10) and is 
equal to 
 

    σ 6.70 / ...  1 / / 6.70 2.59 /r n n n= + ≈ ≈ . 

 
This is more than 2.5 times the error for unconnected series for which ρ = 0 
with the same n: σr = 1/√n. We also see that, with regard to the fluctuations 
of the correlation coefficient, the investigated connected series are 
equivalent to two unconnected 6.7 times shorter. For example, series of 40 
pairs of (xi; yi) are equivalent to the case of two unconnected series of 6 
terms. This fact very expressively stresses the sharp peculiarity of connected 
series and the impossibility of instinctively transferring to them the rules 
borrowed from another statistical region. 
    One more remark. Formula (10) is only approximately valid since it omits 
terms of the type B/n2, C/n3, … [see Note 6]. We (1929) have nevertheless 
shown that for the discussed model it provided practically quite suitable 
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results even at n = 40. This conclusion should be considered quite 
favourable because n = 40, as we just saw, corresponds to n = 6 for 
unconnected series, i. e., to an extremely small number of observations. 
When n < 40, we have to determine σr by another method briefly indicated 
in § 2. 
  

6. Testing a Hypothesis (Continued) 
    II [second model]. In this, our second example, we will consider the 
distribution of the coefficient of correlation between terms of an empirical 
series considerably remote one from another, – the series of indices of prices 
of wheat in Western Europe for the period 1500 – 1869 compiled by 
Beveridge (1921, p. 429; 1922, p. 412) who studied them in detail and 
attempted to discover periodicities there.  
    If we discard the beginning of the series based on too scanty data and the 
final terms where the homogeneity of the series was corrupted, as the author 
himself (1921, p. 432) remarked, by the influence of industrial cycles, there 
will still remain a rather considerable amount of material covering ca. 1550 
– 1800.  
    Beveridge analyzed the interval 1545 – 1844, and I had to follow him for 
ensuring comparable results. I will devote a special paper to that 
investigation; here, I only study the fluctuations of the correlation 
coefficient and I am considering the entire series without discarding its 
beginning or end which is admissible because in any case the tested 
hypothesis does not thus become more favoured. 
    We investigate the correlation coefficients for distances 20 – 84 between 
the terms and groups of n = 20, 30, …, 120. As I will justify elsewhere, 
correlation connection hardly extends for more than 10 terms so that the 
values of the correlation coefficient for all the distances studied can be 
considered to be very likely either equal to zero or some small practically 
vanishing number. For each group of n = 20, 30, … taken separately I 
calculated the values of the empirical mean square deviation sz of z and the 
distribution of the latter over the intervals expressed in fractions of sz [and 
the distribution of z/sz] just as it was done in the last of the examples above. 
    The results for all the groups are summarized in Table 4 and we see that, 
judging by the χ2 criterion, they should once more be considered quite 
satisfactory, see also Fig. 4B. I can additionally note that this example 
belongs to those which corroborate my statement that z can be near-
normally distributed even when the correlated magnitudes themselves rather 
considerably deviate from normality. Thus, for the terms of the Beveridge 
series the Pearson coefficients, which are criteria of normality (β1 = 0, β2 = 
3), are β1 = 1.2767 and β2 = 4.8613. The distribution itself is shown on the 
same Fig. 3A and, as we see, it realy differs from the normal law. 
    III [third Model]. As our third example we study the connected random 
series which I will call a model of the Beveridge series because it was 
compiled as its imitation. Detailed information about this model will be 
contained in the paper devoted to the Beveridge series; here, it is sufficient 
to indicate that its first four moments almost exactly, and the next two 
moments in somewhat crude terms coincide with the respective moments of 
the real Beveridge series.  
    In addition, the correlation coefficients of the model almost exactly 
coincide with those hypothetically assumed for the Beveridge series; 
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according to some considerations on which I am unable to dwell here, they 
somewhat differ from their empirical values because of a certain smoothing 
procedure. 
    The series under discussion has 1251 terms. Multiplying x1 by x2, x3 by x4 
etc. we obtain 1250 products; separating them in groups of five gets us 250 
coefficicnts rx(1); and, forming groups of 10, – 125 such coefficients. Then, 
groups of 20 partly overlapping each other, 124 coefficients. It is these 
partitions that we will consider, but first of all I note that this case provides a 
curious illustration of what is called the systematic error of the correlation 
coefficient. In general, even for the case of unconnected series, the 
expectation of the empirical correlation coefficient Erxy is not equal to the 
theoretical coefficient ρxy. The empirical coefficient rxy for very long 
homogeneous series should therefore approach its stochastic limit ρxy as 
close as desired. If, however, the series is separated into small intervals of n 
terms each, say, and the coefficient rxy is calculated for each of them, their 
arithmetic mean will not coincide with ρxy however large is the number of 
those intervals, but will have its own limit Erxy, a function of n. For 
unconnected series the difference between ρxy and Erxy is represented by a 
magnitude of the order of 1/n and may be almost always ignored because 
generally the mean square error of the correlation coefficient considerably 
exceeds it having order 1/√n (Chuprov (1925/1926, pp. 91, 105 – 106; 
Slutsky 1923). 
    In our case, the stochastic pattern of the series is such that ρx (1) = 0.458 
whereas the mean value of 250 correlation coefficients each calculated from 
5 pairs of numbers (xi; xi+1), (xi+1; xi+2), …, (xi+4; xi+5), almost vanishes (= 
0.091). The mean of 125 coefficients for n = 10 is 0.313, and only for n = 20 
it reaches 0.405 (Fig. 5). It is thus easily seen how large can be the errors of 
the correlation coefficients calculated for very small numbers of 
observation, as recommended, for example, by Schmauss (Tikhomirov 
1930, p. 288)12. 
    Returning now to our main problem, we consider the next table (Table 5). 
Numbers ni are calculated for the Gaussian curve corresponding to the 
arithmetic mean z = 0.1028 and sz = 0.54836 and obtained from the given 
distribution whith the Sheppard corrections being applied. The extreme 
groups of the ni column, as it is usually done when applying this method, 
were combined to avoid numbers less than 1. The reader will see that the 
concordance is quite satisfactory.  
    Now, however, let us attempt to interpret these just mentioned low 
probabilities [?] constituting the weak link of the method discussed. A 
simple calculation for 11 and 12 groups provides the theoretical number of 
cases 0.24 and 0.76 for 1 and 2 groups. Actually, we obtained 1 and 3 
respectively and we estimate the appropriate probability according to the 
Poisson formula 
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where α is the expected number of cases for a given number of trials np, and 
m is their actual number. Assuming at first α = 0.24 and m = 0, we have P = 
e–0.24 = 0.787. 
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    The occurrence of one or more such cases has probability 0.213 and 
should therefore happen rather often. Taking now α = 0.76, m = 0, 1 and 2, 
we find 
 
    P0 = 0.468; P1 = 0.355; P2 = 0.135; 1 – (P0 + P1 + P2) = 0.042. 
 
The probability of the occurrence in the considered interval of three or more 
cases is 0.042 and, under the hypothesis of normality can generally happen 
approximately once in 25 instances. This is not yet sufficiently rare for 
rejecting the hypothesis. At most, it empowers us to assume that the true law 
of distribution of the values of z perhaps somewhat differs from the normal 
law. However, the tested hypothesis is indeed such an assumption so that 
our observations do not contradict it. 
    The conclusion is worse with regard to a circumstance not yet discussed 
although the reader could have noticed that we mentioned above 250 
correlation coefficients whereas the Table only contains 249. We have 
rejected one of them because it essentially damaged the entire picture. This 
is the case of rx(1) = 0.996 and the corresponding z = 3.1063 is separated 
from its mean 0.1028 by 5.48 of its mean square deviation which is 
extremely unlikely for a normal distribution.  
    It seems, however, that this single exception cannot lead to the rejection 
of our hypothesis. It is very likely that with such a small number of terms (n 
= 5) a deviation from normality should be greater than when the correlation 
coefficient is calculated for any reasonable number of observations. It is 
rather more surprising that even in such a case the main mass of data had 
obeyed the normal law to such an extent. Moreover, it is also possible that 
we were unlucky, that we had encountered a comparatively rare case 
although not as rare as it would have been for the normal law. 
    If our idea stressed above is correct, we ought to obtain a better result 
when studying the correlation coefficient for the same series at n = 10 and 
20. My idea is indeed corroborated by considering Tables 6 and 7 and Fig. 
5B, C.  

 

7. On the Application of the χ
2
 Criterion To Connected Series.  

Testing a Hypothesis by the Example of Model V 
    Without dwelling on the theory of the χ2 criterion it is necessary to 
indicate that we have applied it above in the only possible form but that it is 
not quite suitable for the conditions of our problem. One of the assumptions 
of its theory is independence of trials from which the separate elements of 
the studied totality were derived. Strictly speaking, without being 
additionally adapted, the criterion is therefore not applicable to totalities 
whose elements form connected sequences.  
    Here is an example. I examined a series of absolutely unconnected zeros 
and unities to which, because of the stochastic pattern of their occurrence, 
we had to assign equal probabilities13. Call these numbers ξ1, ξ2, …I applied 
them to form a new series (Model B) by moving summations 
 
    xi = ξi + ξi+1 + ξi+2 + ξi+3 
 
and obtained 1280 terms. It is easy to find out that the new series is 
connected with a correlation function 
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    rx(0) = 1, rx(1) = 3/4, rx(2) = 1/2, rx(3) = 1/4, rx(t) = 0 at t ≥ 4 
 
and that its terms take values 
 
0, 1, 2, 3, 4 with probabilities 1/16, 4/16, 6/16, 4/16, 1/16. 
 
    Then I compiled 1 distribution of all the 1280 terms, 2 distributions of 
640 terms, 4, 5, 10 and 20 distributions of 320, 256, 128 and 64 terms. I am 
only providing a table (Table 8) of the values of χ2 obtained by comparing 
the empirical numbers with theoretical equal to 1/16, 4/16, … of the 
respective numbers of terms. 
    It is seen at once that the results are bad. According to the appropriate 
table of probabilities we find14 that in the column for the number of groups 
n′ = 5 the probability of random deviations leading to χ2 ≥ 7 is 0.135888, or 
approximately 1/7. So, certainly for independant trials, out of 42 cases we 
may expect to have 6 such for which χ2 ≥ 7 whereas actually the Table 
shows us 19! Then, χ2 = 11 corresponds to probability 0.026564 or ca. 1/40. 
But, instead of one, the Table contains 7 such cases. It is worthwhile to 
show the probabilities of the most considerable values of χ2 (rounded off): 
 
    P = 14.08; 16.81; 18.32; 23.29; 41.87; 52.89 
    χ2 = 1/102; 2/103; 1/103;  1/104;  1/108; 1/1010 
 
    It is absolutely doubtless that either the hypothesis on the distribution of 
the terms of Model B does not conform to reality, or that the theory of the χ2 
is not applicable here. Actually, it is the second alternative that is true. Yes, 
the numbers 0, 1, 2, 3, 4 must occur in 1/16, 4/16, … of all the cases if those 
are independent one from another. This will happen if, for example, we 
select each fourth term of the model, and the same will be true for each of 
the 4 such partial series. It is therefore not difficult to conclude by simple 
stochastic considerations that the same law also persists for a connected 
series at least if the connection between the terms indefinitely weakens with 
the distance. And the difference between both cases consists in that equal 
deviations from 1/16, 4/16, … will have there differing probabilities. How 
should this influence χ2? Let us write its formula in the following way: 
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    Here, N is the number of elements in the totality, n′, the number of 
groups, n′i, the actual, and ni, the theoretical number of terms in each group. 
The expression above shows that if different totalities have one and the 
same relative distribution, the value of χ2 will be proportional to the total 
number of the elements in the totality. 
    Suppose now that we have series x1, x2, …, xN, and y1, y2, …, yN, both 
unconnected but such that each xi is connected with yi with the correlation 
coefficient almost equal to 1. Then the actual distribution, in absolute and 
respective numbers, will be almost the same for both series; therefore, when 
combining them to form a single totality, χ2 will be almost twice greater. If 
the inadmissibility of that procedure is not noticed, even a quite likely 
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deviation can, on the contrary, be considered very unlikely when judging by 
the value of χ2. 
    The correlational connection between members of connected series 
should produce a similar effect; moreover, it seems that an exaggeration of 
the value of χ2 must occur in practice much oftener than its underestimation. 
I think that the following example can be explained exactly in this way.  
    Example IV. This is Model V (Slutsky 1929, pp. 72 – 73 and Table 6 on 
p. 100) consisting of two connected series x1, x2, … and y1, y2, … of 1000 
terms each. The correlation coefficient ρxy(0) = 0.814. We have 40 
correlation coefficients calculated for n = 25; 20 coefficients for n = 50, and, 
for intervals partly overlapping each other, 18, 16, 14 and 12 coefficients for 
n = 75 and 100; 125 and 150; 175 and 200; 225 and 250.  
    We see at once that this example is barely suited for testing a hypothesis. 
First, the intervals are too wide for a sufficient number of non- or more or 
less weakly correlated coefficients to be obtained out of the total 1000 
terms. Second, the number of not overlapping intervals is too small for 
considering them only, and, beginning with n = 125, the other intervals 
overlap each other more than by a half of their length. Then, a high 
correlation should exist between coefficients of various respective values of 
n close to each other.  
    Similar objections could have been partly formulated to all the previous 
examples, and notably to some of them, but the present 
example seems to be especially unfavourable. The stochastic structure of the 
respective series doubtlessly influences the matter as well, but I was 
compelled to consider also this example since the correlation coefficients 
here discussed are provided in my previous work and the reader himself can 
attempt to apply it for testing the formulated hypothesis.  
    Table 9 is compiled after the previous summary tables which means that 
at first z was found for each r, then the mean z and mean square magnitudes 
sz were calculated for each group of coefficients and after that the number of 
cases in the intervals was counted in the terms of its mean square values. 
    The conformity of the given data with the normal law is doubtlessly very 
bad, and the discussed example should have testified against our hypothesis 
had the considerations provided above not discredited the χ2 criterion. 
Perhaps that example should not have been provided at all, but it confirms 
our reasoning about χ2 by the nature of the actual distribution as shown in 
Table 915. 
    Let us consider the numbers in the column n′i of that table and the 
corresponding picture on Fig. 6. Suppose that the Gaussian distribution does 
not suit that material and the distribution of z obeys quite another law. 
However, none of what we know about laws of distribution and no 
similarities out of those we were able to apply allow us to think that that 
unknown law is reflected in the numbers n′i in a likely way. These numbers 
fluctuate too sharply; in neighbouring intervals doubtlessly situated near the 
middle of the distribution they experience such leaps as 21, 19, 10, 31, 10, 
17 etc.  
    Whichever is the law of distribution of z, it is likely to be smooth here 
also whereas the leaps just mentioned correspond, as far as it is possible to 
judge without exact calculations, not to the total 142 cases, but to some 
other number, at least twice or even thrice smaller. This is a doubtless 
indication that the mutual correlation of the elements of the totality led here 
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to an exaggeration of the value of χ2. The example may be abandoned since 
it does not testify either for, or against our hypothesis. However, we reject 
such a way out of a tricky situation as insufficiently convincing, and, in the 
next section, we will check the applicability of our hypothesis to Model V 
with all rigour. 

 

8. Checking the Hypothesis  

on Independent Correlation Coefficients of Model V 
    For checking the previous considerations it would be necessary to extend 
the series of Model V to such an extent that it will be possible to choose a 
sufficient number of intervals separated by spaces long enough for the terms 
of one interval not to correlate with the terms of another one. Then the 
correlation coefficients obtained for such independent intervals will also be 
independent from each other, the application of the χ2 criterion will become 
legitimate and we will see whether our hypothesis is satisfied here.  
    However, such a plan would have demanded too much work since Model 
V is compiled in a rather complicated way. Without dwelling on the 
pertinent details, see Slutsky (1929), I will only describe how that difficulty 
was overcame. An essential part of the pattern of Model V consisted in 
obtaining the numbers of some connected series by calculating moving sums 
of some unconnected series multiplied by certain weights and subsequent 
rounding off. Now, we adopt another pattern by rounding off the weights 
themselves. A model was thus obtained whose numbers differed here and 
there by a unity from those of Model V. We consider it as a very close 
analogue of that latter, denote it Model V′ and apply it for checking the 
studied hypothesis. 
    Model V′ was based on unconnected series of numbers ξi and ηi. Both (at 
first the ξi, then the ηi) were chosen from the vertical columns of Tippet’s 
table of random numbers [1927] beginning with its first page. Each column 
constituted a separate series unconnected during treatment with other series. 
We obtained ξi by replacing the even numbers of the Table by 0 and odd 
numbers by 1 and the values of ξi were therefore 0 and 1 with equal 
probabilities. For ηi we left numbers 0, 1, 2, 3, 4 intact and replaced 
numbers 6, 7, 8, 9 by – 4, – 3, – 2, – 1 and we either did not change number 
5 or replaced it by – 5 if, respectively, an even or an odd number occurred in 
the same row and neighbouring column. The probabilities of 5 and – 5 were 
therefore 1/20 with 1/10 being the probability of all the other numbers. Then 
we determined 
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and finally the numbers of Model V′ were 
 
    xi = ui + ηi, yi = ui + ηi+1. 
 
    The coefficient of correlation between x and y is 
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which is very close to 0.814 as in Model V. 
    We have thus compiled 280 absolutely independent one from another 
series of numbers x, y, each consisting of 20 such pairs. The 280 correlation 
coefficients were also therefore absolutely independent. Table 10 compiled 
after the previous tables provided the distribution of the corresponding 
values of z. The mean z = 1.0864 and the appropriate r = 0.796 was very 
near to the true value (0.816) of the correlation coefficient. The agreement 
with the normal distribution is very good, see also Fig. 7, if judged by the 
criterion χ2 whose application is here methodologically impeccable.  
    The example just considered refutes the sole unfavourable result (see § 7) 
and we may consider that our hypothesis had stood all the trials to which I 
was able tosubject it. 

 

9. Derivation of the Formulas  

Necessary for Applying the Suggested Hypothesis 
    I will represent the formulated hypothesis (§ 4) in a somewhat simplified 
way by assuming that the number of the elements of the totality, from which 
the empirical correlation coefficient is derived, is so great that the 
systematic error of z may be neglected.  
    I only reproduce Slutsky’s final results derived after a very long discussion involving 
hyperbolic functions which he assumes to be known. For the coefficient q in formula (19) 
Slutsky gets 
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    α1 = 2(1 – 4ρ2), α2 = 21/3 – 8ρ2 + 59ρ4, α3 = 4 – 56ρ2 –12ρ4 – 496ρ6, 
    α4 = 1/5 – 160ρ2 + 309ρ4 + 1888ρ6 + 4094ρ8,                          (21) 
    α5 = 242/3 – 1472ρ2 + 3056ρ4 –185862/3ρ6 – 23518ρ8 – 38352ρ10. 
 
    Slutsky also provides a table of αi for ρ = 0(0.05)0.95. He continues: 
 
    By means of this table I calculated a series of values of q and constructed 
a graph (Fig. 1). Its lines are terminated at points in which, owing to the 
properties of semi-convergent series, the error of q became approximately 
equal to 0.01. The error of the graph apparently never exceeds that 
magnitude. 
 

Explanation of Tables and Figures 
    Fig. 1, § 5. Model I′. Diagram of coefficient q from formula (19). 
    Table 1, § 5. Model I′. Explanation in text. 
    Fig. 2A, 2B § 5. Model I′. Distribution of |z| and |r| for n = 10. 
    Table 2, § 5. Model I′. According to explanation in text, the first columns 
indicate |z| and |r|, but in the Table itself these columns are labelled 
(apparently wrongly) z and r. 
    Fig. 3A, 3B, § 5. Model I′. Distribution of |z| for n = 20 and of |z|/sz for n 
= 30, 40, …, 100. 
    Table 3, § 5. Model I′. Shows the same magnitudes as Table 2 although 
|z| is replaced here by |z|/sz. Then, according to the text, the isolated groups 
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are 0 – 0.3sz; 0.3sz – 0.6sz etc whereas the Table apparently shows 0 – 
0.3|z|/sz , … 
    Fig. 4A, 4B, § 6. The Beveridge series. Fig. 4A shows the distribution of 
its terms, explanation insufficient. Fig. 4B shows distribution of z/sz for 
correlation between its terms separated by long distances, n = 20, 30, …, 
120. 
    Table 4, § 6. The Beveridge series. Shows the same magnitudes as Table 
3.  
    Fig. 5A, 5B, 5C, § 6. The Beveridge series. Shows the distribution of its 
terms for various values of n. Legend contains obvious mistake and is 
difficult to understand.  
    Tables 5, 6, 7, § 6. The Beveridge series. Shows the distribution of same 
magnitudes as previous tables for n = 5, 10 and 20, but one of those 
magnitudes is z rather than |z| or |z|/sz. 
    Table 8, § 7. Model B. Explanation in text but difficult to understand, see 
Note 14.  
    Fig. 6, § 7. Model V. Shows z/sz for various values of n. 
    Table 9, § 7. Model V. Explanation in text. Necessary addition: one of 
the magnitude shown is ( ) / zz z s− . 

    Fig. 7, § 8. Model V. Shows distribution of z for n = 20. 
    Table 10, § 8. Model V′. Compiled “after the previous tables” with one of 
the shown magnitudes being z, but the corresponding column in the table 
itself is not labelled at all. 
 

Notes 
    1. The author wishes to convey his deep gratitude to mrs. Helene Iliinskaia-Pomerantseva 
for her valuable help on all stages of the elaboration of this paper. E. S. 
    That Note was attached to the summary. A similar Note in main text adds:  
    I am sincerely thankful to N. V. Korotneva for her help with calculations. E. S. 
    2. Now, we simply say covariance. O. S. 
    3. In my previous work (1930), I denoted the empirical correlation coefficient by ρ, and 
the empirical mean square deviation by σ1. Here, I follow Fisher’s notation which is likely 
to become widely accepted. See for example Fisher (1925/1930). E. S. 
    Slutsky misspelled Fisher’s name; see similar mistake mentioned in Note 9. O. S. 
    4. It was possible to state as a fourth assumption the invariable behaviour of probability 
and constancy of connections. I do not discuss this issue since I hope to return to it in one of 
my next contributions. E. S. 
    5. The mean square error is σ rather than σ2. O. S. 
    6. Here, I can only mention the main idea of the applied method, actually somewhat more 
complicated. We have to bear in mind the more general formula 
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by least squares. E. S. 
    7. A more direct method can be based on he expansion of the given [finite] series into a 
Fourier series, see my report at the 1st All-Union Congess of Mathematicians in Kharkov, 
1930 [1936]. E. S. 
    8. Here and somewhat below: a loose expression meaning mean square error. O. S. 
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    9. See Fisher (1921, p. 3) and Romanovsky (1928). Hayashi (1926) is the most detailed 
table of hyperbolic functions. E. S. Slutsky misspelled Fisher’s name. O. S. 
    10. This qualification remark is of no practical consequence since in an apparently 
overwhelming majority of cases the necessary degree of approximation is present. E. S. 
    11. The graphs of that diagram are terminated since, as I explain below, it was necessary 
to apply semi-convergent series. As it seems, this should not be practically important but 
stll regrettable. It is certainly possible to calculate further, but the necessary time and work 
will be more expedient to spend after my hypothesis undergoes thorough critical analysis. 
E. S. 
    12. My remark does not at all exclude the application of the correlation coefficient in 
cases of very small numbers of observation, but it demands distinct understanding of what 
this can, and cannot provide and of the relations between empirical and theoretical 
correlation coefficients. I hope to return to this subject in another connection. E. S. 
    13.That is my main series No. III continued by the numbers of the main series II, see 
Slutsky (1927, pp. 36 Note and 57 – 61). E. S. 
    14. The explanation is certainly inadequate and all the six alleged probabilities of some 
values of χ2 (below) exceed 1! O. S. 
    15. Theoretical numbers ni were calculated for a normal curve with centre at point 0 and 
assuming σ = 1. The actual mean square value of n′ is very close to 1. The probability P, as 
also in other cases in which the scope of the tables is insufficient, was calculated by the 
known Pearson formulas (1900). E. S. 
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XI 

 

On the Existence of Connection  

between the Solar Constant and the Temperature 

 
K voprosu o sushchestvovanii sviazi mezdu solnechnoi postoiannoi i temperaturoi.  

Zurnal Geofiziki, vol. 3, 1933, pp. 263 – 281 
 

Summary [in its original English] 
On the Existence of Connection  

between the Solar Constant and Temperature 
 
    Abbreviation: CC = correlation coefficient 
                           MT = max. temperature 
                           SC = solar constant 
 
    1 – 3. The daily Montezuma values of the SC which have been used here, 
were obtained by the critical examination of the following data: 
    1) The values found by measuring the ordinates on the enlarged photo-
copy of the C. G. Abbot’s diagram in Smiths. Misc. Coll., Publ. 3114, p. 2 – 
3, covering the period 1924 – 1930; 
    2) Ten day SC values for the same period (l. c., p. 12); 
    3) The daily values of the SC published in the Daily Weather Map of the 
United States Weather Bureau for the period from 24 July 1927 till 31 Oct. 
1931. 
    The errors found by the comparison of our values with the Annals of the 
Astro-Phys. Obs. of the Smiths. Inst. (vol. 5), which came to us when this 
study was rather finished, are given in Table 1. Only on one case they are to 
be imputed to the misreading of the Abbot’s diagram, in ten cases to errors 
in the Daily Weather Map, in the remaining 65 cases to the errors which are 
to be found in the Abbot’s diagram republished now without alteration in 
the Annals (vol. 5, p. 246). The mean frequency of the errors being less than 
1:30 and their influence being found quite negligible in the one of the most 
doubtfull cases, it is to be hoped that the results of this study cannot be 
substantially vitiated by the said errors.  
    4. As we intended to prove the existence of the correlations between the 
SC and the MT found by H. H. Clayton, the deviations of the ten-daily 
means from the thirty-daily means of the SC and the MT for Cordoba 
(Argentina) have been computed. Then we have found the st. d. for every 
three-months period of the each year and the analogous st. d. based on the 
data for the whole period 1924 – 1931.  
    A glance on the Fig. 1 tells us that these st. d. are to be considered as 
periodic time-functions. Having calculated 3 (resp. 2) harmonics (see the 
full lines, Fig. 1), we reduced them by the due factors. The momentanious 
st. d. having thus been found, the original deviations were standardized by 
dividing them with the values proportional to these standard deviations. 
    5. From the series of the MT thus obtained we have chosen the partial 
series corresponding to the 56-th till 155-th and to the 156-th to the 255-th 
day of each year and we have thus correlated them with the SC values 1) for 
the same year and 2) for the two preceeding resp. the two following years 
with the additional lags from 0 to 15 days (see Tables 3a & 3b). The all 16 
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correlational functions thus obtained for the corresponding years and a 
specimen containing 4 functions for the different years are shown on the 
Fig. 21. 
    After the second partial series had been divided in the two equal parts, the 
same combinations of years have been considered and for each combination 
the largest from the CC corresponding to the additional lags from 0 to 15 
days was found. They were found thus 8 + 8 + 16 CC between SC and MT 
values relating to the same year and 26 + 26 + 52 CC between the values 
relating to the different years, each CC being the largest (as to its absolute 
value) from the 16 CC corresponding to 16 additional lags from 0 to 15 days 
which were tried for each combination. These CC are shown on the Fig. 3. 
Thus, it is fairly evident that there is no signifiants difference between the 
CC found for the data relating to the same year and the CC found for the 
data relating to the different years, whence it follows that the true CC 
between the values of the SC of radiation and the MT in Cordoba must be 
quite negligible the correlation c. which can be empiricaly found being 
nothing else but the errors of the random sampling. 
    6. Table 4 gives the values of the momentanious st. d. of the deviations of 
the ten-daily from the 30-daily means of the SC calculated for the middle 
points of respective months. In discussing these values the author comes to 
the conclusion that during six months from the twelve the errors there 
involved constitute presumably the greater and the true value the lesser part 
of the values of the said deviations. 
    7. The distributions of the CC relating to cases when SC preceeds MT and 
to cases when MT preceeds SC (in both cases with the lags from 1 to 2 
years) cannot be considered as significantly different, the value of chi-
square being 16.84 and the corresponding probability P = 0.3. Combining 
both we find σr = 0.2672 instead of 0.1 given by the Pearson’s formula (for r 
= 0, n = 100), this formula being inapplicable to connected series, i. e., to 
the series composed by the casual values which are not mutually 
independent.  
    Applying further the theory of the R. Fisher’s function z for the connected 
series developed in our paper (J. Geophysics, vol. 2, No. 1(3)), we find σz = 
0.2873 which leads to the theoretical distribution of the CC (χ2 = 12.84, n′ = 
15, P = 0.5). The values of z being thus normally distributed, it is possible to 
find, for instance, the probability of the deviation 0.65, this being the largest 
CC in the case of the correlation of values of the SC and MT relating to the 
same year. This probability being 0.007 the mathematical expectation of the 
number of such cases in the universe of 256 cases will be 1.8 the actual 
value, as a matter of fact, being only 1. The same theoretical distribution has 
been compared (see Table 6 and 7) with the distribution of the CC between 
the values of the SC and of the MT relating to the same year. 
    The distributions of the Table 6 being at the first sight significantly 
different, the author analyses the discrepancies and comes to the conclusion 
that there is probably no significant divergency, the discrepancies being 
enlarged by the correlation between the CC constituting the set of values 
under consideration. [See also the paper of the present author in the Journal 
of Geophysic vol. 2, No 1(3)]. This point of view is confirmed by the 
distribution of the absolute values of the CC (Table 7), and by the value of 
the standard deviation for the distribution of the Table 6 (0.250) being not 
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substantially different from the value (0.267) of the st. d. of the CC for the 
case of different years. 
    8. There were found further 4·192 CC between the SC values with the 
lags equal, or nearly equal, to one and to two years and n = 40, 60, 80, 100. 
The empirical st. d. of these CC are shown in Table 8 where the last column 
gives the theoretical values according to the formula 
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A, B, C being found by the method of least squares. As we know (see the 
paper of the author cited above) the coefficient  
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   As it was found (see Table 9)  
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it must be admitted that the values of r(t) for t > 31 cannot be regarded as 
negligible. As it has been necessary to postpone the further study of the 
serial correlations, the theoretical value of the st. d. between the SC and the 
MT which (under the supposition of the zero-correlation) is given by 
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could not be evaluated. Nevertheless it is to be noted that the substitution of 
the sum 
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in the preceeding formula gives us the value of σr = 0.30 not substantially 
different from the value 0.27 found above by the direct computation based 
on 832 CC. 
    As it follows from the values of the serial correlations for the SC and for 
the MT given in the Table 9, there is a great similarity between the serial 
correlations for the periods 1924 – 1927 resp. 1928 – 1931, the relatively 
small differences being probably of the casual provenience. This fact cannot 
be underestimated and deserves further studies. 
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1. Introductory Remarks. The Subject of Study 
    Abbreviation: see Summary 
    The solar constant is the amount of energy received [in 1 minute – not 
mentioned by Slutsky] from the sun by a surface perpendicular to the sun’s 
rays, 1cm2 in area and located outside the earth’s atmosphere at the earth’s 
mean distance from the sun. 
    The remarkable investigations of Abbot and his collaborators (Annals 
1932) have apparently definitively proved that this magnitude is actually not 
constant but fluctuates from year to year, from month to month, and perhaps 
even from day to day. Not so is it with the Clayton – Abbot (Abbot 1931, p. 
1) theory of weather which maintains that exactly those alterations in the 
intensity of the solar emanation constitute the most essential cause of all 
meteorological changes which in their totality compose that which is called 
weather.  
    The provided justification of that proposition does not seem convincing to 
us and we aim here to report about the work done for at least partly checking 
it. Clayton’s study that went on year after year led him to conclude that each 
alteration in the SC produces changes of temperature, of the same sign in the 
equatorial and polar zones, and of the opposite sign in the temperate zones, 
and that first of all those alterations are reflected in the equatorial zone and 
in the high latitudes of the temperate zones. These perturbations move in 
waves towards the equator and shift eastward travelling at speeds inversely 
proportional to the length of their periods, and, in the tropical regions, are 
superimposed on the waves generated in the equatorial zone (Clayton 1923, 
pp. 215 – 269). 
    Clayton took into account a large number of stations, ensured a 
geographical coherence of the entire picture, and, last but not least, his 
separate, masterly selected illustrations are inspiring. At first, this creates an 
impression of reliable validity; only after having a closer look you begin to 
notice that the edifice of Clayton’s constructions is not so robust. 
    First of all, it is necessary to remark that the number of stations indicating 
a correspondence between the course of meteorological processes and the 
changes in the SC cannot be especially significant. Since those processes are 
interconnected, such parallelism observed at one station will almost 
certainly be revealed in a number of other stations. It is much more 
important to cover the longest possible period and exactly in this respect 
Clayton’s work leaves too much to be desired. 
    Clayton, to be truthful, determines CCs many times exceeding their mean 
square errors. Thus, at Sarmiento in Argentina after two days the CC 
between the SC and the temperature in winter of 1916 reached 0.82, see 
Clayton (1923, p. 224); on p. 269 he expressly mentions a small probable 
error. For 77 days of observation the CC elevenfold exceeded its mean 
square error. 
    These data would have provided a reliable guarantee had he issued from 
series consisting of mutually independent terms. But, when this condition is 
lacking, as it always does when dealing with wavy series, the usual formula 
for the mean square error becomes absolutely unsuitable (Slutsky 1929; 
1933) and its application can lead to most deplorable blunders. 
    Indeed, Clayton compares series mostly representing deviations of 
moving decadic averages from similar monthly averages. Suppose that 
rhythms of about the same length occur in the series of temperatures as well 
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as in that of the SC. That resemblance will be strengthened by averaging and 
it is not difficult to imagine that when the series are suitably shifted one with 
respect to the other intervals of 3, 4 and 5 wavelengths will quite often 
provide sufficiently high CCs. 
    That, however, is just what Clayton does when he calculates those 
coefficients after each shift up to 15 days. Shoot the flight of a crow in 
Moscow and of another one in New York. Measure the ascent of the wing 
on each film and calculate the CC. If your series are not too long, after a 
suitable shift [of one film relative to the other one] you will likely find a 
high coefficient, but does it mean that the flights of those two crows were 
causally connected? 
    And so, we decided to restrict our investigation by considering one 
station, but to take into account the entire period covered by the data on the 
SC, i. e., the eight years from 1924 to 1931. It was necessary to establish 
whether Clayton’s results pertaining to the country which he especially 
studied and for which they, the results, occurred most striking were 
corroborated2. 

 

2. The Data 
    When beginning our work, the Annals (1932) had not yet appeared 
whereas (Abbot, no reference provided) it was already known that a large 
part of the previously published values of the SC should now be considered 
dated because the methods [of measurement] had been since improved and a 
number of new corrections introduced. We could therefore only base our 
study on the following sources. 
    1. The diagram of the daily values of the SC at mount Montezuma in 
Chile for 1924 – 1930 (Abbot 1931). 
    2. The Table of the mean decadic and monthly values of the SC (Abbot 
1931, p. 12). 
    3. The Daily Map (no date) containing the same data on Montezuma for 
the period from 24 July 1927 to the end of October 19313. 
    Here is how we proceeded. The ordinates on a photo of the Abbot 
diagram (22.5·17.5cm) enlarged 2.5 times were measured twice and all the 
doubtful cases thoroughly considered. A number of values of the SC was 
thus established. Abbot distinguished satisfactory, almost satisfactory and 
unsatisfactory data by differing symbols (S, S– and U) and we were 
therefore able to determine decadic and monthly means in which he 
neglected those of the last-mentioned type. A comparison of our means with 
his was satisfactory; namely, for all eight years the decadic means of the CC 
were 0.990 with fluctuations in separate years from 0.977 to 0.994 and the 
monthly means for all that period, 0.9998. Deviation of the former from the 
latter, 0.963 with fluctuations in separate years from 0.946 to 0.986. 
    We compiled the series of values of the SC selected for the further work 
in three parts: from Jan. 1924 to 23 June 1927 (obtained from the Abbot 
diagram), from 24 June 1927 to 31 Dec. 1930 (the data corrected by critical 
comparison with the Daily Map), and for 1931 (Daily Map, the only source 
here). The Unsatisfactory data were neglected. 
    For comparing the SC with MT, we selected the data pertaining to 
Cordoba (Carta del Tiempo) in Argentina4. They only had a few essential 
gaps (40 days in succession from 1 Jan. 1929, and 15 days both in Dec. 
1928 and Dec. 1931); other gaps were not longer than two days in 
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succession (in the mean, missing was a little less than one day monthly) and 
we decided that it was permissible to fill those [shorter] gaps by linear 
interpolation. 
 

3. Comparison of Our Series of the Solar Constant  

with Abbot’s Final Data 
    Those final data (Annals 1932, Table 31, Montezuma 1920 – 1930, pp. 
195 – 213) only became available after we concluded our work. We may 
certainly ignore the deviations concerning the Unsatisfactory cases, the 
rejection of those cases or the change from gaps to Unsatisfactory or vice 
versa as well as the change from Satisfactory to Almost Satisfactory.  
   There were 76 deviations left (Table 1), 10 of them (with symbol W 
attached) based on the Daily Map, one of those caused by an unfortunate 
reading of the Diagram (28 Oct. 1927). The rest 65 cases, as we ought to 
state regretfully, were mistakes of the Diagram itself, reprinted without 
change in the Annals (1932, p. 246). Concerning their influence on the 
results, the number of mistakes can be thought unimportant.  
    The worst case concerns Jan. – March 1925 (16 mistakes). Ten of the 
other mistakes, each amounting to not more than 1 or 2 units [of the last 
digit] were absolutely insignificant; 51 that had occurred during 81 month 
are left, 1 mistake per 48 days, and they certainly cannot discredit our 
conclusions. 
    As to the worst case mentioned above, we made the necessary 
calculations anew. For 100 days of the comparison of MT with the SC (from 
the 56th to the 155th day of the year) we obtained the highest in absolute 
value CC of 0.39 for a shift of 10 days instead of 0.40 for a shift of 11 – 12 
days according to the previous calculation. Thus, even for the worst case, 
the error turned out to be absolutely inessential. 

 

4. The Treatment of the Series 
    For the sake of convenience we adopted the following artificial calendar 
(Table 2) considering that each year had 365 days. That assumption would 
not have been possible to make for a longer period, but for eight years the 
inaccuracy thus introduced may apparently be neglected. 
    We bear in mind the study of periods lasting 100 days: from the 56th to 
the 155th day and from the 156th to the 256th day of the year. The latter 
approximately corresponds to the period for which Clayton had considered 
the connection between SC and MT in Argentina, and we indicate the 
appropriate calendar dates in Table 2. For the calculations below, months 
were thought to be 30 days long except for December (35 days), and an 
arftificial trick explained below was introduced for ensuring intervals of 
equal duration. 
    Following Clayton, we had to study the correlation between the decadic 
and monthly mean deviations, so we began by calculating the appropriate 
series; the means were taken with respect to the fifth and the fifteenth days 
of the appropriate moving time intervals. For the MT, because of the filling 
of the random gaps in the data (§ 2), the number of consecutive terms was 
always the same (10 and 30); for the SC, we calculated the arithmetic mean 
for the data at hand in those decadic and monthly intervals; following 
Abbot, we did not exclude cases in which even only one observation was 
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available. The units adopted were 0.001cal/cm2 and 1°C and the means and 
the deviations were calculated to one decimal point. 
    The numbers in the first series were rounded to integral units; the same 
was done with those of the second series after multiplying them by 10/3. We 
then calculated the sums and the squares [of those numbers?] for the moving 
twelve three-monthly periods of each year (January – March etc.). The 
lacking data on the SC for Nov. and Dec. 1931 were filled up by the means 
calculated for the same months of the other years [of all other years?]; and, 
when calculating the sums for the first three months of 1924 and the last 
three months of 1931, we replaced Dec. 1923 by Dec. 1931 and Jan. 1932 
by Jan. 1924. For each three months we denoted the square of the mean 
square deviation 2

3,σ ij  where i denoted the month, and j stood for the year.  

    Then, separately adding up the appropriate numbers of each month for all 
the years, we called the 12 numbers 2

3,σ i , i = 1, 2, …, 12, which described 

the mean fluctuation of each three months for all the eight years. These 
numbers are shown on Fig. 1 by small circles, separately for SC and MT. 
There also, are the 2

3,σ ij  shown by points for each year. 

    Becoming thus convinced in the presence of a yearly course of 
fluctuations, we expanded each empirical function 2

3,σ i  in a Fourier series. It 

occurred that they can be satisfactorily represented by three (SC) or two 
(MT) first harmonics shown on Fig. 1 by continuous curves. Their 
parameters were (A0 – arithmetic mean; Ai and Bi – coefficients of cosines 
and sines of harmonic i respectively): 
 
    SC: A0 = 11.191,     A1, A2, A3 = 2.015,     0.947, 0.777  
                                    B1, B2, B3 = 0.153,     3.031, 0.239 
    MT: A0 = 38.958,    A1, A2 =    – 17.255,  4.830  
                                    B1, B2 =     – 2.800,   – 0.136 
 
    For three-months periods the arithmetic means of SC and MT are very 
near to zero, and we will therefore insignificantly violate reality by 
replacing them below by expectations and by considering those latter equal 
to zero. And so, let there be m series of random variables  
 
    xj1, xj2, …, xjN, j = 1, 2, …, m, 
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be the square of the mean square [literal translation] for the appropriate parts 
of all the series with centres at [t + (1/2)]. Then, obviously, 
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    If 2mn is sufficiently large, then, according to the law of large numbers, 
the mean value will be approximately equal to its expectation. But in our 
case 2mn is indeed sufficiently large as can be supposed on the basis of the 
smooth course of the magnitudes 2

3,σ i  which, owing to their meaning, ought 

to coincide with 2
2 ( 1/ 2)ns t + . Let us call 2( ) σtf t =  the instantaneous, and 

2
3,σ i , the mean three-month variability.  

    As proved above, we will have an approximate equality 
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where t is the fifteenth day of month i. Supposing that 2σt  is a sum of several 

sine curves, we recall a well known fact: 2
3,σ i  will then be equal to the sum 

of the same number of sine curves having the same periods and phases, but 
altered amplitudes. Knowing the coefficients of the harmonics for 2

3,σ i  and 

wishing to determine the coefficients of the harmonics comprising the 
instantaneous variability 2σ ,t  it is only necessary to multiply them by  
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where, in our case, 2n = 90, h = 1, 2, 3° for harmonics 1, 2 and 3 
respectively, Note that its 12 ordinates, when expanding 2

3,σ i  into a Fourier 

series, were treated as being equally spaced in spite of the 35-day long 
December. This means that December was squeezed into 30 days so that at 
that stage of our work a year consisted of 360 days. This is exactly why the 
abovementioned values of h were obtained. Now, after calculating the 
coefficients of the expansion of 2σ ,t  and shifting the origin of the system of 

coordinates from mid-January 15.5 days back, we multiplied the coefficients 
of the appropriate harmonics by 4 (for the SC) and divided them by 2.25 (for 
the MT). Here are their final values. 
 
    The solar constant 

    a0 = 44.764, a1 = 8.445, a2 = 4.710,  a3 = 4.819 
                        b1 = 3.048, b2 = 19.387, b3 = 9.704  
    The maximal temperature 

    a0 = 17.315, a1 = – 7.839, a2 = 2.939 
                        b1 = – 3.608, b2 = 1.655 
 
    Now,calculating the appropriate sine curves for each day of the 360-day 
year, then increasing the days of December up to 35 by interpolation, we 
compiled a table of the values of 10/kσt with k = 2 and 2/3 for SC and MT. 
The deviations of the decadic means from the monthly means (see above) 
were multiplied by those values and the results rounded off to integers. Thus 
we obtained final series of standardized deviations. The multipliers k were 
selected so that the absolute values of numbers in the final series  will not 
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exceed 21 or 22 which provided sufficient precision and essentially 
simplified further calculations. 

 

5. Lack of Correlated Connection between the Solar Constant  

and the Maximal Temperature in Cordoba 
    That correlational connection was studied according to the following 
pattern. For MT, two intervals of 100 terms each were selected for each year 
, – from the 56th to the 155th and from the 156th to the 256th day, and two 
more of 50 terms each were obtained by dividing that second interval into 
halves. By comparing the SC with the MT of the day having the same 
number or a number less by 1, 2, … we were able to obtain CCs with 
differing “shifts”. For the larger intervals CCs with shifts of 0, 1, 2, …, 15 
were calculated, and for the shorter intervals, only the CCs maximal in 
absolute value among the same shifts. When determining these maxima, we 
were guided by the maximal values of the products, partly by superimposing 
graphs and we checked our work by calculating a few CCs around the 
supposed maxima.  
    As ascertained above, it was impossible to apply in our case the usual 
formula of the mean square error, but the use of the suitable theory 
encountered some difficulties (see below), so that we applied the following 
method. First, we calculated the CC between the values of SC and MT for 
the same year, i. e., by combining our series in pairs (1924, 1924), …, 
(1931, 1931). Second, we did the same for differing years, i. e. correlating 
MT of some year with the SC one or two years apart in either direction 
(Table 3) [call them combinations A and B].  
    The course of the CCs for combinations A and both large intervals is 
shown on Fig. 2. As an illustration, there also we show 4 correlation 
functions for the second interval and 4 combinations B. Our attention is at 
once arrested by the lack of any essential difference between combinations 
A and B. And it is also seen that even for the former combinations it is 
hardly possible to say that regularities are clearly discerned either in 
magnitude, sign or the shift corresponding to the maximal in absolute value 
CCs. 
    We now take a look at Fig. 3 where all the maximal in absolute value CCs 
are seen in a decreasing order; horizontal lines separate the larger and the 
lesser CCs and we clearly see that CCs of the same magnitude appear in 
both types of combinations and not rarer in the mean in group B. Thus, for 
the period between the 156th and the 255th day there are 8 [and 26] CCs in 
groups A and B; a half of those groups is not less than 0.49 and 0.36 
respectively. However, we still ought to indicate that almost a quarter 
among group B reaches 0.49 whereas only 5 CCs from group A are higher 
than 0.39. It thus occurs that the difference only depends on one CC out of 
the eight which can well be a random occurrence. 
    Then, the insignificant superiority of group A in the series 156 – 255  
is compensated by a superiority of B over A both in the interval 56 – 155 
(the medians almost coincide, but considerably larger CCs are in group B) 
and in the shorter intervals (superior in both respects). 
    From all the above it follows that in Cordoba, if judging by the deviations 
of the decadic from the monthly means, correlational connection between 
SC and MT either does not exist at all, or is quite insignificant and the 
comparatively high CCs are simply maximal values of random errors. 
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    We will confirm this conclusion by another method (§ 7) whereas § 6 is 
devoted to a slight digression. 

 

6. On the Error of Determining the Solar Constant 

    When calculating the instantaneous variability 2σt  for the middle of each 

month (see Table 4), we clearly see the magnitude of errors from which the 
determination of the SC was yet unable to get rid of. Represent the deviation 
of the mean decadic from the mean monthly [values] x as the sum of the real 
deviation ξ and its error ε  and denote the squares of their mean square 
deviations by σ2, α2 and β2 respectively. For any two months we will have 
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    Comparing now all the months in Table 4 with November we find that for 
6 months out of 12 p ≥ 2. It follows that for these months not less than half 
of the magnitude of the deviations which we are studying are errors of 
observation. The deviations of the separate values from the monthly means 
are certainly corrupted by errors even more. It is hardly necessary to note 
that these conclusions, being a by-product of our work on which we cannot 
dwell anymore, should be specified by studying the probable errors of the 
numbers in Table 4. 
 

7. The Mean Square Error of the Coefficient of Correlation  

between the Solar Constant and Maximal Temperatures 
    When shifting the series of SC and MT with regard to each other by 1 or 
2 years and some days, from 0 to 15, we obtained, as stated above, 832 CCs, 
each of them for the two series consisting of 100 terms. Separating them 
into two groups depending on whether the SC precedes MT (a) or vice versa 
(b), we obtain two distributions of the CCs (Table 5, columns a and b). For 
estimating the homogeneity /heterogeneity of those distributuions, we can 
apply Pearson’s formula; in our case it will be 
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    We obtain χ2 = 16.84; for n′ = 155, we have P = 0.3 which shows a 
sufficient correspondence between those distributions. This circumstance 
confirms our assumption that in any case when the shift is 1 year or larger, 
the CCs between SC and MT vanishes, and the empirical CCs are nothing 
but “errors”. Considering now both groups together (Table 5, column c), we 
calculate the mean square error of those CCs: σr = 0.2672. Had our series 
been lacking internal connections, such an error for (r = 0) would have taken 
place if the number of terms n = 1/(0.2672)2 = 14. Or, the presence of such 
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connections influences the square error and the number of terms is lessened 
from 100 to 14. 
    Supposing after Fisher that 
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and, taking into account that in our case we may suppose that the real CC is 
zero, we find that σz = 0.28736. Assuming that z is normally distributed, we 
calculate the theoretical numbers corresponding to the group in Table 5 
(column m)7. If, as it is done after Pearson, the extreme groups having 
theoretical numbers less than 1 are combined with the neighbouring groups, 
we will have n′ = 15 
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and the probability P = 0.5 of a random deviation of the empirical 
distribution from the theoretical. 
    This fact is not devoid of interest since it again comfirms my hypothesis 
formulated in the abovementioned contribution8. In addition, and it is here 
certainly more important, we become able to estimate the most considerable 
CCs which occur when comparing SC and MT for the same years. In Table 
3 we see that out of 256 CCs of that group not a single one exceeds 0.65. 
And since  
 
    z = arctanh 0.65 = 0.7753, 
 
which exceeds the calculated σz = 0.2873 only by a factor of 2.7, it means 
that not a single CC out of those 256 deviates from zero by three mean 
square errors. At the same time, according to the tables of the integral of 
probability, the theoretical number of deviations ≥ 2.7σ is 256·0.00693 = 
1.78 > 1. 
    These considerations, as it seems, decidedly confirm the conclusion 
which we reached by following quite another approach, i. e., that there are 
no grounds for believing that the CC between the SC and MT in Cordoba 
appreciably differs from 0.  
    We will now check this conclusion in yet a different way by comparing 
the distribution of 256 CCs of group A with the theoretical obtained by 
studying the 832 CCs for pairs of different years (Table 6). It is not 
necessary to calculate χ2 here: we see at once that it ought to be very 
considerable and the corresponding probability, very low. We ought to 
recall, however, that, as I had discovered in the quoted above paper, the χ2 
test is suitable, strictly speaking, only for totalities comprised of 
independent elements. It can be applied to totalities of dependent 
magnitudes9, if at all, only tentatively since an entirely adequate criterion is 
yet lacking.  
    It seems that dependence has a stronger influence when the number of 
terms is comparatively small which is well illustrated by Tables 5 and 6. 
Indeed, a close look at the latter rather sharply brings home that the 
deviation between the empirical and theoretical distributions occurs owing 
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to the essential accumulation of few cases in which the smoothness of the 
empirical distribution is grossly corrupted in a way that always takes place 
exactly in distributions of an insufficient number of elements. 
    In our case it is easy to explain this. Table 5 consists of 832 CCs, 52 
groups of 16 terms each (shifts from 0 to 15 days) whereas only 16 such 
groups are in Table 6. At the same time the CCs in each separate group 
between certain series of the SC and MTs provide a series of 16 terms 
corresponding to shifts of 0 – 15 days closely correlated with each other; 
this is indeed revealed by the smooth wavy course of the relevant series 
(Fig. 2).  
    Therefore, if the maximal range of such a wave is about 0.55, say [?], and 
the wave forms a smooth stretched peak, a few consecutive CCs will at once 
be placed in the same cell. Two such waves are sufficient for 6 – 8 
superfluous unities to occur, and they very considerably augment the value 
of the chi-square. Thus, for example, occurred the deviation between 
empirical and theoretical numbers in Table 6, third cell from above (15 and 
7.7). This is easy to become convinced of when having a look at Tables 3a 
and 3b. 
    If these considerations are valid, an essential improvement will happen at 
once when the number of groups is decreased by combining symmetric 
categories, see Table 7. We get χ2 = 9.61 and P = 0.2. In other words, not 
more probable deviations occur roughly once in five cases of independent 
elements. There are therefore no grounds for concluding that that 
distribution essentially differs from those indicated by the theory when 
independence is assumed. 
    Calculation of σr by issuing from data of Table 6 provides 0.250 which 
almost coincides with the case of different years. The conclusion is obvious. 

 

8. Some Preliminary Results of Analysing Series  

of the Solar Constant and Maximal Temperatures and  

Derivation of the Mean Square Error of the Correlation Coefficient 
    If SC and MT are really not correlated, the mean square error of the 
empirical CC should be represented by a comparatively simple formula 
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in which ρx(t) and ρy(t) are the true CCs between xt and xi+t and yt and yi+t. 
The difficulty in applying that formula consists in that, instead, we have to 
make do with the statistical CCs, rx(t) and ry(t); for more details, see my 
paper [x?] quoted above. The errors of these CCs can essentially corrupt the 
results because a large number of terms are being added up. In that previous 
paper the problem was really solved, at least in principle, for the case of ρ(t) 
= 0, t > ω and not large values of ω as compared with n. An example of a 
more difficult case is apparently encountered with the SC. We will assume 
an obviously highly probable hypothesis that the CCs between the values of 
SC separated by a year or more are either zero or negligible.  
    Comparing segments of the series of MT with numbers 156 – 255 taken 
either entirely (n = 100) or by parts with 40, 60 and 80 terms with the 
corresponding segments of the series of SC differing in time by one or two 
years in either direction and additionally shifted by 0 – 15 days we have 
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calculated 112 CCs for shifts of about 1 year, and 80 CCs for shifts of about 
2 years for each of the cases n = 40, 60, 80, 100. Table 8 contains empirical 
mean square errors of the CCs calculated accordingly and we note that for 
shifts of about 2 years all the σ’s are somewhat smaller which perhaps 
argues for the presence of some remaining correlation (in any case, quite 
insignificant) at shifts of about 1 year. This can be checked by a similar 
study extended to shifts of 3 and 4 years. Anyway, the indicated differences 
can be neglected in the first approximation, and this is what we do. 
    Issuing from the known expansion 
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and restricting it to three terms, we determine by least squares that 
 
    A = 9.28, B = – 164, C = 2190.  
 
The theoretical (i. e., the adjusted) values of 2σr  are shown in the last 

column of Table 8. 
    We consider the satisfactory adjustment as a testimonial that the number 
of terms allowed for in the formula above was sufficient and that, as I have 
shown in the paper quoted above, the value of A should therefore satisfy the 
approximate equality 
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Replacing here ρ by empirical CCs r, we can determine an approximate 
value of ω which is calculated by taking ρx(t) = 0 for t > ω; if ω > (n – 1) it 
should be replaced by that difference. 
    The next table (Table 9) provides the values of the serial CCs for SC and 
MT with shifts of 1, 2, …, 31 days and for the 156th – 255th days of each 
year when correlated for shift t with the segment (156 – t; 255 – t). All these 
CCs were calculated for the first and the second half of the 8-year period, 
and for that period as a whole.  
    The following remark suggests itself first of all: the first and the second 4-
year period both for SC and MT provide sufficiently close correlational 
functions at least when the CCs are still more or less considerable; the 
discrepancy between them can be certainly explained by random errors10. A 
curious conclusion is that both SC and MT, after eliminating the 30-day 
level [?], and a suitable standardization of the fluctuations can be considered 
homogeneous, at least in the first approximation. If the future confirms and 
extends that inference to other geophysical series, it will be quite an 
important step in their statistical studies. 
    We have found the value of the coefficident A, A = 9.28. Therefore, the 
right side of (*) is equal to 4.14. We do not know the true CCs or values of 
ρx, but when replacing them by their approximate values rx, the sums of the 
squares of the CCs calculated by means of Table 9 provide 
 



 177 

    
31

2

1

( ) 3.45x
t

r t
=

=∑  

 
and it is obvious that, since the further CCs are doubtless small, a large 
number of them are needed for coming near to 4.14, so that ω should be 
considerably greater than 31. 
    However, bearing in mind that the squared sum of all the rest CCs in the 
series of SC from t = 32 to infinity is a magnitude of the order of 0.5 
(approximately equal to the difference 4.14 – 3.45), we may hope that the 
sums of the products of serial CCs for the SC multiplied by the same CCs 
for the MTs can also be established although somewhat roughly. 
Multiplying the appropriate values taken from Table 9, we find for n = 100 
the approximate equality 
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which is very near to its empirically determined value 0.27. 
    In all probability, the further CCs (for shifts t > 31) are not important and, 
in addition, the error made by neglecting them was possibly compensated by 
dropping the term of order 1/n2. In any case, it is hardly accidental that the 
values of the mean square error of the CCs bewteen SC and MT derived by 
such different methods are so close. 

 

Explanation of Tables and Figures 
    Table 1. It lists the values of SC both adopted by Slutsky and either 
published in the Annals (1932) indicating categories satisfactory (S), almost 
satisfactory (S–) and unsatisfactory (U), or included with symbol W in the 
Daily Map, and the differences between them. 
    Table 2. Lists the month and day for the 1st, 56th, 155th, 255th and 365th 
day of an artifical calendar. Example: the 155th day of 1927 = 3 June 1927.  
    Fig. 1. Cordoba, SC and MT, separately. Shows by points their mean 
variability 2

3σ ij  over three months (Jan. – March, Febr. – April, etc) for 

1924(1)1931. Their mean variability (the deviations of the decadic means 
from the monthly means) over those eight years 2

3σ i  shown by small circles. 

Continuous curves show the sum of three or two harmonics for SC and MT 
respectively. Translation of legend partly tentative owing to difficult 
original text. 
    Table 3a. Lists CCs between SC and MT for period 56th – 155th day, 
years 1924(1)1931, shifts 0(1)15 days; separately shown are combinations 
of same year and of different years. 
    Table 3b. Same for period 156th – 255th day. 
    Fig. 2. CCs between SC and MT for same year (two upper series) and 
different years (the lower series), shifts 0(1)15 days. Additional curves 
shown with inadequate explanation moreover only given in text. 
    Fig. 3. Maximal in absolute values CCs between SC and MT for same 
year (A) and different years (B) for series of 100 and 50 days and shifts of 
0(1)15 days. 
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    Table 4. Lists magnitude 2σt  for each of 12 months, year not indicated. 

Explanation lacking; explanation in text (§ 6) only states that SC is meant. 
    Table 5. Frequency table of CCs between SC and MT for different years, 
separately for SC preceeding MT and vice versa and combined. Theoretical 
magnitudes additionally provided. 
    Table 6. Frequency table of CCs between SC and MT for same year, 
empirical (m′) and theoretical (m) values. 
    Table 7. Same for absolute values of those CCs. Magnitude [(m′ – m)/m]2 
additionally provided leading to χ2 = 9.61 and P = 0.2, see end of § 7. 
    Table 8. Lists empirical mean square errors of coefficients of serial 
correlation for SC, 2σr , shifts of about 1 year and about 2 years, and both 

these shifts combined, periods of 40, 60, 80 and 100 days. Theoretical 
values of 2σr  additionally provided. 

    Table 9. Lists coefficients of serial correlation for SC and MT, shifts of 
1(1)31 day, periods 1924 – 1927, 1928 – 1931 and 1924 – 1931, interval 
156th – 255th day. 

 

Notes 
    1. In § 5 of the main (Russian) text, Slutsky wrote: We show [on Fig. 2] 4 correlation 
functions etc. Anyway, it is difficult to understand what exactly is shown there. In the 
context of this paper, correlation function means values of the CCs. O. S. 
    2. Abbot (Annals 1932, p. 277 and 255ff) has recently put forward a new concept 
concerning the connection between SC with the weather. He assumes that each periodic 
component of that constant is reflected in the phenomena of weather with differing shifts 
moreover variable in time. Separate waves are superimposed upon each other and the 
connection can be lost in the general picture. The material he adduced for proving this 
thesis is still too scanty for being convincing but it is extremely interesting, suggests ideas 
and for the time being compels us to abstain from a final judgement. A check of that new 
theory was not included in our aims. E. S. 
    3. Abbot (Annals 1932, Table 31, pp. 195 – 213) had since essentially corrected the 
values of the SC published there before the indicated date. E. S. 
    4. For Cordoba, Clayton derived one of his best results, CC = – 0.74. True, the CC was 
even higher for some stations in Argentina, – up to – 0.82 in Sarmiento, – but upon 
revealing that there were so many missing days we preferred Cordoba. E. S. 
    5. When being increased by 1, there will be 16 (groups) – 2(connections) + 1 = 15 
degrees of freedom, as Fisher called it. E. S. 
    6. By applying the formula 
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see my paper on the distribution of the errors of the CCs, quoted above, pp. 95 – 96. E. S. 
    [Slutsky twice (here and in § 8) refers to his previous paper quoted above. Actually, he 
did not mention any previous paper, but the page numbers here stated allows to conclude 
that he meant either [x] or Slutsky (1929). O. S.] 
    7. I took the values of z corresponding to r = 0.5 [0.05?], 0.15, 0.25 etc from 
Romanovsky’s table (1928, p. 147). E. S. 
    8. Apparently, Slutsky (1929). O. S. 
    9. It was Fisher, who, in 1925, showed that the chi-squared test was not suited for 
studying dependent trials, see Hald (1998, p. 201). O. S. 
    10. We saw that for sufficiently large values of n and t > 2ω we may take 

σ 9.28 / nr =  for the CC between SC and MT. According to the above calculations, we 

have σr = 0.267 at n = 100 and we may therefore approximately assume that σr = 0.13 at n = 
400. Although all the necessary formulas are available, we are not yet able to calculate σr 
for serial CCs at lesser shifts, but the indicated magnitudes probably provide sufficiently 
correct indications about their order. E. S. 
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XII 

 

On the Solar Constant 
 

K voprosu o solnechnoi postoiannoi. Zurnal Geofiziki, vol. 4, 1934, pp. 392 – 399 
 

Summary [in its original English] 
The Problem of the Solar Constant 

    1. Serial correlations found by C. G. Abbot for the solar constant values 
showing discordant features for the different years scarcely can be 
considered as really significant owing to the relative paucity of the data 
constituting the separate yearly series. The formula of the probable error 
employed by the same author is unapplicable to the series of this art, the 
consecutive terms forming the series being not independent from each other. 
The serial correlations found by the same author for two groups of three 
years each (see Fig. 1) must also be discarded being biased by the method of 
their formation (the similarities and dissimilarities of the serial correlations 
for separate years being the ground of the unification or of the rejection of 
the data). 
    2. The serial correlations published in the present note are the 
correlational functions for the deviations of the ten-daily from the thirty-
daily means of the solar constant of radiation standardized by the factors 
inversely proportionate to the momentaneous standard deviations (for more 
details see [xi]). The said deviations relating to 156 – 255 days of each year 
(1924 – 1931) were multiplied by the respective values t days before and the 
correlation coefficients were then formed 1) for the first four years (n = 
400), 2) for the second four years (n = 400), and 3) for all eight years (n = 
800). Each series contains the correlation coefficients from r0 to r143 (see 
Table 2 and Fig 2). 
    3. In analysing the results the method of the formation of the series under 
consideration must be accounted for. 
    Let x1, x2, … be some series of the mutually independent random values 
taken at random from  the same general population. Then the deviations of 
the art used here [see formula (1) in the text] will be intercorrelated, the 
serial correlations being given by the formula (3) leading in our case to the 
values of the Table 2 (see also the little crosses line, Fig. 2). The values of 
this function for T > 30 being 0, the striking similarity between the 
correlational functions for two consecutive four-years groups must be 
therefore regarded as probably significant. The positions of the maxima and 
minima suggest the hypothesis that the approximate regularity observed 
therein may probably be occasioned by the revolution of the Sun. Whether 
there is a strong period in the solar constant values, or the cycles occasioned 
by the Sun’s revolution are of the pseudo-periodical character we cannot say 
as yet. The problem evidently deserves further studies. 
  

[The Main Russian Text] 
    Abbreviation: CC = correlation coefficient 
                           SC = solar constant 
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    1. Abbot (1922) published the results of his study of the serial 
correlational connection of the SC. He separately investigated each year 
from 1908 to 1916, only leaving out 1912 due to bad conditions for 
observations caused by the eruption of Katmai [a volcano in Alaska]. 
Multiplying the values of SC by their values 1, 2, 3, … days earlier, he thus 
determined the relevant CCs for r1 to r40.  
    It is not necessary to reproduce his graphs; Abbot himself, when 
commencing his study, remarked first of all that the appropriate curves were 
dissimilar. I will only provide the mean course of the CCs for two groups of 
three years each (Fig. 1). I selected the first three years (1908, 1911 and 
1913) because of some similarity in those courses; I entirely rejected two 
years (1915 and 1916) owing to the sharp peculiarity of their correlational 
functions, and I combined the remaining years (1909, 1910 and 1914) into 
the second group. The reader will see that the two graphs indeed indicate 
quite different courses and in many features they are even contrary. 
    If periodic components are present, the correlational function must reveal 
the appropriate periods, and Abbot concludes that not a single clearly visible 
periodicity in the fluctuations of the CCs had been preserved over all the 
eight years of his study: Each season is a law unto itself. That conclusion, 
generally speaking, would not at all been unlikely, but the foundation that 
led Abbot to it ought to be questioned.  
    The main point is that he considers that the discord between the results for 
separate years was essential because the CCs calculated by him often 
exceeded their probable error many times over. However, he determined 
that error (as it is regrettably done very often) by means of a formula only 
suited when connections between the terms of a series are lacking. His 
reasoning therefore falls down and all of his other arguments are up in the 
air. Indeed, whether the discrepancies between the calculated results are 
significant or not; could they be occasioned by a random coincidence of 
circumstances or not, – judging that by the eye without any chances of 
checking youself by a rigorous calculation is certainly impossible1. 
    When considering the graph of the course of the SC we indeed convinced 
ourselves in that that magnitude can by no means be disconnected, be such 
whose consecutive values do not at all depend on each other in the 
stochastic sense. No calculations are even needed for reaching such 
conclusions since the wavy fluctuations in the course of the SC are seen too 
strikingly. These waves are very diverse. Some are short, lasting a few days, 
others cover months and there also are waves, that is, regular lowerings and 
rises, going on for years on end. 
    Under such conditions, if the studied series does not last a large number 
of years, the determination of the serial CCs for the SC seems to be rather 
helpless.  
For coherent series, the number of observations is only enough if they cover 
sufficiently many waves. When there are very few longest waves, they have 
to be treated individually rather than statistically, to be separated as a secular 
component by some statistical method. True, none of these latter can be 
considered quite satisfactory for an objective analysis; it is much more 
rightful to see them as practical tricks for arbitrarily treating a given 
numerical series and providing preparations rather than its real components. 
    When mentioning preparations, I conscientiously wish to recall 
biological analogies, for example microscopic sections treated by various 
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chemicals. Such preparations are not real but artificially created parts of the 
studied organism. And what we discern then represents corrupted pictures of 
reality. Nevertheless, they are known to be useful provided we are familiar 
with the properties of the operations made in the process and precisely 
understand the essence of the inserted corruptions.  
   With regard to the statistical methods of making preparations or at least to 
some of them, we possess such knowledge. Series can be treated in a way 
that neither the periods, nor the phases of harmonic functions, into which it 
can be expanded, will change, only the amplitudes will be corrupted which 
can be easily taken into account. Reducing long-period waves to 
insignificant amplitudes we obtain series sufficiently long compared to the 
essentially important for them shorter fluctuations so that hopefully they can 
be successfully treated.  
    2. Clayton applied one of such preparations (deviations of the decadic 
means from the monthly means) when studying the connection of SC with 
temperature. In the paper indicated above1 I thoroughly analysed his 
conclusions by examining one of his examples (Cordoba, in Argentina). I 
naturally had to apply his methods of smoothing series and thus obtained as 
a preparation  from a number of values of the SC the deviations of the 
decadic means from the monthly means. Since my main aim was to study 
the connection between SC and temperature, some issues concerning the SC 
remained unascertained.  
    In particular, I only determined the serial correlation coefficient for shifts 
of up to 31 day although it seems almost unquestionable that the connection 
does not vanish there. Naturally I wished to fill that gap. Concerning the SC 
we now have CCs for shifts from 1 to 143 days (Tables 1 and 2). Owing to 
lack of time they were only calculated for 800 days rather than for the whole 
material at hand, namely only for 100 days (from the 156th to the 256th day) 
of each of the 8 years 1924 – 1931 for which we had the data on SC. 
    The CCs were calculated separately for both 4-year periods and for the 8-
year period as a whole. A glance at the diagram (Fig. 2) is sufficient exactly 
now, when we have series of the SC from r1 to r143, for becoming convinced 
in the reality of connection. The following reasoning will show why it was 
by no means possible to be satisfied by the previous data, i. e., by series 
ending with the shift of 31 days.  
    We have to do not with the SC itself, but with a preparation. So how was 
it constructed? Denote the values of SC by x1, x2, …, then the numbers in 
our series will be represented by the formula 
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    Suppose that the values of SC, x1, x2, …, are random numbers not 
connected with each other. We know that, when forming moving sums from 
the terms of such a series according to the formula 
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    Above, see formula (1), we have provided the values of Ak for our case 
and now we calculate the CCs by formula (3), see Table 2; on Fig. 2 they 
are shown by crosses. Generally speaking, they are so close to the actually 
obtained CCs that, until we restricted our investigation to series up to r31, we 
could have apparently considered the obtained picture to an essential degree 
as a sole result of smoothing and would have thus completely explained the 
coincidence of the series of the CCs for the first and the second 4-year 
period. 
    It turns out, however, that the issue is not at all as simple as that. Suppose 
that all the coefficients of the serial correlation are zeros, then, up to n30 
their course will be such as shown on Fig. 2 and vanish after r30 [?]. 
However, it would be absolutely incomprehensible why the further courses 
of our series for both 4-year periods will then be so similar. In both series 
we have  
 
    minima at shifts 11, 40 – 41, 68, 83 – 85 [rather 93 – 95],  
    and 115 – 116 
    maxima at shifts 30 – 31, 49 – 54, 83 – 85, 103 – 105  
    and 124 – 125  
 
    Consider that the maxima for the curve describing the entire 8-year period 
are t = 31, then 226, 3272/3, 4261/4, 5244/5, and allow for the possible 
influence of random errors. Then the hypothesis that the course of the 
correlation function reflects the rotation of the Sun about its axis becomes 
very likely since the figures above are close to the synodic period [close to 
those that would follow from the synodic period] of that rotation. 
    This would have provided a material cause for the presence of the main 
wave revealed above in the correlation function. Deviations, if becoming 
real after analysing more complete materials, could have possibly be 
explained as the result of interference with other periodic or pseudo-periodic 
components.  
    We also note that one of the latest contributions of Abbot (Abbot & Bond, 
Publ. 3172), even if not yet proving that strictly periodic components of SC 
do exist, had at least made their existence highly likely. Most convincing 
seems to be the agreement between the phases of the waves of different 
parts of the series and their concord with the phases of the wave established 
for the series as a whole, see waves C1, C2 and C3 with period of 8 months 
and waves D1, D2 and D3 with period 11 months on Fig. 3 of their p. 5. This 
issue certainly deserves further study. 

 

Explanation of Tables and Figures 
    Fig. 1. The mean course of the CCs along the series of SC for shifts of 
1(1)40 days for two groups of three years each (Abbot). 
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    Table 1. Lists CCs in a smoothened series of SC. The coefficients are 
shown for t = 1(1)143 separately for 1924 – 1927, 1928 – 1931 and for the 
period 1924 – 1932 as a whole. 
    Fig. 2. Correlation function for SC separately for 1924 – 1927, 1928 – 
1931 and for 1924 – 1931 as a whole. Crosses indicate the course of that 
function for a smoothened disconnected series. 
    Table 2. Lists the values of the CCs (of 60r) for a disconnected series 
smoothened according to formula (1) and t = 0(1)30. The text makes it clear 
that this table deals with SC. 
 

Note 
    1. Curves shown on Fig. 1 are also unconvincing since Abbot combined the years in a 
group not consecutively, but according to similarity/distinction of the correlation function. 
He thus introduced an element of selection that entirely compensated the increase in the 
number of observations  and utterly corrupted the independence of the series. E. S. 
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XIII 

 

On the Eleven Year Periodicity of Sunspots 
 

Comptes Rendus (Doklady) Acad. Sci. URSS,  
t. 4 (9), No. 1 – 2 (70 – 71), 1935, pp. 37 – 40,  

English version  
 

Communicated by I. M. Vinogradow 
 
    The result of most attempts hitherto made to unravel the riddle of the 11-
year sunspot cycle being rather uncertain (Stumpf 1930, pp. 39 – 41), there 
is no doubt that a real progress in this matter can scarcely be attained 
without a considerable widening of the research field. The most promising 
data seem to be the information about the north [northern] lights recorded by 
historians of past ages, which subject has so far been treated rather 
inadequately.  
    We shall start from the observation that only epochs of the most intensive 
north lights can be considered as fairly trustworthy indices of the epochs of 
sunspot maxima, other cases being scattered through the whole extent of the 
solar cycle. Our set of data is therefore only an excerpt from the full list of 
observations contained in the well-known catalogue (Fritz 1873).  
    To avoid the superposition of “personal equations”1, we have made up 
our series solely from the epochs underlined by Fritz (1878) himself, this 
series beginning with 397 AD and stopping at 1605 to prevent its 
overlapping with the epochs of sunspots min/max (Brunner 1930, p. 77), see 
Table 1, Columns 2, 3. For the time before 397AD we have adopted (with a 
few amendations2) all the data given by Fritz (1878, pp. 37 – 38, 40), the 
reason for this being that the north lights observed in Greece or Italy must 
be considered to be the most prominent ones. Finally, all the epochs have 
been represented by the middle moments of the respective years, 1AD, 1BC, 
2BC, … being designated as 1.5, 0.5, – 0.5, … (Table 3, Column 2)3. 
    Turning to the sunspot min/max, we have the condition 
 
    ∑[(T0 + λk – tk)

2 + (T′0 + λk – t′k)
2] = min,4 

 
λ being the period, T0 and T′0 the initial theoretical, and tk, t′k  the empirical 
epochs of minima, resp. maxima (Wolfer 1902, pp. 95 – 96). We obtain λ = 
11.13724, T0 = 1766.67, T′0 = 1771.685. Since further calculations based on 
these values lead to the deviations – 4.4 and 5.9 (maxima for k = 1, 2) which 
seem to be exorbitant, it was judged that by cancelling the four epochs 
corresponding to k = 1, 2, more reliable results should be obtained. Finding 
thus new normal equations, we have λ = 11.14435, T0 = 1766.912, T′0 = 
1772.064, the respective errors (tk – Tk, t′k – T′k) being given in Table 1 
(Columns 4, 5)6. 
    The following observations can now be made. A) The standard errors 
being σmin = 1.135, σmax = 1.345, the epochs of the minima appear to be 
more stable than those of the maxima. B) The distribution of the ± signs 
being evidently not random, an application of classical formulas of probable 
errors to our case could be considered illegitimate. C) Dividing the series 
into two parts (k ≤ 0, k ≥ 3) we find that α) the arithmetic means of the 



 186 

errors are – 0.03 and 0.05 (min) and 0.24 and – 0.30 (max); β) the mean 
absolute errors are 0.93 and 0.78 (min), 1.08 and 0.95 (max); γ) the error 
distribution corresponding to the first and to the second part of the series do 
not seem to be substantially different. For instance, the errors of the epochs 
of the minima which do not exceed 1.4 are 12/15 = 80% in the first, and 
10/12 = 83% in the second case. D) the results obtained seem to be 
consistent with the hypothesis of a unique period, the series, however, being 
not large enough to preclude every possibility of doubt. 
    If we now consider the polar [the northern] lights data, we find that the 
numeration [enumeration] of the epochs not being given a priori, the 
problem is to be treated by successive approximations. First stage. Let us 
round up the epochs of polar lights (Table 3, Column 2) by subtracting 
throughout 1/2, and the theoretical epochs of the sunspot maxima in the 19th 
century by cancelling the decimals. The last two figures of these epochs  
 
    05  16  27  38  50  61  72  83  94 
 
shall now be considered as epochs of maxima for every century, thus putting 
λ = 111/2 as our first approximation. Taking the terms of the last series (τk) 
and those of the former one (tk) to be mutually correspondent if |tk – τk| < 
1/2λ, we find ∑(tk – τk) = 27. Then, the middle term of the second series 
being 550, we find τk = 550.75 for the corrected origin. 
    Second stage. We have to compare now the suppositions 9λ = 100 + η, η 
= 0, ± 0.1, ± 0.2, ± 0.3, … To this end the above series of the polar lights is 
to be confronted against every set of values given by the equation 
 
    τ = 550.75 + kλ 
 
for each of the values of λ just named with the subsequent rounding up of 
the values of τ in the manner described above. Shifting then the origins so as 
to make the respective sums of the errors vanish, we find as a matter of fact 
that, with any λ, the correspondence between the terms of the respective sets 
has nowhere been upset by this operation. The corrected sums of the squares 
of the errors (ε2) have then been found to be as follows [Table 2]. The 
numeration of the epochs of the north lights (Table 3, Column 1) remaining 
identical in the interval – 0.2 ≤ η ≤ 0.1. 
    The circumstance just mentioned allows us to take the last step by solving 
the normal equations corresponding to the condition  
 
    ∑[(τ0 + λk – tk)

2 = min 
 
k being the ordinal numbers found above and tk the values of the empirical 
epochs of the north lights (Table 3, Column 2). Hence we obtain λ = 
11.10266, τ0 = 550.783, the deviations of the empirical epochs from the 
theoretical ones being given in Table 3, Column 3. 
    It can easily be shown that the probability of a random provenance of the 
deviations found by us must be held for a very slight one. We shall not, 
however, discuss this topic, there being another test of a considerably more 
conclusive character. Let us extrapolate the theoretical values on the basis of 
the parameters just found and compare the values obtained with the 
empirical values of the sunspot maxima. The respective deviations (Table 1, 
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Column 6) exceeding on the average very little the errors of the direct 
method (Table 1, Column 5), the excellence of the agreement would appear 
obvious. There would scarcely remain any doubt as to the significance of the 
result, should we not remember that some sources of error may be 
eventually inherent in the “personal equation” of the author to whom we 
owe the data. The problem undoubtedly deserves further study7. 
 

Notes 
    1. Even if in inverted commas, this expression is applied in a greatly generalized 
meaning; in astronomy, it is a precise term, here it means something like personal 
inclination. An additional explanation was desirable: why did Slutsky believe that the 
previous data were reliable and why no new information was not needed? O. S. 
    2. 208BC has been included in the group 202 – 199BC, the epoch 204BC being taken as 
representative of the whole group. We have also substituted 217BC for 216BC, which is 
taken by Fritz to represent the group 218 – 215BC. E.S. 
    3. Years 1AD, 1BC and 2BC are “designated” 1.5, 0.5 and – 0.5. How come? O. S. 
    4. Slutsky wrote down the condition of the method of least squares (but that expression is 
lacking) and below he mentioned normal equations, but did not provide them. And what did 
he mean by the “initial theoretical epochs” of sunspot extrema, and where did he find them? 
He did not explain the meaning of k; apparently it is the number that Fritz (1873) had 
attached to a group of consecutive years. O. S.  
    5. Here and below, all decimals actually used in the calculations are given, the question 
of the significance [of the final result] being postponed to a further stage of the study. E. S. 
    Slutsky issued from numbers with six significant figures and calculated the periodicity 
with seven figures which was absolutely senseless and kept to the same approach in other 
contributions as well, see for example [xiv, Note 7]. O. S. 
    6. Slutsky rejected the cases k = 1 and 2 and Table 1 contained new calculations. 
Nevertheless, those cases are included there and the deviations did not diminish and neither 
did the periodicity change (both times it actually was 11.1 years). Perhaps the error of the 
new determination was less, but he did not estimate it which in itself was an essential 
shortcoming. O. S. 
    7. All three Tables explained in text. O. S. 
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XIV 

 

Statistical Experiment As a Method of Investigation.  

Critical Notes on the Problem Earth – Sun 
 

Statisticheskii eksperiment kak metod issledovania.  
Kriticheskie zametki k probleme “Zemlia – Solnze”. 
Zhurnal Geofiziki, vol. 5, No. 1, 1935, pp. 18 – 38 

 
Summary [in its original English] 

On the Statistical Experiment As a Method of Empirical Research. 

Critical Essays to the “Earth – Sun” Problem 
 
    It is highly probable that by far the greatest part of the statistical problems 
in geophysics cannot be reasonably treated under the supposition of the 
independent probabilities. The decisive question of the significance cannot 
be therefore settled in such cases with the aid of the usual formulae of the 
standard errors. Some illustrations of the fallaceous [fallacious] conclusions 
reducible to this source are treated in §§ 2 and 3 (F. Baur, C. G. Abbot, H. 
Clayton). 
    The difficulties do not belong however to those which could be easily 
obviated with the aid of an adequate theory (see the papers by the present 
author [in the Bibliography]), the respective formulae leading for the most 
part to calculations of a rather prohibitive art to be used in ordinary practice, 
not to say that the number of observations may be often not large enough to 
secure the significance of the results. These are therefore the grounds why in 
some cases the method of statistical experiment can be reasonably applied in 
the empirical research and the approximative solutions of the significance 
questions obtained, more apt however to reject than to accept definitely a 
hypothesis in question. 
    The paper contains some specimens of the application of this method to 
the critical examination of results obtained by several students in the 
problem of the influence of the fluctuations of the sun’s activity on the 
terrestrial phenomena. 
    Central Institute of the Experimental Hydrology and Meteorology 
 

Introductory Remarks 
    The statistical experiment (extraction of tokens from an urn, tossing coins, 
etc) had played an important part in the development of statistical thought. 
By illustrating various propositions of the theory of probability, experiments 
showed that it was possible to create conditions under which the premises of 
independence of trials and constancy of [the appropriate] probability 
actually took place. The discussion of the patterns and results of various 
experiments repeatedly prompted discussions and led to deeper penetration 
of the problems studied.  
    However, statistical experiments had and have to fulfil some essential 
functions even beyond the field of the most general issues of the theory of 
probability. When the demands of practice outstrip theory, exactly they have 
to provide the solution that in essence should have been obtained purely 
mathematically. For example, experiments have been repeatedly applied for 
estimating the degree of approximation of some formulas only strictly valid 
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under limiting and often practically unattainable conditions. In some cases 
the correctness, or, more precisely, the applicability of a formula derived by 
non-rigorous considerations was ascertained experimentally hoping that it 
will prove at least approximately correct. 
    The above can be illustrated by many examples but it would have, 
however, diverted us far from our goal since that function of statistical 
experiments, whose significance we would like to show by means of a small 
number of examples, essentially differs from those indicated and was until 
now barely practically applied. That goal again certainly has to do with such 
problems that either had not been yet theoretically solved, or if for some 
reason such solutions cannot be applied. However, unlike the described 
above, the statistical experiment must investigate some concrete material 
problem rather than check formulas.  
    A typical case, as it appears, will be such that either some statistical 
magnitudes are calculated or some actual coincidences established; had we 
been sure that these latter were not random, that the appropriate magnitudes 
are near to each other not accidentally, or do not accidentally deviate from 
zero, then definite conclusions about the essence of some known processes 
(for example, about their mutual connection) should have followed.  
    It is for cases in which at present we do not know any formulas for 
solving such problems, that we provide the method of statistical 
experimentation1. That method can be understood both in its narrow, proper 
sense as a real experiment creating sequences of random numbers 
corresponding to the conditions of the problem at hand, and in its somewhat 
wider sense. At present, we will not yet separate the two possibilities; later, 
after collecting sufficient knowledge for logical generalizations, that will 
perhaps happen. 
    We may preliminarily denote the second case as the method of fictitious 
propositions. Its logical aspect approaches that of the first version, although 
the data for comparisons are taken not from the results of specially carried 
out experiments, but from observing processes that really occur 
independently from us. The examples below illustrate both cases which we 
can show in a general way by the following patterns. Imagine two graphical 
registrations of some wavy processes, A and B, with a striking coincidence 
of maxima and minima. After somehow measuring the degree of their 
closeness, we ask ourselves, how probable is it that such closeness had 
occurred accidentally. If that problem cannot be solved theoretically, we 
have two possibilities open. The first one is what we called a statistical 
experiment in its narrow sense. It will consist of  
    1) Constructing a theoretical pattern of an experiment capable of 
reproducing an unbounded number of specimens of random functions2 
whose statistical characteristics coincide in the mean with those of one of 
the processes;  
    2) Actually providing such specimens; 
    3) Superimposing those on the second process and approximately 
calculating the probability with which the observed closeness would have 
occurred purely randomly. 
    For being the most convincing, the second [version of the] method 
presumes that the graphical representation of one of the processes, A, is 
much shorter than that of B. Various intervals of B can then be applied in 
the same way as the experimentally reproduced curves were made use of in 
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the previous pattern; in other respects, the logical deliberations are 
absolutely the same. 
    Namely, in both cases we may think thus. Suppose there is no connection 
between A and B, then there would be no reason for the coincidence of the 
extrema. Had both curves [of the processes] been strictly periodic, had their 
period been 10 years (say), with observations only available for each year 
rather than registered continuously, they, the curves, could have only 
coincided once in ten years. That probability, however, should not be 
considered as an argument for the hypothesis of connection because our 
curves, as it usually happens, were discovered by the researcher among 
many other pairs and in all probability turned his attention to them owing 
exactly to their coincidence.  
    The investigation can be based otherwise. Our processes, as it occurs 
almost always, are not strictly periodic. The intervals between the 
[consecutive] points of maximum (and minimum) are sometimes longer, 
sometimes shorter and therefore, when superimposing curve A on curve B 
so that it coincides in the best possible way with another segment of B, the 
degree of closeness will generally change. And, when superimposing the 
first maximum of A not on the first, but on the second, the third, … 
maximum of B, we will obtain a series of different degrees of closeness. 
Supposing that there really is no causal connection between the two 
processes, so that their coincidence is random, there will be no reason for 
that degree to be minimal in their actual arrangement rather than in some 
other imagined case. If, on the contrary, for example from all 20 fictitious 
possible comparisons the same tight, or even tighter closeness is observed in 
10 of them as in reality, the hypothesis of connection will be abandoned, but 
if the real closeness will be the tightest of all the 20, it will testify for that 
hypothesis. 
    Here, the method is restricted by the length of the series of observations 
which can be increased by various means. Thus, it is possible to join the 
ends of a series and transform it into a ring with the first maximum 
coinciding with the last one. Or, to change the direction of time for one 
curve and superimpose AA′ at first on BB′, then on B′ B. And, for attaining 
another goal, cut one of the series into intervals (from one maximum or 
minimum to the next one etc) and create many new series by randomly 
shuffling them (Marvin 1930). Here, we return to statistical experimentation 
in its narrow sense.  
    Once the problem is solved theoretically, the experimental method is 
certainly superfluous3. However, new unsolved problems will appear and a 
field for applying the statistical experiment is apparently secured for a long 
time if only we will learn how to use it in the most effective way. 

 

I 

1. On the Essence of Difficulties in Applying Statistics to Geophysics 
    Statistical series with which we have to deal in geophysics have a number 
of peculiar features hampering their stochastic treatment. 
    1) First of all, independence of “trials” occurs not at all frequently, 
consecutive terms of the series are usually mutually correlated. I have called 
such series connected. The formulas of the classical theory of errors are 
certainly inapplicable to them. 
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    2) That circumstance leads to the waviness of the appropriate processes, 
often so distinct that “latent periodicities” are unintentionally suspected. In 
most cases this is an illusion, and even if there are periodic components, 
their discovery is much impeded by those pseudo-periodic components of 
the process4. 
    3) Geophysical processes are often non-stationary: their level and 
standard deviation, their correlation functions change in time. Those 
changes can occur either periodically, being for example connected with the 
seasons, or having the essence of secular movements. In either case they 
give much trouble not yet overcome by theory.  
    4) Even if rudiments of a theory are already created, a number of practical 
difficulties can occur. In case of connected series, all the usual formulas for 
estimating errors are replaced with other ones, much more complicated. 
Their application often demands cumbersome calculations; still, if the 
investigator resolves to go ahead, the results can be doubtful owing to the 
available series being insufficiently lengthy for ensuring reliable 
conclusions. This is why it is necessary to continue searching for new, more 
convenient solutions not forgetting about the methods of statistical 
experimentation but applying and developing them by practical animated 
investigations. See my related papers of 1927 – 1934 listed [in the 
Bibliography]5. 

 

2. Examples of Mistakes 
    It is impossible to warn too often how usual are in geophysics mistakes 
occasioned by ignoring the peculiarity of the statistical structure of its 
processes. Examples can be multiplied ad infinitum, and I provide a few 
illustrations at random. 
    In essence, Baur (1928) published quite a good little book, but a number 
of formulas contained there cannot be applied to connected series without 
his even mentioning that fact. For example, he (pp. 23 – 24, 49 – 50) makes 
use of the Pearson formula for the square error6 of the correlation coefficient 
in a case in which it is not at all difficult, at least for one of the considered 
series, to reveal its connectedness. 
    One of the variables being compared there is the [set of] deviations (xi) of 
November mean values of the difference in atmospheric pressure between 
[…] from the corresponding means for 1874 – 1923 (yi). For providing an 
idea about the possibility of considering that our series lack connectedness, 
we will count the number of complete iterations [runs], i. e. sequences of 
numbers of equal signs ending on both sides by numbers of the opposite 
sign (the first element [term] being considered as being adjacent to the last 
one). The results are provided in Table 1. When comparing the actual and 
theoretical numbers (Bortkiewicz 1917, p. 85) 
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we see that the numbers of the first series (vx) are behaving here as random 
and independent, but those of the second series (vy) reveal a strikingly 
different picture. The mean length of the iterations in the series of (vy) is λ = 
50/16 = 3.1257 whereas theoretically (Bortkiewicz 1917, p. 90) 
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    Here, p and q are the probabilities of the cases of the first and second kind 
[?] respectively and N is the total number of cases. Suppose that p = q = 1/2, 
then, for N = 50, Eλ = 2, σλ = 0.2828 so that the actual mean length differs 
from its theoretical value by exactly its fourfold standard error. It follows 
that Baur should not have applied here the formulas derived for independent 
trials8. 
    When considering now another work of the same author (Baur 1932, pp. 
15 – 18), we find the same method applied to the problems directly 
interesting us. He provides coefficients of correlation between the solar 
constant and sunspots; yearly mean temperatures of tropical island 
[meteorological] stations, and, again, sunspots, and each time accompanies 
them by their “square errors” calculated by means of the Pearson formula. 
However, all the series he deals with are composed of terms certainly 
connected with each other, and his arguments founded on an inapplicable 
formula are obviously unjustified.  
    In our third example (Abbot 1922, pp. 183 – 184), we consider the 
author’s proof that the oscillations of the solar constant are real. He 
compares them with the changes in the distribution of radiation along the 
diameter of the solar disc; in the centre, the disc is brighter than at the edges 
(that contrast slightly changes from day to day, differently for each 
wavelength). Those changes cannot be attributed to the influence of the 
Earth’s atmosphere so that establishing a connection between the 
oscillations of the contrast and of the solar constant is tantamount to those 
latter also being “real”; i. e., it testifies to the changes in the Sun itself rather 
than to being only caused by atmospheric influences. 
    For my goal, it is not necessary to go into details; suffice it to say that 
Abbot puts forth a rather complicated hypothesis concerning the physical 
essence of the connection studied. He decomposes the complex of causes 
into three factors two of which act in one direction, and the third one, in the 
opposite sense. Depending on the prevailing direction, the contrast can 
augment either with the increase or decrease in the solar constant.  
   That hypothesis was certainly formulated for explaining the facts, and the 
power of the proof was only based on the comparison of the calculated 
correlation coefficients with their probable errors. Because [?], as the author 
states, 
 
    According to the theory of probability, such a high degree of correlation, 
positive or negative, lasting during several long intervals of time, especially 
in 1913 and 1916, would have hardly occurred randomly even once in 
several thousand cases. 
 
    The author then provides examples of correlation coefficients and their 
probable errors: 
 
    – 0. 363 ± 0.097 and 0.601 ± 0.067. 
 
    In accord with the above considerations, I am compelled to repeat that 
Abbot in vain swears on the theory of probability and that his arguments in 
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the form furnished are absolutely unjustified. And it is possible to go on 
drawing suchlike examples for an infinitely long time9. 

 

3. On Some Other Mistakes in Applying the Correlation Method 
    I (1927b) studied in detail an example of a wrong application of the 
correlation method by Clayton (1923). This point is important, and I briefly 
indicate the essence of his main mistakes. 
    Clayton believes that the changes in the solar constant directly or 
otherwise cause temperature changes. A certain time period passes between 
act and effect, and, naturally, it can differ depending on various 
circumstances (latitude and geographical location in general, etc), so he 
calculates the correlation coefficients between that constant and the 
temperature at some stations each 0, 1, 2, …, 15 days.  
    The magnitude of the time shift corresponding to the maximal in absolute 
value correlation coefficient indicates some geographic regularities, and the 
maximal coefficients are so large (of the order of 0.60 – 0.70 and larger) that 
the author does not at all doubt that the calculated coefficients are real. At 
the same time, the formula for the square error which he uses is inapplicable 
because of the waviness of the series. Another circumstance that should be 
especially stressed, and would have been important even for a correct 
formula for the errors of the correlation coefficients, is to be accounted for. 
    The point is that in connected series those coefficients themselves 
corresponding to differing shifts also constitute a wavy function. The square 
error of the correlation coefficient for a certain shift is not at all the same as 
for the maximal coefficient of some set of shifts. When observing the flight 
of two crows, one of them in Moscow, the other one in New York, is it not 
evident that, although the real correlation coefficient between their 
movements equals zero, the maximal coefficient will always be near unity if 
only a small number of flaps is considered and the series are suitably shifted 
one from another. 
    Even without having the proper formula for the error, our author could 
have come near to the correct result had he not restricted himself to 
correlating series for one year or a few years but rather made use of all his 
data and studied the alleged regularity over 10 to 15 years. As a check, it 
could have been possible to correlate the solar constant for a series 
belonging, for example, to a winter of some year and the temperature shifted 
by one, two or three years forward or backward.  
    I have done it and became convinced that the maximal correlation 
coefficients attain the same large values about as often when comparisons 
are both “absurd” and normal10. In spite of the coefficients of correlation 
being rather large, the power of their testimony for the existence of a 
connection was absolutely insignificant.  
    Even when only considering “normal” comparisons, it is seen that 
Clayton obtained large coefficients of correlation for roughly 100 days in 
1917 only because he either accidentally came across a year favourable for 
his hypothesis, or selected it from a number of less (and certainly much less) 
favourable years. In geophysics, an investigation of material as complete or 
extensive as possible is even more necessary than in other branches [of 
natural sciences] characterized by a simpler inner structure of series. 
    Investigators should be warned against one more danger. Suppose we 
have series 
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    x1, x2, …, y1, y2, …, z1, z2, …, u1, u2, …, v1, v2, …, etc. 
 
If y, z, u, v, … are correlated one with another, they will often also correlate 
with some x. If the parallelism between the courses of the processes x and y 
provides an idea of connection, the parallelism between the x series and a 
more or less sufficiently considerable number of other series will certainly 
essentially strengthen our opinion. And this is what the comparison of the 
graphs of the courses of the solar constant and of the temperature for a 
rather considerable number of stations furnished by Clayton are doing. 
    However, that impression is illusory. Many processes taking place on our 
planet are, owing to more or less understandable causes, connected with 
each other and are going on roughly in parallel. A process taking place in 
the Sun, when being considered for a restricted period of time, coincides 
with each of them or with neither, the coincidence can sometimes be 
random, and, generally speaking, the number of coinciding series does not 
in itself augment the power of proof.  
    The geographical connection of some regions with correlation of the same 
sign should be quite similarly considered as a false, or at least as a doubtful 
argument. That fact is also based on the link of meteorological processes 
taking place over large portions of the globe so that the coefficient of 
correlation between some solar and terrestrial processes (concerning various 
stations) cannot be chaotically distributed over the Earth’s surface. Without 
studying the stability of the regions of positive and negative correlation over 
time, nothing follows only from regularity over space. 
    A number of researchers (Clayton 1923; Helland-Hansen & Nansen 1917 
et al) indicate that positive parallelism between a solar and a terrestrial 
processes at some station is often replaced by an opposite course, then, 
sometimes returns back, etc. It ought to be said that such a picture always 
speaks rather for an absence of connection than for its presence. If we deal 
with waves (on the Earth and the Sun) of approximately the same order, a 
parallelism lasting for a few of them can readily be accidental; and when 
non-coincidence starts, it will be natural for it, again, to last for a few 
periods. It would be different had we seen a transition from high positive to 
high negative values of correlation coefficients with a more or less sharp 
decrease of the portion of coefficients near zero, but I have not seen such 
cases in the literature. 
    Consider also that the chances of a random parallelism between processes 
strongly heighten when the two appropriate series were previously smoothed 
in the same way which is also usually done. 
    The indicated causes are already more than sufficient for extremely 
hampering both an appraisal of separate investigations of the discussed issue 
and a formulation of a sensible opinion about the degree to which they really 
confirm each other. A thorough criticism is needed for which a simple or 
even the most thoughtful reading is often absolutely not sufficient without 
checks by calculations, sometimes up to treating the data anew. 
    I allow myself to provide an example of a personal nature. The reading of 
Clayton, especially of his work (1923), resulted in their being very 
convincing. However, their critical study indicated a large number of 
doubtful links in his argumentation, but the measure of the revealed doubts 
remained absolutely unknown until treating the material anew made it 
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possible to conclude that at least one point in his proofs does not hold. What 
I was unable to recalculate even now remains only not worse than doubtful.  

 

II 

4. The Temperature over the Whole Globe and the Sunspots:  

an Example of Estimating the Reality  

of the Correspondence between Two Curves 
    A parallelism between two processes was by no means always established 
by calculation. More often, especially in the older literature, the curves were 
simply compared with each other by subjectively appraising the degree of 
their mutual correspondence, i. e., by experience, tact and feeling. 
    The rightfulness of such a method cannot be summarily denied if only its 
application can be properly restricted and checked by more rigorous means. 
Practically, however, it is often natural to suspect that in essence you are 
dealing not with a method, but with its absence. Moreover, it seems 
necessary to make every effort for discovering and developing methods and 
tricks for at least partly checking if not completely replacing subjective 
considerations and appraisals, and to regard all this as one of the most vital 
issues of geophysics. 
    I borrowed my next example from Helland-Hansen & Nansen (1917, p. 
170), see Fig. 1. These authors obtained temperatures of the globe by issuing 
from mean temperatures over various regions (Köppen 1914 from data 
collected by Mielke, 1914). The authors themselves (pp. 184, 185) conclude 
that  
 
    The correspondence between these curves is striking (ist ja auffalend), 
and there is no reason to doubt the presence of the periodicity of the 
sunspots in the variations of the air temperatures of the terrestrial globe. 
 
    They calculated the coefficient of correlation between the indicated 
curves (but did not provide its value) and constructed a regression equation 
that allows to calculate the temperature from [data on] sunspots, and graphs 
of those calculated temperatures and of the deviations of actual temperatures 
from them. 
    According to our estimation, the calculated temperature curve and the 
curve of deviations, when being appraised by the naked eye, are 
characterized by an equal measure of fluctuation so that the correlation 

coefficient should be near to 0.5 0.707= 11 which rather corresponds with 
the impression from the two curves that are here correlated. For independent 

trials, the square error would have been (1 0.5) / 0.98 0.05− = 12, so that the 
correlation coefficient being 14 times larger [14·0.05 = 0.70] would have 
been quite justified. Even for r = 0.5 (in this case, it could not at all be less) 
the ratio would have been 6.6, also more than enough for proving the reality 
of the connection. 
    That approach is, however, banned owing to the lack of independence of 
the observations; also, for calculating the error of our coefficient according 
to the proper formula the series are insufficiently long, so that we will 
consider this point in the following way. 
    The two given series doubtless have approximately equal mean periods of 
oscillation which already somewhat testifies to the presence of a connection. 
However, it is extremely difficult to estimate the weight of this argument 
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since it indeed concerns only one of very many series studied by the authors 
mentioned. It would not at all be surprising if some of those series had a 
mean period near to that of the sunspots and we will therefore only apply 
that result for analysing rather than considering it as a proof of connection.  
    Fig. 1 shows us that the maxima and minima of temperature almost 
always either coincide or are very near to those of the sunspot curve turned 
upside down. Had the length of the mean period of one curve been only 
accidentally equal to the same length of the other curve, their observed 
mutual arrangement would not have at all followed. The coincidence of the 
extrema, if sufficiently tight, indeed testifies for a connection. Since we are 
dealing with their coarse structure seen by the naked eye and neither curve is 
at least strictly periodic, that coincidence means that the longer (the shorter) 
waves and half-waves of one curve correspond with the longer (the shorter) 
waves and half-waves of the other one.  
    It is necessary to estimate, at least approximately, to what extent is the 
actual mutual arrangement of the curves distinguished from the totality of all 
the other possible arrangements which, supposing that connection is lacking, 
can nevertheless be seen as equally probable. This idea can be more 
definitely realized by different means. Let us imagine that, for example, 
both curves are wounded around a cylinder with the first minimum [of 
each?] coinciding with the last one. Then, turning one ring relatively to the 
other by one year, two years, etc, and each time calculating the squared sum 
of the distances between the corresponding extrema of the curves, we can 
determine for how many arrangements is that sum not larger than for the 
actual arrangement.  
    I have indeed done that. First of all, I determined the years when the 
sunspot curve had maxima by issuing from the data provided by Brunner 
(1930, p. 77). Since the mean yearly temperature should correspond on the 
graph with the middle of the appropriate yearly interval, I assumed the same 
epoch for the sunspots; for example, the year 1905 means the middle of that 
year, 1905.5. Therefore, when rounding off the decimal parts of the epochs 
provided by Brunner, the epochs 1883.9, 1889.6, 1894.1 etc became 1883.5, 
1889.5, 1894.5 in his notation and 1883, 1889 and 1894 in ours. 
    This, then, is the origin of the first column in Table 2. The second column 
shows the years of extreme temperatures. Since Helland-Hansen & Nansen 
only provided a graph whereas we were mainly testing a method, we 
allowed ourselves to determine the epochs of the extrema more or less by 
naked eye. The introduction of some subjective moments was of course 
unavoidable since (Fig. 1), apart from the main extreme points 
corresponding to those of the sunspots, the temperature curve has 
additional smaller bends. For example, I am not sure whether rejecting a 
“loop” in the beginning of that curve and attributing the first minimum to 
1915 was correct. 
    I have then proceeded thus. I prepared a band divided into equal intervals 
5mm long and marked on it the extreme years of sunspots from 1816 to 
1906. I did the same for the temperature curve, only the band was longer 
and the years, from 1815 to 1905, were repeated with the year 1905 once 
more shown as 1815. It is easily seen that these bands replace the rings on 
the indicated [imagined] cylinder.  
    The total number of all mutual arrangements is 90, or 180 if the left end 
of one band is [additionally] considered as its right end and vice versa. It is 



 197 

not necessary to test all of them since the squared sum of the distances 
between the nearest in the mean corresponding points takes minimal 
numerical values 16 times in each of the two versions. All the other squared 
sums will be certainly larger, and we may disregard them. 
    Calculations are extremely simple. First, we determine the deviations of 
the extrema of the temperature curve from the same nearest points on the 
sunspots curve at its main (actual) arrangement. They are 
 
    ε1 = – 1 (= 1915 – 1916); ε2 = 0 (= 1923 – 1923);  
    ε3 = 1 (= 1830 – 1829), etc. 
 
    The mean deviation is (1/17)∑εi = 4/17 < 0.5. We conclude that ∑εi

2 = 
39.5 for that arrangement cannot be lessened by shifting the temperature 
curve one or two years in either direction. The next minimal ∑εi

2 will only 
be achieved by a more considerable shift. 
    Now we move the temperature band to the left so that its nearest 
extremum, 1823, coincides with the initial extremum of the sunspots band, 
1816. We will have 
 
    ε1 = 0 (= 1823 – 1816 – 7)13; ε2 = 0 (1830 – 1823 – 7);  
    ε3 = – 3 (= 1833 – 1829 – 7), etc., (1/17) ∑εi = – 1. 
 
    It follows that ∑εi

2 can be lessened by shifting the temperature curve by 
one year to the right [instead of the above]; all the εi will increase by a unity 
so that 
 
    ε1 = 1; ε2 = = 1, ε2 = – 2, etc, ∑εi

2 = 36.5 
 
which again is the least possible; it cannot be lessened by further shifting by 
one or two years in either direction. Had that sum exceeded or been equal to 
39.5, see above, we would not be interested by its values at neighbouring 
arrangements. That is not, however, the case, and we calculate those values. 
They are 53.5 and 53, both larger than 39.5. 
    In that way, we find all the results shown in Table 2, and it is seen that in 
7 arrangements including the actual out of 180 the squared sum of 
deviations [differences] between the corresponding extrema do not exceed 
its value for the actual arrangement.  
    I should certainly admit that the above calculations only provide some 
tentative rather than rational determination of the probability. Remembering 
that reservation, the “probability” that the observed tight proximity of the 
observed extrema of the curves could have occurred randomly is equal to 
7/180 = 0.039. For the normal distribution, such a probability corresponds to 
deviations 2.1 times exceeding the standard deviation and in such cases it is 
admissible to suspect that the corresponding result was not random, but that 
cannot be practically certain. 
    Our trick can be modified in different ways. Thus, the calculation of ∑εi 
can be replaced by determining the coefficients of correlation between the 
two curves; or, in other words, by determining the number of mutual 
arrangements of the curves for which those coefficients would not be less 
than for their actual arrangement. And instead of the cyclic movement along 
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closed curves it is possible to apply the known data for the extrema of the 
sunspots from 1610 to 1933, i. e., for 324 years.  
    The temperature curve of the previous example with the time interval of 
98 years could have then be superimposed on the first curve in 226 positions 
in each direction; when forgetting that for some interval of time the epochs 
for the sunspots were somewhat less precisely established and considering it 
insignificant that until 1749 we only know these epochs rather than the 
numbers themselves of the sunspots, that version seems to be even 
preferable to the previous. 

 

5. The Arrangement of a Small Number of Events  

according to the Phases of the Solar Cycle 
    Here is the next example in which precise methods of calculating 
probabilities seems to be difficult to apply. According to data given me 
owing to the kindness of Prof. V. M. Obukhov, the years of the worst 
harvests in Russia/the European part of the Soviet Union for the period 1883 
– 1931 were14 
 
    1891, 1906, 1921 (≥ 25% less than the mean harvest) 
    1889, 1911, 1920, 1924 (15 – 20% less) 
 
    After arranging those seven years according to the phases of the sunspot 
cycle, we have (see Table 3). Or, in words: With one exception, those events 
took place not more than three years before, and not more than two years 
after a sunspot minimum.  
    Direct calculation convinces us that between 1883 and 1931 there were 24 
such years covering 24/49 ≈ 1/2 of the entire interval. It is not difficult to 
calculate the probability that not less than 6 events out of 7 will occur during 
those phases. Its approximate value can be obtained by neglecting that two 
bad harvests cannot happen in one and the same year. Then, supposing that 
24/49 = 1/2, we will have 
 

    6 71 1 1 1
7 ( ) ( )  ( ) .

2 2 2 16
P = ⋅ + =  

 
    Such a probability certainly is not so low for being practically ensured 
that the coincidence is not accidental. However, it is sufficiently low for 
being a more or less weighty argument for non-randomness and it can be 
thought that the immediate impression provided by Table 4 on an unbiased 
mind corresponds to an instinctive estimation of the probability just 
calculated. 
    An unbiased mind … I should have added not versed in probability since 
both the impression and the above calculation are in essence wrong [or 
irrelevant]. The point really is that not the hypothesis that the years of very 
bad harvest mostly coincide with the period 3 years before – 2 years after a 
minimal number of sunspots should be tested. That approach would have 
only been proper if the indicated phase were singled out before being 
acquainted with the relevant data. Otherwise, a somewhat different 
hypothesis should be put forward, namely that the years of bad harvest are 
arranged compactly on some part of the sunspot period; we ought to ask for 
the probability that at least 6 out of 7 events will occur during a continuous 
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stretch [during continuous stretches] of solar phases 24 years long out of the 
49 (1883 – 1931). 
    Such a problem, especially after being properly formulated, can certainly 
be also theoretically solved. The time I devoted to this study did not, 
however, allow me to accomplish that, and I am therefore only providing an 
approximate trial solution of the problem. I denote15 
 
    …– a, + b/ = from the a-th year before a maximum to the b-th year after it 
    /– a, + b = from the a-th year before a minimum to the b-th year after it 
    + a/, – b = from the a-th year after a maximum to the b-th year before a 
minimum 
    +a\, – b = from the a-th year after a minimum to the b-th year before a 
maximum 
 
    The above set of 7 years of bad harvest with one exception corresponds to 
…/– 3, + 2. When calculating the number of such years during 1883 – 1931,  
as we have done it, the compactness of that arrangement will be 24/49, and, 
for a hundred years, 1826 – 192416, it will be 54/100. Our method consists in 
obtaining a number of random combinations of 7 years, determining the 
proper version of each [out of the four possible] and the compactness of the 
corresponding arrangement. There are cases which can be described in two 
ways; we will then choose the version of greater compactness. 
    We found random numbers by means of a booklet Tippett (1927) useful 
for any such experiments. We begin with the first row of [Tippet’s] Table 1, 
separate them [the random numbers] into consecutive pairs and write them 
down in their order if only they suit us, i. e., if they belong to the intervals 
(83, 99), (00, 15), and (20, 31)17. Unsuitable pairs are not considered and 
also rejected are pairs repeating two digits already included in the given 
seven digits. We have thus obtained 20 groups of 7 two-digit numbers each, 
wrote them down in a table similar to Table 3 above but extended to cover 5 
years both before and after a maximum (a minimum). This allowed us to 
write down some years (i. e., some pairs of digits) twice; for example, the 
tenth “year” was the third before a minimum and, the second time, shown in 
brackets [no brackets there], the fourth after a maximum. It was thus easier 
to see which “year” can be rejected as an exception for the remaining six to 
compose a most compact combination and to find the correct version for it. I 
only provide the results (Table 4) rather than that [entire] table. 
    There, the appropriate versions for all the combinations are given as also 
the compactness of each, separately for 1883 – 1931 and 1826 – 1925; 
instead of 31/49 or 61/100 only 31 or 61 are entered. Our table tells us that 
cases as probable as the studied occurred 6 times out of 20 during the first 
period, and 7 times during the second. Now, 20 trials is certainly a small 
number, but sufficient for showing that the considered facts provide no 
grounds for the tested hypothesis. 
    We would have concluded otherwise when testing instead a hypothesis of 
bad harvests mostly occurring exactly during given phases. Indeed, out of 
the 20 experiments the version …/–a, +b appeared only once (No. 12, …/–3, 
2). Such a rare occurrence, had it been confirmed by a larger number of 
trials, would have provided that hypothesis with a noticeable presumption. 
My next section will show that considerations testifying for the coincidence 
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of minimal harvests with minimums of solar spots, whose convincingness is 
difficult to deny, can indeed be provided. 

 

6. Discussion of Semenov (1922) 
    Our attempt below to appraise Semenov’s results (1922, p. 57) is 
apparently an instructive example of applying the methods here considered. 
These results seem at first surprising; they were rather met sceptically but no 
serious estimation of them was yet done. 
    Semenov studied the connection between sunspots and harvest. Having 
determined a suitable parabola of the second degree to represent the known 
curve of the yield of rye in European Russia compiled by Mikhailovsky, he 
separated the entire period (1801 – 1915) into five such intervals during 
each of which there occurred two maxima and two minima of sunspots. For 
each interval he constructed a parabola of the fifth degree most suitable in 
the sense of the method of least squares to represent the deviations of the 
harvest from the general level indicated above [by the parabola of the 
second degree]. The fifth degree was necessary for the parabola to have two 
maxima and two minima. 
    Semenov quite properly indicated that the arbitrariness involved in such 
decisions did not predetermine the results. Indeed, parabolas of the fifth 
degree can possibly have no extrema, or have them beyond the appropriate 
intervals, or, finally, even when having them within, they, the extrema, do 
not thus ensure any connection with the epochs of sunspots. 
    In all, during the studied years there were almost exactly 10 “periods” of 
sunspots with mean length near to 11 years. During the same time, the 
fluctuations of the harvest, after being adjusted as stated above, had 9 
minima and maxima. Considering for the time being only the minima (we 
suspect that it is too risky to believe that the epochs of both are independent 
from each other) we established that the epochs of minimal bad harvests18 
occurred in the following years, see Table 5. 
    Thus, all the 9 numbers are without exception situated on a comparatively 
narrow interval, [– 3 before a minimum of sunspots – + 1 after it]. Assuming 
the solar cycle equal to 11 years, which seems to be not largely erroneous, 
we conclude that only 5 years out of 11 are occupied. Now the problem 
admits a theoretical calculation of probabilities. Namely, similar to the 
previous example, we will ask not for the probability of such a concentration 
of random events around a minimum, but of same in some phases of the 
solar cycle.  
    Formulas and tables (Table 8 in the Supplement) provide P = 0.00467 = 
1/214, the probability that 9 points randomly thrown on a circumference 
divided into 11 equal intervals will continuously occupy not more than 5, 
and fail to appear not less than in 6 such intervals. That probability is 
already so low that the hypothesis of a connection at once acquires an 
essential weight. Such a conclusion would have been wrong if a certain 
periodicity or clearly expressed pseudo-periodicity19 was noticeable. 
    However, our investigation (1930) had shown that the correlation 
function of the series of rye harvest in Russia is weakly pronounced, the 
correlation coefficients are small, and, what is the main point, they vanish 
over rather near distances. Coefficients between harvests separated more 
than by four years can be considered non-existent. Lacking this 



 201 

circumstance, we would not have risked applying the considered method at 
all since it presumes independence of random variables.  
    We would have nothing to object to, had the answer above been against 
the hypothesis. However, since it was apparently confirmed, special 
considerations become valid. Namely, it seems natural to suspect whether it 
is really allowed to deal with the epochs of minimal harvests as variables 
independent from one another since their course is parallel to that of the 
sunspots minima which are although not strictly, but nevertheless more or 
less periodic. And we may recall, first, that lack of correlation is not 
identical with lack of any stochastic dependence; second, that the epochs of 
minima were determined by parabolas whose parameters were calculated by 
issuing from 22 – 26 consecutive harvests whereas any such connection of 
the terms of a series tends to lead to statistically connected results. 
    It is thus necessary to conclude that the described method of calculating 
the probability is here only very tentative. We consider the answer only as 
an indication for the mentioned hypothesis, as a demand not to reject, but 
deeply check it from many sides, rather than as a proof that Semenov was in 
the right. 
    Let us attempt to apply here the method considered in § 4, and more 
precisely its second version, briefly there indicated, but not tried out. 
Prepare two bands divided into intervals of equal length, 0.5cm each, mark 
the years and the special points interesting us. On the shorter band we will 
mark the maximal and minimal harvests according to Semenov; on the other 
one, maxima and minima of sunspots according to Brunner (1930) 
beginning with the minimum of 1610.8 and ending with the maximum of 
1928.4. 
    The first band will be fixed, the second one, movable. For each mutual 
arrangement of these bands we determine the distance from Semenov’s 
maxima (minima) to the nearest maxima (minima), or, in the second case, to 
the nearest minima (maxima) of sunspots. In both cases the squared sums of 
the distances, changing with every position of the movable band, take 
minimal values at some arrangements of the bands, and we search for them 
by means of the same trick as in § 4. The results are shown in Table 6. 
    The column T indicates the year of the movable band corresponding to 
the year 1804 of the fixed one and we thus determine the “natural” 
arrangement in the second row: year 1804, minimal squared sum of 
distances both in the first and the second case. We see that from the 201 
(202) possible arrangements in the first (the second) case the least squared 
sum both times occurred when the bands were arranged synchronously. It is 
therefore difficult to imagine that the correspondence between harvests and 
sunspots discovered by Semenov was purely accidental. Here, our goals are 
mostly methodological, and we may stop now. A final check of the 
considered hypothesis is a problem of quite an another kind. 

 

Supplement 
    Suppose that some event is periodically repeated after t years. If the line 
of time, s complete periods long, be rolled up into a ring, we will obtain a 
circumference along which, beginning in any point, we can cover either 
direction exactly 9 times. After dividing the line of time into s, then further 
into t parts, we will call the obtained intervals arranged the same way with 
regard to their appropriate periods phases of the same name.  
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    On the ring, they will be situated one on top of the other and the 
circumference will be divided into t parts. For the sake of clarity we imagine 
that each of these is divided into s “nests”. Suppose then that some event can 
occur once yearly, any year with the same probability. Two such events will 
be independent from each other and the problem is formulated thus. 
    Each of c points falls one after another on a circumference divided into t 
intervals each containing s nests, and occupies one of the free nests with the 
same probability independently from one another. Required is the 
probability pm,c that m consecutively situated nests will be left free after the 
fall of all c points. 
    Suppose that pk,c-1 is known for all values of k and that (c – 1) points are 
already on the circumference. For m consecutive nests to remain free after 
the fall of the last point it is necessary that a free interval not less than m 
nests long had still remained, and we are only interested in values 
 
    m ≥ t/2                                                                                        (*) 
 
so that if such an interval exists, it is unique.  
    If (c – 1) points occupied (t – m) nests, there will still exist  
 
    s(t – m) – (c – 1) 
 
free nests, and the probability that the last point will fall in one of them and 
leave m nests free, will be 
 

    
( ) 1

1 .
1 1

s t m c ms

st c st c

− − +
= −

− + − +
 

 
    If the (c – 1) points occupy less than (t – m), that is, (t – m – k), k > 0, 
nests, then the last point should fall on one of the two free nests for only m 
consecutive nests to remain free. The corresponding probability will be 
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    The probability for (m + 1), or (m + 2), …, or (t – 1) nests to remain free 
after the fall of the (c – 1) points is, for (c – 1) ≠ 0, 
 
    pm+1,c-1 + pm+2,c-1 + … + pt–1,c-1  
 
and we thus arrive at the recursion formula20 
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    Note that if all the (c – 1) points cannot be concentrated on one nest, i. e., 
if (c – 1) > s, then pt–1,c-1 = 0, etc. It is also obvious that if m = t – 1, the sum 
in the formula above vanishes. 
    Suppose now that c = 1, then (t – 1) nests will certainly remain free, 
therefore 
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    pt–1,1 = 1, pm,1 = 0 (m < t – 1).                                                  (**) 
 
For c = 2 both points can occupy the same nest with probability (s – 1)/st or 
the second one can occupy one of the two nests situated at an equal distance 
to the right or to the left of the first point with probability 2s/(st – 1). 
Therefore 
 

    1,2 ,2

1 2
,  ,  2,3,...,  

1 1t t k

s s
p p k

st st
− −

−
= = =

− −
 

 
and, if t = 2n + 1 or 2n, the last term of the series will be, respectively, 
 

    ,2 1,2
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    It is not difficult to establish that all these formulas except the last one can 
be obtained from the recursion formula with the values (**) being 
substituted there. The last formula is an exception because, when deriving 
the recursion formula, we supposed that the length of the free interval 
obeyed condition (*).  
    Now, if c = 3 or m < t – 1, we derive after some algebraic work, 
respectively, 
 

    1,3 ,3

( 1)( 2) 6 [ ( 1) 1]
,  .

( 1)( 2) ( 1)( 2)t m
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After that the formulas rapidly become complicated. For large values of c an 
approximate expression can be found, but, for not very large values, it is 
perhaps simpler to calculate directly the corresponding probabilities by 
applying the main formula consecutively. Thus, for t = 11 and s = 10 we 
find (Table 7) and then the probabilities (Table 8). 
 

Explanation of Figure and Tables 
    Table 1 (§ 2). The “strikingly different picture” is provided by the 
sequence 6, 4, 1 (five times), 0 (three times), 1 whose terms indeed do not 
possess the pertinent property of random deviations. The Table provides 
theoretical and actual lengths of iterations (runs). 
    Figure 1 (beginning of § 4). Relation of number of sunspots with the 
temperature of the globe, 1810 – 1910. Two pertinent curves are shown 
(Helland-Hansen & Nansen 1917, p. 185, Figure 67).  
    Table 2 (middle of § 4). Years of extrema of both sunspots and 
temperatures rounded off as explained in text. Two positions of the movable 
band as explained in text were studied and the coincidence of the two bands 
estimated here by 2εi∑ . 

    Table 3 (inserted in the beginning of § 5 but mentioned in the middle of 
that section as “Table of the type of 3”). Explanation only in text and 
insufficient.  
    Table 4 (end of § 5). Explanation in text. 
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    Table 5 (beginning of § 6). Shows deviations in years of “minimal bad 
harvests” from minima of sunspots, period 1810 – 1911. 
    Table 6 (end of § 6). Explanation in text. 
    Table 7 (end of Supplement). Explanation in text, insufficient. Provides 
magnitude 109·108 … (111 – c) pm,c for m = 10, 9, 8, 7, 6 and c = 3(1)9. 
    Table 8 (first mentioned in § 6 after Table 5, then at the very end of the 
Supplement). Provides probabilities pm,g and, as Slusky formulated it,  
 

    
10

, , .m g m g
m

p p=∑  

 
Notes 

    1. I have only met a rudiment of a similar method in Marvin (1930, p. 490). See also his 
remarks about a paper of H. W. Clough (Ibidem, vol. 52, 1924, p. 439). I would be very 
grateful for indications about other examples of applying that method. E. S. 
    2. I do not know whether that term had appeared earlier, perhaps not. O. S. 
    3. For a modified pattern of the experiment, when composing the experimental series 
from pieces of the actual series randomly selected according to the extraction of tokens with 
replacement, a theoretical solution replacing the experiment would have in principle 
presented no difficulties. At present, it is not, however, possible to say whether that solution 
will be practically convenient. E. S. 
    4. Pseudo-periodic is now understood otherwise [xix, foreword]. O. S. 
    5. Some of my other contributions are devoted to issues connected with the continuity of 
stochastic processes, also really essential for geophysics. They do not, however, directly 
bear on the subject of the present article. E. S. 
    6. Also called mean square error. In several contributions Slutsky himself, see for 
example [iv, end of § 4] applied that more specific term. O. S. 
    7. Here and below, the large number of digits is certainly unwarranted; true, that had 
been a tradition followed by Gauss and Fisher (Sheynin 1994, p. 255n). O. S. 
    8. Now, however, we know that if one of the series is unconnected, and no correlation 
between them is supposed, the standard error of the coefficient of correlation will be 
expressed, as a first approximation, by the same Pearson formula, 1/√N. This follows from 
the general formula (Slutsky 1930) 
 

    2 ω
ρ ( )ρ ( )
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1
σr t tx
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=−
=  

 
since all of its terms vanish except at t = 0 when 
 
    ρx(0) = ρy(0) = 1. 
 
    In the present case (Baur 1928, p. 38) r = 0.69; supposing that ρxy = 0, we arrive at a 

deviation five times greater than the standard deviation (1/ 50)  which is extremely 

unlikely. Concerning the other formulas applied by Baur, we do not yet know whether they 
are correct even if supposing that one serie is unconnected. Hardly they are. E. S. 
    9. I wish to stress that, when adducing some examples, I did not at all intend to discredit 
the work and merits of the pertinent eminent investigators. Mistakes are spread everywhere 
like an endemic disease being a chronic scourge. When everyone is sinning, the choice of 
examples cannot be just. E. S.  
    10. Examples of qualitative nonsense (spurious) correlation have been collected since 
mid-19th century. Slutsky provided an example above (the two crows) borrowed from his 
earlier book (1912, part 2, § 21/2009, § 31). O. S. 

    11. The fluctuation of a magnitude calculated from a regression equation is 2 2σ  y yxr  and 

that of the error, 2 2σ (1 ).y yxr−  Equating these expressions, we arrive at the result provided 

in the main text. E. S. 
    12. No explanation provided. O. S. 
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    13. The 7 is a mystery; it does not stand for (1823 – 1816) as is evident in the case of ε3 
below. O. S. 
    14. Suchlike investigations covering periods with greatly differing social and economic 
conditions are meaningless. I especially note the famine of 1921 – 1922 and the great (and 
thoroughly concealed) famine of 1932 – 1933. Those years had been significantly left out. 
Slutsky perhaps hinted as much in the last lines of his § 4. O. S. 
    15. The notation is decidedly unfortunate. O. S. 
    16. No explanation provided. O. S. 
    17. Having no information about the harvest during 1916 – 1919, I omitted the pair (16, 
19). E. S. 
    18. In Semenov’s table minima are wrongly stated as 1854 and 1912, and in column U 
the year 1839 is accompanied by number – 0.02 (apparently a misprint) instead of 0.02. E. 
S. 
    19. See Note 4. O. S. 
    20. Explanations in this derivation were again insufficient, but I will restrict my 
comments to solving the discussed problem at least for s = 1 in quite another way. At first, 
the probability of m free places left can be determined by elementary combinatorial 
considerations (Feller 1950/1957, formula (11.7)). In Slutsky’s notation 
 

    ( 1) (1 ) .
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Condition (*) should be added; it was apparently necessitated by Slutsky’s concrete data: 6 
events should have occurred during less than a half of the sunspot period and 6 < 11/2. 
    Then, for calculating the required probability, it only remains to multiply the formula 

above by / .m
rr C  O. S. 
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The Correspondence between E. E. Slutsky and V. I. Bortkevich 

 

G. Rauscher, O. B. Sheynin, C. Wittich 
 

Perepiska E. E. Slutskogo i V. I. Bortkevicha. 
Finansy i Biznes, No. 4, 2007, pp. 139 – 154 

 
Letter No. 1. Slutsky – Bortkevich, 20.7.1923, Kiev 

    Highly respected Vladislav Iosifovich! 
    I have received reprints of two of your papers (1918b; 1921) and hasten to 
thank you. You have veritably helped me: here, at the Institute for National 
Economy, I am delivering lectures on theoretical statistics and M. V. Ptukha 
had informed you how much we are lacking in the newest literature.  
    I wish to hope that, should I ask you to keep sending me reprints of your 
future contributions, I will not abuse your kindness too much. Incidentally, 
it is very important for me to have your paper (1920) since I am much 
interested in its subject. I myself have recently discovered an expansion of 
the hypergeometric series in terms of some parameters; regrettably, I do not 
know whether it is new. 
    I am sending you a reprint of my paper [iii]. Accept it as a token of the 
gratitude and deep respect from the sincerely devoted to you E. Slutsky. 
17.7.1923 
    P. S. I am unable to resist the temptation to inform you about the solution 
of a modest problem. A biologist who prompted me asked about the 
probability of a random conjugation of two identical chromosomes arranged 
in a ring. It occurred that that problem was an elegant illustration of the law 
of small numbers2. 
    Assume that 2s elements, s pairs aa, bb, …, ll of identical elements among 
them, are randomly arranged in a ring. Let Πm,s denote the probability that in 
each of some m pairs their elements will occur alongside and that the other 
elements will not be so arranged. Then 
 

    Пm,s = 
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    {[2s – (m + 2)][2s – (m + 3)] + 2m}Пm,s–1 + 
 
    2(m + 1)[2s – (m + 3)]Пm+1,s–1 + (m + 2)(m + 1)Пm+2,s–1}.        (2) 
 
    Each of these recurrence formulas allows us to calculate consecutively the 
probability sought by issuing from 
 
    П2,2 = 2/3, П1,2 = 0, П0,2 = 1/3.  
 
And, when increasing s unboundedly, we will find that 
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    lim Пm,s = lim Пm,s–1, see formula (2), 
 
    lim Пm,s = (1/m)lim Пm–1,s, see formulas (1 and 2). 
 
    Consequently, if lim Пm,s = Пm, s = ∞, then 
 
    П1 = П0, П2 = (1/2)П1, П3 = (1/2 ⋅ 3)П2 etc, so that  
 
    Пm = (1/m!)e–1,                                                                            (3) 
 
which is a particular case of the law of small numbers. 
    When issuing from (1) and (2), it is not difficult either to derive 
approximate expressions for Пm, Пm–1, and then for П0 as well, which show 
how rapidly are the probabilities tending to their limit. We have  
 
    Пm,s = (1/m){1 + [(3 – m)/2s] + [(10 – 4m)/(2s)2] + …}Пm–1,s, (4) 
 
    П0,s = e–1 – (0.5518/2s) – [0.8124/(2s)2] + …                            (5) 
 
    I have not yet checked definitively the numbers thus occurring, but here is 
the approximate and exact results for s = 6: 
 
    П0,6        0.316                3326/10395 = 0.320 
    П1,6        0.382                3948/10395 = 0.380 
    П2,6        0.210                2190/10395 = 0.211 
    П3,6        0.069                  740/10395 = 0.071 
    П4,6        0.015                  165/10395 = 0.016 
    П5,6        0.0023                  24/10395 = 0.0023 
    П6,6        0.0002                    2/10395 = 0.0002 

    ∑        0.9945                                     1 

 
    Regrettably, I do not know whether this problem had been also already 
solved3. Allow me to thank you once more: you cannot imagine how glad I 
am to receive your reprints. 
    Deeply respecting you E. Slutsky 
 

Letter No. 2. Bortkevich – Slutsky, 31.7.1923, Berlin 
    Deeply respected Evgeny Evgenievich!  
    I am very thankful for the reprint of your report [iii] and your letter [No. 
1]. I quite agree with you in that the theory of probability, being a branch of 
pure mathematics4, should be constructed absolutely independently from the 
logical problems connected with the notion of probability in its proper 
sense. I do not gainsay, however, that much may be expected from a change 
of the name. Your construction seems to adjoin that of Lange (1877) who 
had issued from the concept of disjunctive judgement (Disjunktionsurteil). 
    I was glad to perceive that you refuse to identify probabilities with 
limiting frequencies. You will find something relevant to this in my review 
(1923) of Keynes (1921) which I have sent you yesterday together with 
three other reprints. Regrettably, I have to ask you to return on an occasion 
that review as well as the paper (1920). My other paper (1921) can to a 
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certain extent serve as an ersatz of the second part of (1922a). […] Owing to 
disagreements between the publisher and the printing establishment I did not 
receive any reprints of that paper. 
    In due time, I have sent Ptukha my paper (1918a). I regret that only one 
reprint is left. There, in Notes to pp. 108 – 110, you will find some remarks 
of principle which will perhaps be somewhat interesting to you5. Two books 
have recently appeared: Czuber (1923) and Urban (1923).  
    If you happen to see Ptukha, please thank him on my behalf for 
sending me four copies of his mortality table for Ukraine (1928). Your 
problem and its solution are very amusing. I do not know whether 
anyone dealt with it previously. At present, owing to lack of time I did 
not yet quite make out your initial formulas and their interrelation, and 
the coefficients of Пm–1,s–1 in formula (1) are not completely 
understandable. As to formula (3), it can be derived easily and 
directly. 
    We have the expectation of m  
 
    s ⋅ 2s ⋅ (1/2s)·[2/(2s – 1)] = 2s/[2s – 1)]. 
 
For s = 2 and 6 
 
    2П2,2 + 1П1,2 + 0П0,2 = 4/3,  
    0 ⋅ 0.320 + 1 ⋅ 0.380 + … + 6 ⋅ 0.0002 = 1.091 = 12/11, 
 
    lim [2s/(2s – 1)] = 1, s = ∞, 
 
so that for a rare event whose expectation is unity to occur m times we 
indeed obtain (3). 
    I think that Prof. Mises will not refuse to publish a paper on that problem 
if only you send it to him. 
    Sincerely respecting you V. Bortkevich 
    I append Mises’ address. 
 

Letter No. 3. Slutsky – Bortkevich, 25.9.1923, Kiev 
    Highly respected Vladislav Iosifovich! 
    Please excuse me for being late with replying your letter, so kind and 
hearty. During the latest weeks I was busy over my head but wished to write 
you without hurrying. And I have only received your letter about four weeks 
ago after returning to Kiev from the countryside partly spending the summer 
there. 
    I cannot say how grateful I am for receiving your papers (1920; 1922b; 
1923; 1921); all of them are extremely interesting for me. I am now going 
for three weeks on a scientific trip to Moscow to study in the libraries; upon 
returning, I will first of all make necessary extracts from those papers which 
you have asked me to return and send them back immediately. 
    I like very much your term Disjunctive calculus; it did not enter into my 
head, but now seems so natural. A name is certainly something secondary 
which does not at all mean unimportant. Not without reason so many events 
occurred only owing to the iota6. A name is a great thing as a mystic and 
metaphysicist would have said. Anyway, this probably is yet music for the 
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future although that transition of the calculus of probability about which I 
dreamt is perhaps not far off, and perhaps I will yet see yours 
Disjunktionsrechnung published7. 
    Concerning that problem about which I wrote to you, I will avail myself 
with gratitude of your good advice and send Mises my paper as soon as 
preparing it. 
    During summer I made 3000 trials changing conditions after each 
thousand. I was interested in finding out whether the size and the form of 
small objects, after being shaken together and arranging themselves in a 
ring, influence the equal probability of all the arrangements. I used a round 
box with a domed rise at its bottom so that my peas should have formed 
cyclically all by themselves. Before experimenting, I thought that the 
differences in size or form will be of no consequence, but it was not exactly 
so.  
    For greatly differing peas (two very small and round, two somewhat 
larger and quite flat, two still more elongated and roundish, and four almost 
spherical), deviations from theory were absolutely unquestionable (two 
experiments with a thousand peas of that composition). The third thousand, 
with peas of roughly the same form, although much more differing from 
each other in size than dice used in stochastic experiments, provided results 
remarkably coinciding with the theory. 
    In general, I think that for my arrangement of experiments the form and 
size of the small objects must indeed influence the results much less than the 
findings of those other kinds of experiments about which I was able to 
discover. Incidentally, I never heard or read about the use of automatic self-
registering devices for stochastic experiments, but it seems to me that for 
them to be scientifically important their results should not depend on human 
patience, very cruelly tempted as judged by my own experience. 
    I had been shaking my box and inventing out of boredom a device that 
could have replaced me. It seems that I succeeded (certainly arriving only at 
its pattern). My device would be able to shake and count and it would not be 
apparently difficult to construct a suchlike device for the Buffon problem8. 
    As to the theory of my problem, I did not write down the derivation of the 
formulas not wishing to burden you by considerations possibly quite 
uninteresting for you. And now, I am also afraid of dragging out this letter. 
However, since you, as I understood, had wished to perceive how I obtained 
them, I venture to describe briefly the idea of the derivation; it would be too 
risky to send you the very long derivation in full.  
    Call a definite sequence of elements an arrangement; denote their total 
number out of s pairs by Ns and the number of those which include m pairs 
whose elements are adjacent, by Nm/s. Then  
 
    Ns = (2s – 1)!, Pm/s = Nm/s/(2s – 1)!. 
 
Let N ′m/s be the number of cyclical arrangements including a definite pair 
whose elements are taken in a definite order such as a1a2 or b2b1 or etc. 
Compiling a complete list of all the arrangements including a1a2, then of 
those including a2a1, then b1b2 etc, we will obtain 2sN ′m/s in which, as it is 
easy to see, each arrangement will occur m times. Therefore  
 
    Nm/s = (2s/m)N ′m/s. 
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    Let us derive N ′m/s. Each arrangement including for example a1a2 can 
only belong either to b1a1a2b2 or b1a1a2c1. In the first case, after excluding 
aa, we will have, as before, an arrangement including m pairs with adjacent 
elements, but only (m – 1) such pairs in the second instance. Out of each 
arrangement of (s – 1) pairs with (m – 1) of them with adjacent elements an 
arrangement of s pairs with m such pairs can be obtained by including aa in 
each interval except those between the adjacent elements, i. e., in 2s – 2 – (m 
– 1) = 2s – (m + 1) various ways.  
    Out of each arrangement of (s – 1) pairs having m pairs with adjacent 
elements an arrangement of s pairs again with m such pairs can only be 
obtained by including aa in one of the intervals between the adjacent 
elements, i. e., by m various ways. Consequently,  
 
    N ′m/s = [2s – (m + 1)]Nm–1/s–1 + mNm/s–1. 
 
Substituting this expression in the previous formula and including P instead 
of each N, for example, including Pm/s(2s – 1)! instead of Nm/s–1 we will 
indeed derive formula (1). 
    The derivation of the other formula is so lengthy that I do not venture to 
repeat it here. In essence, I assume that all elements are taken in a definite 
order but included randomly and that (s – 1) pairs are already thrown in the 
ring so that only one (a1a2, say) is left9. I consider all four cases leading to 
m/s with (m – 1), m, (m + 1) and (m + 2) pairs with adjacent elements, given 
those (s – 1) pairs.  
    In each of those instances I determine how should a1 and a2 be situated 
for m pairs with adjacent elements to occur out of the s pairs. For example, 
in the last instance they should not fall alongside each other but each of 
them ought to occur in the interval between pairs with adjacent elements so 
that each of the two pairs will be thus separated and no new pair with 
adjacent elements will occur. The further derivation is not difficult. 
    Please excuse me for being too diffuse and be assured of my most sincere 
devotion.  
    Deeply respecting you E. Slutsky 
  

Letter No. 4. Slutsky – Bortkevich, 24.2.1924, Kiev 
    Deeply respected Vladislav Iosifovich! 
    I was at last able to send you back those two papers (about Keynes and 
Laplace – Eggenberger) which you had asked me to return. Once more I 
thank you most heartily for sending them to me, but please do not blame me 
for having detained them: there was no way of sending them earlier. 
    In the same registered parcel I have also sent my meanwhile published 
papers [iv], 2 copies; [v], 5 copies; […] the same in Ukrainian, [vi], 1 copy; 
[vii], 1 copy). […] The last-mentioned work is a summary of the last-but-
one and completes it by making use of unpublished material. I wrote [vi] at 
the request of my friend, Prof. L. N. Iasnopolsky, as a supplement to his 
own paper (1923). I had to compile it more rapidly than I wished and it 
turned out lengthier than necessary. 
    With M. V. Ptukha returning from Germany, vivid westerly impressions 
are disseminating; a few more threads are restoring the torn contacts. Books 
are appearing and we are ordering the volumes of periodicals going ten 
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years back. Thus, in a few months we will to a certain extent become 
Europeans. 
    Keynes interested me very much; when reading your paper, I was 
extremely glad to feel myself being at one with you. However, concerning a 
certain particular point: I would not have reprimanded Keynes of an 
überraschend engherzige Auslesung der Ausdrucks “Form” (of a sudden 
petty interpretation of the expression “form”), see Bortkevich (1923, p. 6). 
    Denote the statement about the number (m) of combinations of k elements 
of a given kind (A) taken n at a time by F(m; n; k; A). Then F will be a 
logical function of those four variables, and you are certainly in the right 
about that function. However, when assuming definite values for three (say) 
variables and denoting 
 
    F(m1; n1; k1; A) = f1(A), F(m2; n2; k2; A) = f2(A), 
 
f1 and f2 will then be different functions of A. In that sense Keynes is 
apparently in the right.  
    I would wish to talk to you about a subject that has been interesting me 
for a long time although I am yet unable to study it as deeply as necessary. 
Even when writing a review of Kaufmann [ii], I expressed the idea that each 
method is based on some theory, so that the statistical method is based on 
applying either the statistical theory or some other theor. science. I had 
chosen the first alternative, and now, after pondering over your Iterationen 
(1917), I do not feel myself wavering, and the more I think about it, the 
more I become convinced of the same.  
    Allow me to issue from your objections to the expressions statistical 
physics, etc. You indicate (p. 4) that physicists apply the designation 
statistical to such conditions in which no actual counting of elements is 
meant at all. But is that essential? A triangle remains a triangle both when 
we find and apply it in the empirical reality, and when we study it in the 
imaginary reality.  
    A physicist deals with physics both when experimenting and when 
solving an abstract problem formulated by hypothetical assumptions such as 
“Assume that (masses, forces, electrons) are given …” The logical essence 
is obvious: the nature of the thing (Wesen) does not depend either on the 
existence or non-existence, or on admitting it in our judgement or premise. 
Thus, when a physicist says: Assume that n molecules with such-and-such 
velocities are given in some volume, etc, it means that their enumeration 
would have provided n items having some distribution according to a certain 
indication. If the actual counting is a statistical operation, then the imagined 
enumeration is also a statistical operation, only indeed imagined, just as an 
imagined murder or theft are murder or theft, only indeed imagined. 
    The designation of the operation can be transferred to the subject of study. 
In geometry, we study the forms of extents abstracting ourselves from the 
material; and similarly, in statistics, we study the numerical content of 
totalities or sets abstracting ourselves from everything determining one or 
another kind of things to which the counted items are belonging. 
    The subject of (theoretical) statistics is thus the numerical content (in 
abstracto), this being its constitutional subject with all the other subjects of 
study representing its logical derivatives (Husserl10). Totalities are studied 
by statistics since numerical contents always imply them. But totalities are 
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only studied concerning their numerical contents and the logical derivatives 
of the latter. Numerical structures as relations of the numerical contents of 
the whole and its parts; various means and relative numbers, are logical 
derivations of the main notion of statistics, that is, indeed, numerical content 
rather than totality. 
    Subdivisions of theoretical statistics are determined by further indications 
which could be conjugated with the constitutional indication and its logical 
derivations, but which leave the species of the elements comprising the 
totality indefinite. These indications are, in turn, order, time and chance and 
we thus obtain the following subdivision11: 
 
    Statistics: 1. Sylleptics. 1.1. Sylleptics in its narrow sense. 1.2. Sylleptical 
kinematic? 1.1.1 Horistics. 1.1.2. Syntagmatics. 2. Stochastics. 
 
    I am not sure whether it would not be better to restrict the term sylleptics 
to its narrow sense and am unable to devise a term for sylleptical kinematic 
(I took the first ad hoc appellation that came to hand). 
    I would resolutely object to Bevölkerungssylleptics (sylleptics of 
population) since that term is not logically pure; Bevölkerung can only be 
applied as a terminus technicus, as British statisticians apply population. 
Even this is apparently not good enough because population, as they 
understand it, should not at all bear relation to time. 
    I do not consider the subdivision of stochastics. In the logical sense, it is 
clearly separated from the calculus of probability; and, once you admit your 
name, disjunctive calculus, it will also be separated in the terminological 
sense. Then the notions of stat. method, stat. technique, applied statistics (of 
population, fixed stars, etc) follow quite naturally from the concept of 
statistics as a theor. science that, as such, serves as a basis for a special 
method and, together with a number of applied disciplines, constitutes the 
foundation of a special technique, etc. 
    It is least of all clear to me what is it that justifies the separation between 
sylleptics and Mengenlehre (set theory). You mention this point [the 
separation] as something absolutely unquestionable; I, however, am 
regrettably unable to say the same about myself. I will be much obliged to 
you for somewhat explaining this to me even by hints. 
    One more consideration. If my point of view is rejected, I will insist to 
call the usual statistics (without including stochastic viewpoints) applied 
sylleptics. This seems to be the only logical attitude toward terminology. 
However, since the term statistics is thrown overboard, then, not to abandon 
habit, it can be applied as a common term for sylleptics and stochastics, and 
we thus have returned to the same conclusion. 
    Accept assurances of my deep respect and devotion. Yours E. Slutsky 
    P. S. I will gratefully avail myself of your advice to send my paper on the 
probabilities of cyclic arrangements of pairs of identical elements to Prof. 
Mises. The manuscript is quite ready, but it is necessary to wait for some 
more time. 
 

Letter No. 5. Slutsky – Bortkevich, 24.7.1925, Kiev 
    Deeply respected Vladislav Iosifovich! 
    Allow me to thank you wholeheartedly for the sent reprints of the paper 
(1924). I intend to study it with great interest in summer. Although not 
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excusing my belated response to your kindness, I ought to say that all this 
spring and summer, until the latest day, I had been feverishly working at a 
rather large paper on the theory of probability12 (1925) about six lists [1 list 
= 16 typed pages] long. I obtained a few new results to say nothing about 
the treatment of a number of problems from the viewpoint of the notion of 
limit in the stochastic sense apparently not devoid of some interest. As I 
learned later, the notion of st.[ochasic] limit is due to Cantelli, but of 
st.[ochastic] asymptote seems not to have been formulated by anyone. 
    Let the probability of condition A being satisfied be P(A) and the 
distribution of the probabilities of a random variable13 x be a function of 
some independent variable φ. If, for ε as small as desired, 
 
    lim P{|x – f(φ)| ≤  ε} = 1, φ = φ1, φ2, … 
 
then f(φ) will be the stoch. asymptote of x, or 
 
    asB(x) = f(φ), φ = φ1, φ2, … 
 
and, in the particular case of f(φ) = C(onst), limB(x) = C 
(asB = asymptota Bernoulliana, limB = limes Bernoullianus)14. 
    Suppose we have a series of independent trials with the probability of the 
occurrence of some event being р1, р2, …, рn , ..., and the number of the 
occurrences of that event in n trials being m. Then 
 
    limB[(m/n) – p(n)] = 0 
 
or  
 
    asB(m/n) = p(n), n → ∞,  
    and p(n) is the arithmetic mean of pi, i = 1, 2, …, n. 
 
    After having another look at Poisson [1837], I see that in Chapter 4, §§ 94 
– 96, his theorem is expressed exactly by those equalities. He did not 
assume that the limit of p(n) as n → ∞ does exist, nor did he subject the 
probabilities to any restrictions. Therefore, I am compelled to refuse to 
consider that theorem as a particular case of a mean probability of a constant 
composition15. To the best of my understanding, I am unfortunately 
differing from you here, as also in interpreting Poisson’s general attitude to 
the law of large numbers, but it would be too long to write that down. 
    Apart from the German paper, I am also writing about that, and in much 
detail [viii], and I will have the pleasure to send you its reprints rather soon. 
I would like to inform you about a few theorems not to be published so 
soon.  
    Let  
 
    gr(x; v) = E|x – v|r (r ≥  0). 
 
Denote by Cr (central value, Zentralwert) the value of v corresponding to 
minimal gr; in general, I call that v Bezugswert (initial value).  
    1) If some even moment of gr(x; v), r ≥  0, has a fixed upper boundary 
when the number of trials (or, more generally, when the sequence of values 
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of the independent variable φ1, φ2, …) increases/continues indefinitely, and 
х has a stochastic asymptote, then all the moments lower than that r, centred 
around any stoch. asymptote, tend to vanish: 
  
    lim gr–α(x; v) = 0, φ = φ1, φ2, … if v is some stochastic asymptote 
 
and all the central magnitudes Ck (k < r) will be stochastic asymptotes. And 
if r ≥  1, the same will be also valid for Cr; I do not know whether that 
persists for 0 < r < 1.  
    2) It follows that if the condition  
 
    lim gr(x; Ck) = 0, φ = φ1, φ2, … (r > 0; k ≤  r) 
 
does not hold, and x has stoch. asymptotes, the moments higher than r ought 
to be infinite. 
    3) Therefore, if gs is bounded from above at s > r and gr does not vanish, 
x cannot have stochastic asymptotes (and, correspondingly, does not obey 
the law of large numbers). 
    Applying Chuprov’s notation16, we are known to have for the arithm. 
means  
 
    µ2(n) = (1/n)µ [2;n] + [(n – 1)/n]µ [1; 1; n]. 
 
If  
 
    lim µ [1; 1; n] ≠ 0, n → ∞,                                                               (1) 
 
then, in the limit, the variance of x(n) does not vanish either. Excluding the 
case in which x only takes finite values, it cannot be, however, inferred that 
x(n) does not obey the law of large numbers since the condition 
 
    E[x(n) – Ex(n)]

2 → 0, n → ∞ 
 
is only established as being sufficient. My theorem proves that if 
 
    µ4(n) = E[x(n) – Ex(n)]

4  
 
is bounded from above, for which, as it is easy to prove, it is sufficient that 
 

    µ (4; n) = (1/n)∑
=

n

i 1

µ4
(i) 

 
has a fixed upper bound, then the random variable 

    x(n) = 
1

n
∑

=

n

i 1
ix′  

will not obey the law of large numbers (will not have stoch. asymptotes). 
    The question presents itself, however: will it not be sufficient for that 
conclusion if (а) µ [2; n] is bounded from above and (b) the condition 
 
    lim E|x(n) – Ex(n)|

2–α = 0, 0 < α < 2, n → ∞ 
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is impossible for at least one single value of α, for α = 1, say, or for an 
arbitrary small α. I was, however, unable to solve it. 
    Be confident in my perfect respect and devotion. E. Slutsky 
 

Letter No. 6. Slutsky – Bortkevich, 31.12.1925, Kiev 
    Deeply respected Vladislav Iosifovich! 
    Accept my apologies for sending you so belatedly my latest paper [viii]. 
This, however, happened mostly owing to alien circumstances. Since 
cherishing each rare contact with you, I read your letter with heartfelt joy. It 
was impossible to change anything in a work then being printed, but note 
that, when allowing myself to criticize your point of view, I am mainly 
issuing from your Iterationen (1917) rather than Krit. Betr. (1894 – 1896). 
    There (1917), as it seemed to me, a certain point of view was expressed 
with full clarity. However, in such difficult issues it is incredibly hard to 
find a quite suitable formulation, and I readily admit that certain nuances 
had escaped me. 
    Rest assured in my perfect respect and devotion. Evgeny Slutsky 
 

Letter No. 7. Slutsky – Bortkevich, 16.5.1926, Moscow 
    Deeply respected Vladislav Iosifovich! 
    Your letter did not find me in Kiev and was forwarded to Moscow to me. 
I have moved here because of some discords with the Ukrainian language17. 
I wish to hope that you will generously excuse me for my so belated answer. 
In a new place, amid new duties, it was difficult to collect thoughts, then 
urgent tasks had occurred, etc.  
    I am a consultant at the Conjuncture Institute, work together with N. S. 
Chetverikov18 and for the time being am living at his place until getting the 
promised apartment. In addition, I was compelled to take up a consultative 
job at Gosplan [State Planning Committee]19. I do not teach. My situation 
and state are very unusual and seem transitional, and only God knows what 
will actually happen. 
    It is difficult and painful to write about A. A. Chuprov’s death staggering 
us in spite of there lately being barely any hope. Chetverikov had certainly 
informed you already how our statistical family endured it and what we are 
supposing to do. Although I had not experienced the happiness of being 
close to A. A., I cannot forget his refined tact and incessant readiness to help 
with [my] scientific work.  
    With warmest gratitude I recall his attitude to my [future] paper (1925) 
which I sent him in 1923 as a very brief sketch asking his advice about its 
publication since being entirely cut off from foreign literature. Without his 
insistent advices I would have hardly transformed it into that more complete 
version now in press. However, only now, while having a look at his letters, 
I perceived the infinite delicacy with which he had avoided, in his critical 
comments, any hints at possible continuation and extension of the subject, at 
anything which should have suggested itself but which he did not wish to 
touch so as not to prompt me, to allow me to arrive independently at 
necessary conclusions20.  
    Meanwhile, I have been thinking time and time again about the subject of 
our disagreement and especially so in connection with the proofs of my 
paper (1925) to appear in the next issue of Metron. There, Chapter 1 more 
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briefly covers roughly the same range of problems that is embraced in my 
Russian paper [viii]. […] I was unable to introduce any essential changes 
since it proved impossible for me to study Poisson’s text (1837) anew and 
perhaps to change my point of view. Concerning the second point of our 
disagreements, namely about my understanding of your concept of mean 
prob. of a const. composition [see Letter No. 5 and Note 15], I could have 
written much more, but am extremely afraid of abusing your attention. I will 
only say the following. 
    It seems that the problem has two aspects. A) How much do your 
conclusions about the cases covered by the mean prob. of a const. comp. 
extend into those instances [having to do with] what I call mean prob. of 
arbitr. composition. B) Are there any indications in your text itself that the 
author [Poisson?] allowed for the mean prob. of arbitr. composition?  
    In his last letter Chuprov wrote me in autumn [of 1925] that he did not 
agree with me, that he thought that the problem was solved by the 
expression of the mean square [error]. His remark is partly quite correct, but 
it is off the mark because of being covered by item (A). Indeed, the mean 
prob. of a const. composition in its narrow sense and the mean prob. of an 
arbitr. composition [see Note 15] have much in common especially when 
compared with the mean prob. in its proper sense. 
    The point is, however, as I am convinced, that it seems quite impossible 
to find out from your text (1894 – 1896 or 1917) that you had been 
stipulating and allowing for the case considered by me. A number of places 
in both sources just mentioned objectively contradict that possibility. I allow 
myself to indicate, for example, only one of them (1917, pp. 54 – 55): 
 
    Poisson, however, wished to construct a probability-theoretic pattern 
corresponding to real events, namely, to irregular changes of random 
causes. Nevertheless, the pattern of mean probability of a constant 
composition absolutely contradicts that [intention] since the values of the 
probabilities involved (pn) included here [in the latter case] enter the mean 
in fixed proportions. 
 
    [Galt es doch für Poisson, ein wahrscheinlichkeitstheoretisches Schema 
zu konstruiren, das dem wirklichen Geschehen, nämlich dem regellosen 
Wandel der zufälligen Ursachen adäquat wäre. Das Schema der konstant 
zusammengesetzten Durchschnittswahrscheinlichkeit ist aber das gerade 
Gegenteil davon: denn hier gehen die betreffenden 
Wahrscheinlichkeitswerte (pk) in feststehenden Proportionen in den 
Durchschnitt ein]. 
 
    Fixed proportions mean that some restriction is imposed on the choice of 
the values of р1, р2, … The logical sense of the phrase absolutely excludes 
the idea that those values are any whatsoever. Indeed, it is impossible to 
consider fixed proportions in case of a series whose terms are varying 
without being subjected to any rule, or, for example, to this rule:  
 
    1/10, 1/10, ..., 1/10 (m times); 1/2, 1/2, ..., 1/2 (m2 times);  
    1/10, 1/10, ..., 1/10 (m4 times); 1/2, 1/2, ..., 1/2 (m8 times), etc. 
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    And I am therefore allowing myself to think that the problem of the 
objective sense of a text, of what is objectively included in it and can be 
found there by any objective investigator, is beyond any doubt. The 
quotation above seems to be decisive. Please excuse my categorical 
expressions if I am mistaken, and you perceive that I am missing something. 
I always readily admit my mistakes, both in letters and publicly. 
    I am also sending you two of my papers. One of them is that which you 
had in due time so kindly helped me to find its place in the Mises’ periodical 
(1926), – its turn occurred only now. The other one dates back (1915)21; its 
reprints sent to me during the [Great] War did not arrive, and only now have 
I acquired five copies for myself one of which I am sending to you. 
    I believe I was able to add something essential to Irving Fisher, 
Edgeworth and Pareto. I do not know when will I be able to return to those 
subjects if at all. It is all the more annoying since I have shelved almost 
completely prepared manuscripts, but almost is here the decisive factor. 
    During Easter I made a short trip to Kiev and fetched back my reprints so 
that now I am able to send all I can to Altschul22 about whom you had 
written me. I will do it with great pleasure but will be obliged to apologize 
for the impossibility of sending everything. 
    Sincerely devoted to you E. Slutsky 
 

Letter No. 8. Slutsky – Bortkevich, 19.5.1926, Moscow 
    Deeply respected Vladislav Iosifovich! 
    I am allowing myself to add a few considerations to my previous letter 
since I wish very much to explain to you my idea as clearly as possible 
while leaving aside both Poisson and the entire history of the problem in 
general. 
    Suppose we have an unbounded sequence of urns with probabilities [of 
extracting a white ball] being  
 
    p1, p2, …, pn, … 
 
One ball is extracted from each; let the frequency (relat. Häufigkeit) of 
extracting a white ball in n trials be αn. Then 
 
    Eαn = (1/n) (p1 + p2 + …+ pn) = p(n). 
 
When p(n) will be, so to say, the ideal norm for αn?  
    Suppose that s series of trials are made with the same first n urns in each 
trial, one trial with each urn, and that the frequencies obtained were 
 
    αn

(1), αn
(2), …, αn

(s), … 
 
Then, if you allow me to apply my notation, 
 

    limB [
1

s
∑

=

s

i 1

αn
(i)] = p(n), s → ∞.  
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    This, then, is the pattern suitable for the idea of mean prob. of a constant 

composition. Here, p(n)  is the stoch. limit not of αn
(i), but of ∑

=

s

i 1

αn
(i) and for 

the independent variable s rather than for indep. variable n.  
    And here is another arrangement of the experiment. An unbounded series 
of trials is made with the same urns taken in turn and we consider the 
sequence of frequencies 

 
    α1, α2, …, αn, …, αN, αN+1, αN+2, … 
 
Consider N as a variable magnitude, then 
 
    limB [αN – p(N)] = 0, N → ∞, asB(α N) = p(N), N → ∞. 
 
    This arrangement will indeed be the case which, as it seems to me, we 
ought to consider separately from the previous instance as the case of mean 
probability of an arbitrary (or arbitrarily variable) composition. We 
encounter the same case if two unbounded series of trials are made with the 
same series of urns providing frequencies αN

′  and αN
′′ . Then 

 
    limB (αN

′ –αN
′′ ) = 0, N → ∞ 

 
however the urns are changed [replaced?] in the series. 
    Accept assurances of my perfect respect and sincere devotion. E. Slutsky  
  

Letter No. 9. Bortkevich – Slutsky, 4.6.1926, Berlin 
    Highly respected Evgeny Evgenievich! 
    I have received both your letters of May 16 and 19 [NNo. 7 and 8]. 
Concerning the difference between the mean prob. in the proper sense and 
of a const. composition, I am keeping to my former opinion and do not find 
any contradictions in my writings. Indeed, I consider that difference in 
connection with the dispersion of statistical series, which is interesting so far 
as in the first case the measure of the variance23, that is, the sum of the 
squared deviations of the number of occurrences [of the event] from its 
expectation [here, Bortkevich crossed out “the square of the mean square 
error”] = npq, whereas in the second instance  
 

    n∑
=

m

1λ

gλpλqλ (< npq),                                                                   (1) 

 
where m is the number of different values of pλ, and gλ is propor. [?] in both 
series. Instead of (1) it is of course possible to write 
 

    ∑
=

n

i 1

piqi,                                                                                        (2) 

 
where n is the number of trials.  
    I applied the first of these two expressions to stress that the order of the 
probabilities pi was of no consequence. If separate series of trials are not 



 220 

connected by any conditions, we cannot even discuss any measure of 
variance. For expressions (1) or (2) to be measures of variance it is 
necessary for one series almost to generate the composition of the other one. 
If, on the contrary, we have N trials made with probabilities having nothing 
in common, and we separate that series into s parts of n trials each (sn = N), 

then the measure of variance will certainly be not )1( 00 pp −  which is not 

less but greater than p0(1 – p0). Poisson, however, does not consider that 
case since it means heterogeneous variance which is more general than the 
case of supernormal dispersion (Lexis 1879) that he did not touch [either]24. 
    Regrettably, I ought to restrict my remarks to these previous comments 
since I have absolutely no time for a more detailed explanation of my point 
of view. I do not know when will I manage to read your paper (1915) 
although the problem there does interest me. Recently, I returned to it but 
considered it in a much less intricate setting. 
    I am very glad that you were able to place one of your investigations in 
Mises’ periodical. He wishes to publish a note on the late Chuprov not 
longer than one page (two columns). [Bortkevich crossed out here: I allowed 
myself to name you since I thought that you will be highly successful.] And 
I would be very grateful for that. I hope that you will not refuse, and, 
according to Mises’ wish, will submit the manuscript in the nearest future25. 
And Bresciani will write [an obituary] for the Giornale degli Economisti. A 
friendship lasting thirty years connected me with the late A. A., and for me, 
each meeting with him was a festive occasion. It is difficult to become 
reconciled with the idea that he is gone. Thank Chetverikov26. 
 
    Appended here are Bortkevich’ draft calculations of variance made in connection with 
Slutsky’s letter. In a covering text he mentioned his unpublished manuscript of 1914. 
 

Letter No. 10. Slutsky – Bortkevich, 14.6.1926, Moscow 
-    Deeply respected Vladislav Iosifovich! 
    I will consider it my duty to write about A. A. Chuprov for Mises. I am 
informing him that my note [ix] will be ready not later than in a fortnight. 
    I have read your remarks about the subject of our discussion with greatest 
interest but I do not want to abuse your attention anymore. Perhaps it will be 
able for us to meet some day and discuss much. I wish very much that that 
will really happen. 
    If nevertheless your interests and pursuits will some day turn to the 
subject of my paper (1915), and you will glance at it, certainly you will not 
refuse to drop a line to me. 
    I would have now ended it in an essentially different manner. A 
supplement suggests itself here. Namely, for uniqueness (to an additive 
constant) of the definition of the function of utility it is not necessary to 
demand that on each hypersurface of indifference there exists a pair of such 
benefits that 
 

    
2

1 2( , ,..., )
0.n

i j

U x x x

x x

∂
=

∂
 

 
    It is sufficient to be able to draw a line cutting a number of such 
hypersurfaces along which the marginal utility ∂U/∂xk remains constant, 
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and this is in principle always possible. This result can also be obtained by 
elementary considerations as I do in one not yet published manuscript where 
I consider the entire problem of the measurable in general and of the 
measurement of the so-called subjective value in particular [Slutsky 1927]. 
The tasks still to be done do not regrettably lead to the final elaboration of 
that manuscript.  
    I have already read your paper, – Nik. Serg. Chetverikov’s copy, – with 
most vivid interest. The copy for me did not yet arrive, but will certainly 
reach me, and I am heartily thanking you [in advance] for it. 
    Devoted to you Evgeny Slutsky 
 

Letter No. 11. Slutsky – Bortkevich, 29.9.1928, Frankfurt/Main 
    Deeply respected Vladislav Iosifovich! 
    After the Bologna congress27 and a short trip over Italy, I came to 
Germany to stay here for about three weeks. Here in Frankfurt I learned that 
I may, provided you will not consider it immodest, congratulate you on the 
occasion of your sixtieth birthday and express my very best wishes. I would 
be very happy if you allow me to visit you when I come to Berlin. This will 
happen, as I think, in the middle of next week […]. For me, to meet you in 
person would be greatly delightful.  
    Deeply respecting you, and sincerely devoted to you Evgeny Slutsky  
 

Notes 
    1 (Note to Foreword). Mikhail Vasilievich Ptukha (1884 – 1961), demographer and 
historian of statistics. On Chetverikov see Notes 18, 26, Sheynin (1990, § 7.7) and [xix]. 
    Nikolai Nikolaevich Volodkevich, or Nikolaus Wolodkewitsch, born 1888, was a brother 
of Slutsky’s wife, Iulia Nikolaevna. He remained in Germany, and in 1932 earned a 
doctorate in physics at the Technical University of Darmstadt and later worked in the field 
of food technology and testing (in Turkey for a period in the 1930s, then again in 
Germany). German publications in his name appeared at least until 1959. 
    2. For his expression law of small numbers introduced by Bortkiewicz and then in vogue, 
read Poisson distribution. See Sheynin (2008). 
    3. Vilenkin (1969/1971, pp. 127 – 130) solved a particular case of Slutsky’s problem for 
m = 0. After simple calculations, his answer for s = 6, given in another form, provide the 
same figures as Slutsky’s table did. 
    Later Slutsky (1926) published the solution of this problem which he also discussed in 
Letters 2 and 3. In his paper, Slutsky named the biologist who prompted him to solve the 
described problem. His name (in German) was M. W. Tschernojarow, but the first who had 
considered the same problem was, as Slutsky believed, S. Navashin who had offered its 
solution in 1912, in a paper published by the Imperial Academy of Sciences (Petersburg). 
Slutsky, however, expressed reasonable doubts about the result of his predecessor. 
Slutsky’s formulas from his letter to Bortkiewicz are repeated in his paper of 1926, but 
formula (4), which is there numbered (16), see p. 153, is corrected as is, rather 
insignificantly (see same page of the paper) his table. 
    In Letter 3 Slutsky several times wrote combination translated here as arrangement 
(Anordnung in his published paper). 
    4. Probability had indeed entered the domain of pure mathematics, but only after its 
axiomatization.  
    5. Those remarks specified the sense of equally possible favourable chances. In 
particular, Bortkevich indicated that uniform randomness not necessarily occurs when 
tickets are extracted from an urn and returned back.  
    6. At least, the letters i and j owe their origin to iota. 
    7. See Slutsky [iii] where he used this term (disjunctive calculus) and referred to 
Bortkevich. 
    8. The celebrated Buffon problem of 1777. A needle falls upon a set of parallel lines 
equally distant one from another; required was the probability of its intersection with one of 
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the lines. This problem decisively introduced geometric probability into the theory of 
probability. 
    9. Slutsky (1926, p. 151) supposed that chance only decided the arrangement of the last 
pair of elements. 
    10. Edmund Husserl (1859 – 1938), a German philosopher, founder of the philosophical 
school of phenomenology. C. Wittich, in Note 1 (p. 371) of his translation of Slutsky, see 
Chipman (2004), remarks that Husserl (to whom Slutsky did not refer there) juxtaposed 
primary perceptions and their interpretation by mind. 
    11. It was Bortkiewicz (1917, pp. 4 – 5) who (unsuccessfully) proposed the terms 
Sylleptik, Horistik and Syntagmatik, deriving them from the Greek. It is now generally 
known that, after referring to Jakob Bernoulli, he also reintroduced Stochastik. Already 
Wallis, in 1685, had applied the expression stochastic (iterative) process and Prevost & 
Lhuilier, in 1799, had used it in a probability-theoretic context (Sheynin 2009, Note 1 in 
Chapter 3). 
    12. The Russian term is theory of probabilities; here, however, Slutsky used the singular 
number. 
    13. The Russian term became random magnitude, which seems to be worse than its 
English counterpart. Slutsky, however, twice applied the term random variable (here and 
below in the same letter and in earlier contributions as well).  
    14. Modo Bernoulliano was an expression coined by Romanovsky in 1922 (Sheynin 
1990/1996, pp. 50 – 51). Slutsky himself [viii, Note 3] mentioned Romanovsky in 
connection with the notion of stochastic limit (see above). There also, on his next pages, he 
explained the difference between it and the concept of limit in analysis and quoted a 
relevant although not altogether distinct (as he himself remarked) statement by Poisson. 
However, it was Laplace who expressly noted that difference in 1786 and, less definitely, in 
the beginning of Chapter 3 of his Théorie analytique (Molina 1930, p. 386).  
    Slutsky [viii, § 6] also explained that he adopted the term stochastic asymptote since the 
pertinent notion resembled the concept of asymptote in analysis as describing the behaviour 
of two functions. 
    15. See Bortkiewicz (1894 – 1896, 1894, p. 650). There also, on the next page, he 
introduced mean probability in the proper sense, see Letter 7.  
    16. In the sequel, Slutsky explained the meaning of the first two symbols whereas the last 
one, as the reader will see, can actually be left without explanation. For this reason, after 
unsuccessfully scanning Chuprov [Tschuprow] (1918 – 1919) and Chuprov (1918 – 1919 
and 1921), we prematurely abandoned here our attempt at finding it. 
    17. Slutsky did not master the Ukrainian language sufficiently whereas a compulsory 
decree of the time stipulated it for all the lectures offered in academic institutions of that 
republic (Chetverikov [xix, beginning of § 6]). 
    18. Nikolai Sergeevich Chetverikov (1885 – 1973), Chuprov’s student especially close to 
him. Worked in agricultural statistics, and on index numbers. Spent four years (apparently 
in 1931 – 1935) in prison as a saboteur and in 1937 or 1938 was subjected to new 
repressive measures and in any case was banned from living in big cities (Anonymous 
1995). 
    19. Nothing is known about Slutsky’s work there. Gosplan always was a highly 
prestigious institution.  
    20. This statement somewhat contradicts the previous description of Chuprov’s advice 
concerning the same writing. Slutsky (1925, § 1.1, in a Note) had also publicly expressed 
his gratitude to Chuprov. There also, in another Note, he favourably remarked that Chuprov 
(contrary to Markov’s opinion!) applied the term random magnitude (as it is called in 
Russian) “as the basis of the whole construction of theoretical statistics”. 
    21. Slutsky (1915) is of course the paper on rational consumer behaviour on which 
Slutsky’s fame in economic theory is based. It was published in Italian in one of the few 
European economic journals open at the time for contributions with mathematical content.  
In this work Slutsky developed further some ideas from his 1910 master thesis, as well as 
earlier contributions by Francis Y. Edgeworth (1845–1926) and Vilfredo Pareto (1848 –
1923). Slutsky’s main achievement was to prove mathematically that under certain 
assumptions the consumer's reaction to a price change (price-effect) can be separated into 
two independent and additive effects: (a) an income-effect, related to the level of 
consumption and (b) a substitution effect, pertaining to changes in the structure of 
consumption. The so-called Slutsky Decomposition has become an integral part of every 
economics syllabus today.  
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    Owing to its appearance in Italy in the middle of WW1, the essay remained unnoticed at 
the time – even the author, as this letters shows, received reprints only in 1926, and then 
only five. While one of these rare items went to Bortkevich, Slutsky sent another one 
almost simultaneously to Ragnar Frisch (1895 – 1973), the Norwegian economist (in 1969 
the first laureate of the Nobel Prize in Economics) with whom he corresponded between 
1925 and 1937 (this copy was recently found among Frisch’s papers in Oslo). Although 
both recipients were pioneers of mathematical economics, it took another ten years before 
Slutsky’s merits were finally recognized by various European and US-American scholars, 
who had derived the same results partially independently and who all were significantly 
involved in the further development of modern consumer theory, among them Sir John 
Richard Hicks (1904 –1989) and Henry Schultz (1893 – 1938). Even then, the first 
translation of Slutsky’s paper into English did not appear until 1952, and the first Russian 
translation had to wait another decade until 1963. The story of the discovery and impact of 
Slutsky’s paper in Western economic literature during the 1930s is related in Chipman & 
Lenfant (2002). 
    Slutsky’s master thesis, Theory of Marginal Utility (in Russian) is kept at the manuscript 
section, V. I. Vernadsky National Library (Kiev), Fond I, No. 44850. Its Ukrainian 
translation appeared in Kiev in 2006 and an English translation is to be published. There, on 
p. 56, Slutsky’s letter of 27 March 1919 to the Rector of the Kiev Commercial Institute is 
reprinted stating that he submitted his article of 1915 in English.  
    22. Eugen S. Altschul (1887 – 1959), a scholar of Latvian origin.Chuprov (1922) 
mentioned him in passing in one of his reviews. In 1925 Altschul was living in Berlin and 
his main occupation was somehow connected with banking (Bortkiewicz & Chuprov 2005, 
Letter 199). In 1926, in a conversation, Chuprov (Letter 211) favourably referred to 
Altschul the statistician.  
    Altschul had remained in Germany after his studies in Freiburg, Leipzig and Strasbourg 
and a 1912 doctorate. After a long period of work in property administration, banks (see 
Chuprov’s remark above) and economic journalism, in Berlin in 1923 – 1926 (where 
Bortkevich might have known him), Altschul was in mid-1926 called to head the newly-
founded Frankfurt Gesellschaft für Konjunkturforschung, where from 1927 he also taught 
conjunctural research methods at the university. Slutsky may thus have been asked to 
provide information about the Moscow Conjunctural Institute. Altschul was dismissed from 
his Frankfurt appointments after the Nazi seizure of power in 1933, emigrated to England in 
the same year (William Beveridge helped him to a research appointment at LSE) and then 
to the US, where he worked until 1939 at the National Bureau of Economic Research 
(supported by Wesley Mitchell, whose Business Cycles he had translated and published in 
German in 1931) and later taught at various universities, including U. of Minnesota and the 
University of Kansas-City, Missouri. He died in 1959 in Kansas-City. See Hagemann & 
Krohn (1999, Bd. 1, pp. 4 – 7).  
    23. Lexis (1879) had introduced dispersion of statistical series. Below, however, the 
variance (not dispersion) characterizes not a series, but the number of the occurrences of the 
studied event; p is the probability of its occurrence in a single trial, q = 1 – p, and n is the 
number of independent trials.  
    Bortkiewicz discussed the subject-matter of this part of his letter not only in 1894 – 1896, 
but also in his contribution (1917, §2.2). Concerning Bortkiewicz’ notation gλ (below), 
Slutsky [viii § 8] explained it thus. A number of series of s trials is given. In each series 
trials having probabilities of success p1, p2, …, pk are repeated s1, s2, …, sk times and gi = 
si/s. Bortkevich called the sum of the terms pλgλ the mean probability of a constant 
composition. 
    24. The initial Russian phrase was wrongly constructed and its translation is only 
conjectural.  
    25. Slutsky [ix] is his obituary of Chuprov that Mises had indeed published. 
    26. In 1908, C. Bresciani (Bresciani-Turroni) objected to Gini (Bortkiewicz & Chuprov 
2005, Letter 88) who denied the law of small numbers. He then translated into Italian at 
least one of Bortkiewicz’ manuscripts on the same subject (Letter 91) which appeared in 
Gini’s Giornale in 1909. Later, he thought of reviewing Chuprov’s Ocherki (1909), see 
Letter 123 of 1913, and, finally, in 1925 he helped Chuprov to obtain a visa for travelling to 
Italy (Letter 210). 
    Concerning Chetverikov: he corresponded with Bortkiewicz and, in September 1926 
(Bortkiewicz & Chuprov 2005, Note 178.2) informed him that Maria Smit (a notorious 
hard-liner) became the leading figure at the Vestnik Statistiki periodical, and he added: “The 
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conclusions are obvious”. In other words: the era of obscurantism had in general set in. A 
Black Sun had risen, as Mikhail Sholokhov wrote somewhere on quite another occasion.  
    27. In Bologna, Slutsky participated in the work of the Congress of Mathematicians, see 
Chetverikov [xix, § 7].  
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XVI 

 

Autobiography [1939] 
 

Zizneopisanie. Ekonomich. Skola, vol. 5, No. 5, 1999, pp. 18 – 21 
 
    My grandfather on my father’s side, Makary Mikhailovich Slutsky, 
served in Kiev in the Judicial Department. He began his career already 
before the Judicial Reform [of 1864] and stood out against the civil service 
estate of those times because of his exceptional honesty. He died in poverty, 
but he had nevertheless been able to secure higher education for my father, 
Evgeny Makarievich, who graduated in 1877 from the Natural-Scientific 
Department of the Physical and Mathematical Faculty at Kiev University. 
    From the side of my mother, Yulia Leopoldovna, I descend from Leopold 
Bondi, a physician of French extraction who, together with others [?], 
moved to Russia under circumstances unknown to me. A part of his 
numerous descendants from two marriages established themselves as 
Russians. Thus, his son Mikhail, who joined the Russian Navy, was the 
father of the well-known Pushkin scholar S. M. Bondi. However, some of 
his children regarded themselves as Poles, and became Polish citizens after 
Poland was established as an independent state. 
    Soon after my birth my mother adopted Orthodoxy and, under the 
influence of my father, became an ardent Russian patriot in the best sense of 
that word and the Polish chauvinism of our relatives always served as a 
certain obstacle to more close relations. For about 30 years now, I have no 
information about these, absolutely alien [to me] representatives of our kin. 
After the death of my grandmother all the contacts between me and my 
relatives [in Russia] with them have been absolutely broken off1. 
    I was born in 1880 in the village Novoe, former Mologsky District, 
Yaroslavl Province, where my father was a teacher and tutor-guide in the 
local teacher’s seminary. In 1886, not willing to cover up for his Director, 
who had been embezzling public funds, he lost his job. For three years we 
were living in poverty in Kiev after which my father became the head of a 
Jewish school in Zhitomir. There, he had been working until his resignation 
in 1899, again caused by a clash with his superiors. 
    But then, in 1899, I had just graduated from a classical gymnasium with a 
gold medal and entered the Mathematical department of the Physical and 
Mathematical Faculty at Kiev University and earned my livelihood by 
private tutoring. In January 1901, I participated in a [student] gathering 
demanding the return to the University of two of our expelled comrades, and 
we refused to obey our superiors’ order to break up. In accordance with the 
then current by-laws of General Vannovsky2, I, among 184 students, was 
forcibly drafted into the Army. Student unrest broke out in Moscow and 
Petersburg and in the same year the government was compelled to return us 
to the University. 
    However, already in the beginning of 1902 I was expelled once more 
because of [my participation in] a demonstration against the Minister Zenger 
and this time prohibited from entering any higher academic institution of the 
Russian Empire. My maternal grandmother, whom I mentioned above, had 
helped me to go and study abroad. From 1902 to 1905 I studied at the 
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Machine-Building Department at Munich Polytechnic School. I had not 
graduated from there. When, in the fall of 1905, owing to the revolutionary 
movement in Russia, it became possible for me to enrol in a university in 
Russia, I entered the Law Faculty at Kiev University. 
    Munich was a turning point in my development. Circumstances imposed 
the machine-building speciality on me; it oppressed me, and, as time went 
on, I liked it ever less. I was forced to analyze my situation and discovered 
that my visual memory was very weak. Therefore, as I understood, I could 
not become a good mechanical engineer. And, by the same reason, I very 
badly memorized people by sight and mistook one person for another one 
even if having met them several times so that I was unable to be a political 
figure either. A further analysis of my abilities confirmed this conclusion. I 
studied mathematics very well and everything came to me without great 
efforts. I was able to rely on the results of my work but I was slow to obtain 
them. A politician, a public speaker, however, needs not only the power of 
thought but quick and sharp reasoning as well. I diagnosed my successes 
and failures and thus basically determined the course of my life which I 
decided to devote exclusively to scientific work. 
    I became already interested in economics during my first student years in 
Kiev. In Munich, it deepened and consolidated. I seriously studied Ricardo, 
then Marx and Lenin’s Development of Capitalism in Russia [1899]3, and 
other authors. Upon entering the Law Faculty, I already had plans for 
working on the application of mathematics to economics. I only graduated 
from the University in 1911, at the age of 31. The year 1905 – 1906 [the 
revolutionary period] was lost since we, the students, barely studied and 
boycotted the examinations, and one more year was lost as well: I was 
expelled for that time period because of a boyish escapade. At graduation, I 
earned a gold medal for a composition on the subject Theory of Marginal 
Utility4. However, having a reputation as a Red Student, I was not left at the 
University and [only] in 1916/1917 successfully held my examinations for 
becoming Master of Political Economy & Statistics at Moscow University. 
    In 1911 occurred an event that determined my scientific fate. When 
beginning to prepare myself for the Master examinations, I had been 
diligently studying the theory of probability. Then, having met Professor 
(now, academician) A. V. Leontovich and obtaining from him his just 
appeared book on the Pearsonian methods, I became very much interested in 
them. Since his book did not contain any proofs and only explained the use 
of the formulas, I turned to the original memoirs and was carried away by 
this work. In a year, – that is, in 1912, – my book (Theory of Correlation) 
had appeared. It was the first Russian aid to studying the theories of the 
British statistical school and it received really positive appraisal. 
    Owing to this book, the Kiev Commercial Institute invited me to join their 
staff. I worked there from January 1913 and until moving to Moscow in the 
beginning of 1926 as an instructor, then Docent, and, from 1920, as an 
Ordinary Professor. At first I took courses in mathematical statistics. Then I 
abandoned them and turned to economics which I considered my main 
speciality, and in which I had been diligently working for many years 
preparing contributions that remained unfinished. Because, when the 
capitalist economics [in the Soviet Union] had been falling to the ground, 
and the outlines of a planned socialist economic regime began to take shape, 
the foundation for those problems that interested me as an economist and 
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mathematician disappeared. The study of the economic processes under 
socialism, and especially of those taking place during the transitional period, 
demanded knowledge of another kind and other habits of reasoning, other 
methods as compared with those with which I had armed myself. 
    As a result, the issues of mathematical statistics began to interest me, and 
it seemed to me that, once I return to this field and focus all my power there, 
I would to a larger extent benefit my mother country and the cause of the 
socialist transformation of social relations. After accomplishing a few works 
which resulted from my groping for my own sphere of research, I 
concentrated on generalizing the stochastic methods of the statistical 
treatment of observations not being mutually independent in the sense of the 
theory of probability. 
    It seemed to me, that, along with theoretical investigations, I ought to 
study some concrete problems so as to check my methods and to find 
problems for theoretical work in a number of research institutes. For me, the 
methodical approach to problems and the attempts to prevent deviations 
from the formulated goal were always in the forefront. In applications, I 
consider as most fruitful my contributions, although not numerous, in the 
field of geophysics. 
    I have written this in December 1938, when compiling my biography on 
the occasion of my first entering the Steklov Mathematical Institute at the 
Academy of Sciences of the Soviet Union. I described in sufficient detail the 
story of my life and internal development up to the beginning of my work at 
Moscow State University and later events are sufficiently well outlined in 
my completed form. I shall only add, that, while working at the University, 
my main activity had been not teaching but work at the Mathematical 
Research Institute there. 
    When the Government resolved that that institution should concentrate on 
pedagogic work ([monitoring] postgraduate studies) with research being 
mainly focussed at the Steklov Institute, my transfer to the latter became a 
natural consequence of that reorganization. 
 

Notes 
    1. It had been extremely dangerous to maintain ties with foreigners, and even with 
relatives living abroad, hence this lengthy explanation. A related point is that Slutsky 
passed over in silence his work at the Conjuncture Institute, an institution totally 
compromised by the savage persecution of its staff. O. S. 
    2. Vannovsky as well as Bogolepov mentioned in the same connection by Chetverikov in 
his essay on Slutsky (also translated here) are entered in the third edition of the Bolshaia 
Sov. Enz., vols 4 and 3 respectively, whose English edition is called Great Soviet 
Encyclopedia. It is not easy, nor is it important, to specify which of them was actually 
responsible for expelling the students. O. S. 
    3. Yes, it is possible that Slutsky read Lenin (and in any case it was necessary to mention 
him), but he probably also read Tugan-Baranovsky whereas Chetverikov [xix, § 1] 
mentioned Ricardo and “classics of theoretical economy”. See also [xv, Letter 7]. O. S. 
These latter were obviously representatives of the Austrian school. C. W.  
    4. This unpublished composition is kept at the Vernadsky Library, Ukrainian Academy 
of Sciences. A Ukrainian translation (Kiev, 2006) is available. O. S. An English translation 
will hopefully soon appear. C. W.  
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XVII 

 

Autobiography [1942] 
 

Zizneopisanie. Ekonomich. Skola, vol. 5, No. 5, 1999, pp. 21 – 24 
 
    I was born on 7(19) April 1880 in the village Novoe of the former 
Mologsky District, Yaroslavl Province, to a family of an instructor of a 
teacher’s seminary. After graduating in 1899 from a classical gymnasium in 
Zhitomir with a gold medal, I entered the Mathematical Department of the 
Physical and Mathematical Faculty at Kiev University. I was several times 
expelled for participating in the student movement and therefore only 
graduated in 1911, from the Law Faculty. Was awarded a gold medal for my 
composition on political economy, but, owing to my reputation of a Red 
Student, was not left at the University for preparing myself for 
professorship. I passed my examinations in 1917 at Moscow University and 
became Master of Political Economy and Statistics. 
    I wrote my student composition for which I was awarded a gold medal 
from the viewpoint of a mathematician studying political economy and I 
continued working in this direction for many years. However, my intended 
[summary?] work remained unfinished since I lost interest in its essence 
(mathematical justification of economics) after the very subject of study (an 
economic system based on private property and competition) disappeared in 
our country with the revolution. My main findings were published in three 
contributions ([6; 21; 24] in the appended list [not available]). The first of 
these was only noticed 20 years later and it generated a series of Anglo-
American works adjoining and furthering its results. 
    I became interested in mathematical statistics, and, more precisely, in its 
then new direction headed by Karl Pearson, in 1911, at the same time as in 
economics. The result of my studies was my book Theory of Correlation, 
1912, the first systematic explication of the new theories in our country1. It 
was greatly honoured: Chuprov [xviii, § 3] published a commendable 
review of it and academician Markov entered it in a very short bibliography 
to [one of the chapters of] his Calculus of Probability.  
    The period during which I had been mostly engaged in political economy 
had lasted to ca. 1921 – 1922 and only after that I definitively passed on to 
mathematical statistics and theory of probability. The first work [8] of this 
new period in which I was able to say something new was devoted to 
stochastic limits and asymptotes (1925). Issuing from it, I arrived at the 
notion of a stochastic process which was later destined to play a large role. I 
obtained new results, which, as I thought, could have been applied for 
studying many phenomena in nature. Other contributions [22; 31; 32; 37], 
apart from those published in the C. r. Acad. Sci. Paris (for example, on the 
law of the sine limit), covering the years 1926 – 1934 also belong to this 
cycle. One of these [22]2

 includes a certain concept of a physical process 
generating stochastic processes and recently served as a point of departure 
for the Scandinavian [Norwegian] mathematician Frisch and for 
Kolmogorov. Another one [37], in which I developed a vast mathematical 
apparatus for statistically studying empirical stochastic processes, is waiting 
to be continued. 
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    Indeed, great mathematical difficulties are connected with such 
investigations. They demand calculations on a large scale which can only be 
accomplished by means of mechanical aids the time for whose creation is 
apparently not yet ripe. However, an attempt should have been made, and it 
had embraced the next period of my work approximately covering the years 
1930 – 1935 and thus partly overlapping the previous period. At that time, I 
had been working in various research institutions connected with 
meteorology and, in general, with geophysics, although I had already begun 
such work when being employed at the Central Statistical Directorate. 
    I consider this period as a definitive loss in the following sense. I aimed at 
developing and checking methods of studying stochastic empirical processes 
among geophysical phenomena. This problem demanded several years of 
work during which the tools for the investigation, so to say, could have been 
created and examined by issuing from concrete studies. It is natural that 
many of the necessary months-long preparatory attempts could not have 
been practically useful by themselves. Understandably, in research institutes 
oriented towards practice the general conditions for such work became 
unfavourable. The projects were often suppressed after much work had been 
done but long before their conclusion. Only a small part of the accomplished 
during those years ripened for publication. I have no heart for grumbling 
since the great goal of industrializing our country should have affected 
scientific work by demanding concrete findings necessary at once. However, 
I was apparently unable to show that my expected results would be 
sufficiently important in a rather near future. The aim that I formulated was 
thus postponed until some later years. 
    The next period of my work coincides [began] with my entering the 
research collective of the Mathematical Institute at Moscow State University 
and then [and was continued], when mathematical research was reorganized, 
with my transfer to the Steklov Mathematical Institute under the Academy 
of Sciences of the Soviet Union. In the new surroundings, my plans, that 
consumed the previous years and were sketchily reported above, could have 
certainly met with full understanding. However, their realization demanded 
means exceeding any practical possibilities. I had therefore moved to purely 
mathematical investigations of stochastic processes [43; 44]; very soon, 
however, an absolutely new for me problem of compiling tables of 
mathematical functions, necessary for the theory of probability when being 
applied in statistics, wholly absorbed my attention and activity.  
    Such tables do exist; in England, their compilation accompanied the entire 
life of Karl Pearson who during three decades published a number of 
monumental productions. Fisher’s tables showed what can be attained on a 
lesser scale by far less work. Nevertheless, a number of problems in this 
field remained unsolved. The preparation of Soviet mathematical-statistical 
tables became topical and all other problems had to be sacrificed. The year 
1940 – 1941 was successful. I was able to find a new solution of the 
problem of tabulating the incomplete gamma-function providing a more 
complete and, in principle, the definitive type of its tables. The use of 
American technology made it possible to accomplish the calculations during 
that time almost completely but the war made it impossible to carry them 
through. 
    I described all the most important events. Teaching had not played an 
essential part in my scientific life. I had been working for a long time, at 
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first as a beginning instructor, then as professor at a higher academic 
institution having a purely practical economic bias, at the Kiev 
Commercial Institute, which under Soviet power was transformed into the 
Kiev Institute for National Economy. I had been teaching there from 1912 to 
1926. The listeners’ knowledge of mathematics was insufficient which 
demanded the preparation of elementary courses. I do not consider myself 
an especially bad teacher, but I had been more motivated while working as 
professor of theoretical economy since my scientific constructions 
conformed to the needs of my listeners. During a later period of my life the 
scientific degree of Doctor of Sciences, Physics & Mathematics, was 
conferred on me as an acknowledgment of the totality of my contributions 
and I was entrusted with the chair of theory of probability and mathematical 
statistics at Moscow State University. However, soon afterwards I 
convinced myself that that stage of life came to me too late, that I shall not 
experience the good fortune of having pupils. 
    My transfer to the Steklov Mathematical Institute also created external 
conditions favourable for my total concentration on research, on the main 
business of my scientific life. A chain of events, which followed the war 
tempest, took me to Uzbekistan. But it is too soon to write the pertinent 
chapter of my biography. I shall only say that I am really happy to have the 
possibility of continuing my work which is expected to last much more than 
a year and on which much efforts was already expended, – of continuing it 
also under absolutely new conditions on the hospitable land of Uzbekistan. 
 

Notes 
    1. See translation of its Introduction [i]. The book is entirely translated (Berlin, 2009, 
also www.sheynin.de). O. S. 
    2. Its new version [42] was prepared on the request of Econometrica. E. S. 
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XVIII 

 

Oscar Sheynin  

 

Slutsky: Commemorating  

the 50
th

 Anniversary of His Death 

 
E. E. Slutsky: k 50-letiu so dnia smerti. 

Istoriko-Matematich. Issledovania, Book 3 (38), 1999, pp. 128 – 137  
 

    Note. The original Russian text lacks §3.3 and only lists rather than quotes archival 
sources published in my booklet Sheynin (2004). 
 

1. Introduction 
    Many authors (Kolmogorov 1948; Smirnov 1948; Allen 1950; 
Chetverikov [xix]; Gnedenko 1960; Youshkevich 1975; Konüs 1978; Seneta 
1988)1 described the life and work of Evgeny Evgenievich Slutsky (1880 – 
1948), an outstanding mathematician, statistician, and economist, and his 
most important writings are available in a one-volume edition (Slutsky 
1960). I am therefore restricting my main goal to publishing or describing a 
few archival letters either written by, or having to do with him (§3). In 
addition, I say a few words about Slutsky’s life (below) and throw light on 
the events which apparently compelled him to abandon economics (§2)2. In 
1920 Slutsky became Professor at Kiev Commercial Institute. However, he 
had not mastered the Ukrainian language which was then made compulsory 
for academic institutions, and in 1926 he had to move to Moscow and to 
start working there at the Central Statistical Directorate [xix, p. 268], and, at 
the same time, at the Conjuncture Institute under the Finance Ministry 
(Gnedenko 1960, p. 8). 
    Already then Slutsky busied himself in real earnest with applying his 
statistical research to geophysics. Being forced to abandon his activities in 
economics (§2), he [xix, § 2], for a few years,  
 
    Went over to working in institutes connected with geophysics and 
meteorology where he […] hoped to find application for his discoveries in 
the field of pseudo-periodic waves.3  
 
He had not found suitable conditions for theoretical research (Ibidem), and 
in 1934 he moved to the Moscow State University, then (in 1939) going 
over to the Steklov Mathematical Institute. The University conferred on him 
the degree of Doctor of Physical and Mathematical Sciences honoris causa 
[xix, § 2]. 
    Slutsky was an original and deep researcher. He is mostly known as a 
cofounder of the purely mathematical theory of probability and the theory of 
stochastic processes, and remembered for his application of stochastic ideas 
and methods in economics and geophysics (especially in studying solar 
activity) and as a compiler of important mathematical tables which 
constituted “a masterpiece of the art of calculation” (Smirnov 1948, p. 417). 
    Slutsky’s contribution to the theory of consumer’s demand is very 
valuable (Allen 1950, p. 210). For a very long time before his death he 
(Ibidem, pp. 213 – 214) remained 
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    Almost inaccessible to economists and statisticians outside Russia. […] 
His assistance, or at least personal contacts with him would have been 
invaluable. 
 

2. Withdrawal from Economics 
    In 1927, N. D. Kondratiev, the Director of the Conjuncture Institute, 
published a critical article concerning the first Five-Year-Plan. Soon he was 
elbowed out of science, arrested (1931) and then (1939!) shot (Makasheva 
1988). N. S. Chetverikov, Kondratiev’s assistant, served four years in 
prison, and, in 1937 or 1938, was subjected to new “repressive measures” 
(Anonymous 1995). Slutsky apparently had not suffered,4 but the general 
situation in statistics became unbearable. Later Chetverikov [xix, § 2] warily 
remarked that in 1930 “The Conjuncture Institute ceased to exist and the 
Central Statistical Directorate underwent radical change”.  
    I myself add that, also in 1930, the leading statistical journal, Vestnik 
Statistiki, was closed down and only reappeared in 1948;5 during that period 
only a meagre number of statistical papers had been published in Planovoe 
Khoziastvo. 
    Under the changed social conditions, Maria Smit (more correctly, 
Falkner-Smit), a statistician of the new wave, became especially useful in 
spite of her crass ignorance (and in 1939 she was even elected 
Corresponding Member of the Soviet Academy of Sciences). Pearson, she 
(1934, p. 228) wrote,  
 
    Does not want to subdue the real world by a single curve [of distribution] 
as ferociously as it was attempted by Gaus [Gauss!]. […] His system [of 
curves] nevertheless only rests on a mathematical foundation, and the real 
world cannot be studied on this basis at all. 
 
    She (1930, p. 168) also declared that Marxist statisticians should help the 
state security service in exposing the “saboteurs”. Iastremsky (Ibidem, p. 
153) effectively agreed and mentioned D. F. Egorov (who died soon 
afterwards in his exile in Kazan): 
 
    I had recently an occasion to hear out […] the speech of Prof. Egorov, 
the then not yet exposed saboteur.6 He came out with a programme of sorts 
saying so ardently, even with a cry  in his voice, What are you harping here 
on sabotage? […] There are no saboteurs worse than you yourselves, 
comrades, since you standardize reasoning by popularizing Marxism. 
 
Also see Sheynin (1990; 1998). 
 

3. Archival Sources 
    Before adducing the promised letters to Pearson, I quote similar and 
already published archival materials concerning Slutsky in Kolmogorov 
(1948) and my own booklet (1990).  
    1) In three of his letters to Chuprov, Markov, in 1912 (Ondar 1977/1981, 
pp. 53 – 58) criticized Slutsky’s book (1912). In the same source (p. 143) 
the Editor, in his review of the Markov – Chuprov correspondence, quoted a 
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passage from a letter written by Slutsky to Markov. I translated and 
published this letter almost in full, see below. 
    2) I myself (1990/1996, pp. 43 – 50) made known a few other archival or 
hardly known materials: 
        a) Chuprov’s review of Slutsky (1912) published in 1912 in a 
newspaper, Slutsky’s answer and his correspondence with Markov. I 
continue treating Slutsky’s encounter with Markov in my §§ 3.1 and 3.2.  
        b) Slutsky’s scientific character written by Chuprov in 1916. 
        c) Passages from the correspondence of these scholars with each other. 
    3) Seneta (1992) published English translations of two of Slutsky’s letters 
to his wife concerning the author’s appraisal of the comparative contribution 
of Borel and Cantelli to the discovery of the strong law of large numbers.7 
After comparing Seneta’s translation with Slutsky’s letter now published in 
its original Russian (Eliseeva & Volkov 1999, pp. 116 – 118), I see that 
some hardly significant changes ought to be made there; the deviations were 
possibly present in Chetverikov’s copy. I am now providing Seneta’s 
translation (p. 29) of Chetverikov’s covering note. 
 
    Dear Oscar Borisovich, 
    I enclose the promised letters of E. E. Slutsky transcribed from the 
originals and received by me for this purpose from his wife Iulia Nikolaevna 
Slutsky (née Volodkevich – in Kiev).  
    The lively controversy, which flared up between E. E. Slutsky and the 
mathematician Cantelli on the question of the strong law of large numbers, 
after examination of the opposing theses concluded in favour of E. E. who 
succeeded not only in defeating but also convincing his opponent. The whole 
episode so clearly characterizes E. E. – his relation to colleagues in his 
discipline, his meticulous consideration of all related authors and problems, 
his uncompromising rigour of scientific thinking – that it is best to let him 
speak for himself and present that graphic description of his dispute with 
Cantelli which has survived in letters to his wife – Iulia Nikolaevna – 
written in the very heat of the “battle”. From the letter of Thursday 6 
September, 1928: [the text of the letter followed]. 
 
    I am now quoting the materials mentioned above in Item 2. 
    2a) Chuprov’s review: 
 
    In a short book the author described, shortly and distinctly, the 
theoretical constructions created by English statisticians-mathematicians 
and devoted to one of the most interesting problems of statistical theory, 
viz., to the measurement of the closeness of connection between phenomena. 
In developing Galton’s methodological ideas, Pearson and his school 
gradually worked out an entire system of diverse and delicate quantitative 
characteristics of connection; […] Slutsky had gained a good understanding 
of the vast English literature belonging to this subject and, upon becoming 
quite proficient in the material, described it intelligently. There is not much 
scientifically original in the book, but the author never aimed at anything of 
the sort. However, he successfully fulfilled his problem of compiling a 
manual […] bringing together the findings made. Slutsky’s book may be 
most energetically recommended to those Russian statisticians who possess 
at least some knowledge of higher mathematics. Even those, to whom 
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foreign literature is available, will not make a mistake by turning to this 
Russian manual for initial acquaintance. 
 
    On 22 Nov. 1912 Slutsky sent a letter to Chuprov: 
 
    I read your review […] and express my most sincere and deep gratitude 
to you for it. To me, as a beginner in this field, it is extremely gratifying to 
realize that my first published work, in spite of all its shortcomings, may still 
be considered generally useful for the Russian public. […] 
    Markov gave me a good dressing down. I received a letter and a postcard 
from him, and Professor Grave received three letters on the same subject 
with a request to show them to me. If my latest answer appears to him more 
or less satisfying, the correspondence, to all indications, will continue. 
Grave actively participates in the dispute, adjusting it, so to say (otherwise I 
would have been hard put to adapt myself to such an unusual manner of 
writing as possessed by Markov). 
    From the point of view of a rigorous mathematician it was of course easy 
for Markov to discover a number of weak points, but at the same time [his] 
resolute attack affected a number of fundamental problems in which I had to 
defend Pearson. 
  
    Dmitry Aleksandrovich Grave (1863 – 1939) was a mathematician then 
working at the Kiev Commercial Institute and one of his letters to Markov is 
quoted in § 3.1. Markov’s “unusual” manner, blunt and often rude, is 
generally known. 
    Slutsky’s letter to Markov of 13 Nov. 1912: 
 
    Highly respected Andrei Andreevich: // I have learned from D. A. Grave 
that you had written to me; however, I have not yet received the postcard 
which you had addressed to the Commercial Institute. Nonetheless, allow 
me to answer it the more so since D. A. Grave found it possible to acquaint 
me with the contents of your letter to him.  
    I begin by taking up […]. This is a purely editorial shortcoming. […] 
Your other remarks are so indefinite that it is too difficult to comment on 
them. My work was a result of studying the Pearson methods as described in 
his original memoirs. I experienced a direct impetus from Leontovich’s book 
(1909 – 1911) (which is absolutely unsuitable for studying these methods) as 
well as from information reaching me about the awakening of certain 
statistical circles to the need of using these methods and the method of 
correlation in particular. I thought that I have no right to postpone the 
publishing of a contribution whose improvement was hindered by various 
personal circumstances and decided to restrict myself to a simple concise 
description; this, as it seemed to me, will help those statisticians who, either 
because lacking mathematical knowledge or of other reasons, are unable to 
read the original memoirs. 
    Your words that you do not understand the proofs [in my book] I can only 
interpret figuratively. I dare to believe that the mathematical competence of 
my work cannot be denied; incidentally, I am convinced of this since 
(according to my private information) A. A. Chuprov has recommended my 
book to his students. And so, I think that you consider my book obscure for 
the same reason that you believe that Pearson’s works are anti-
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mathematical. [Slutsky apparently repeated Markov’s words from his letter 
to Grave.] The crucial point is obviously the lack of rigorous mathematical 
substantiation of the basis of [his] theories and methods. 
    In spite of my deep and sincere admiration for your knowledge and 
authority, I allow myself to differ. I believe that the shortcomings of 
Pearson’s exposition are temporary and of the same kind as the known 
shortcomings of mathematics in the 17th and 18th centuries. A rigorous basis 
for the work of geniuses was only built post factum, and the same will 
happen with Pearson. I took upon myself to describe what was done. 
Sometime A. A. Chuprov will set forth the subject of correlation from the 
philosophical and logical point of view, and describe it as a method of 
research. An opportunity will present itself to a ripe mathematical mind of a 
pure mathematician to develop the mathematical basis of the theory. 
    My modest expectations will be satisfied if my work turns the attention of 
Russian mathematicians and statisticians to Pearson. Although I consider it 
possible to develop all the Pearsonian theories by issuing from rigorous 
abstract assumptions, I do not consider myself in a position to trouble you 
by imposing on you my opinion. I any case, I shall see it as my pleasant duty 
to discuss, either in private or publicly, any perplexities and answer any 
objections expressed in connection with my book.  
    When Nekrasov’s book (1912) had appeared, I began to think that my 
work was superfluous; however, after acquainting myself more closely with 
his exposition, I became convinced that he did not even study sufficiently the 
relevant literature. Thus, I continue to believe that my book written without 
claims to originality (except for the additions to the Pearson theories in §§ 
15, 18 and 33) is not superfluous for the Russian literature. 
 
    2b) A scientific character written by Chuprov: 
 
    Slutsky, a young and promising representative of mathematical statistics, 
addressed me with a request to formulate my opinion on his contributions in 
order to append it to his application submitted to the educational 
department [of Kiev Commercial Institute] for his approval as senior 
instructor. 
    I know about three Slutsky’s works worthy of attention. 1) Theory of corr. 
[1912]; 2) [A blank in Chuprov’s document; he certainly meant Slutsky’s 
paper of 1914 in the J. Roy. Stat. Soc.]; 3) Sir William Petty [of 1914]. 
Slutsky’s English paper devoted to an important special problem of 
statistical theory attracted attention and caused debate in the literature in 
which Pearson, the head of the contemporary English mathematical school 
in statistics, took part [in 1916, in Biometrika]. 
    The Russian book […] should be considered not only extremely useful, 
but, up to now, the only Russian treatise dwelling on these complicated 
problems with a full knowledge of literature and a quite correct 
understanding of the subject. The author thoroughly summarized a vast 
quantity of material chiefly of English investigations. Being scattered among 
special journals and mathematically expounded and thus demanding at 
times considerable study of extremely complicated branches of higher 
mathematics, these investigations are hardly available to most Russian 
statisticians. Slutsky treated everything he could find in the literature 
perfectly well, developed some topics on his own and intelligently, clearly 



 237 

and coherently described the entire subject for Russian readers. This work 
testifies to a faculty important for a teacher, of converting dispersed 
materials of special scientific research into a harmonious system and the 
ability [no less important for a teacher] to describe clearly and 
systematically even extremely involved constructions. I often have the 
occasion to recommend the book to those of my listeners who possess some 
schooling in higher mathematics and I see how useful it is for them.  
    In their totality, both abovementioned works testify that in Slutsky’s 
person Russian science possesses a serious force especially valuable since 
in Russia a researcher occupying himself in the field of social science rarely 
has mathematical training. 
    The contribution devoted to Petty [a historical study complete with 
translations of fragments from Petty’s writings] is of a more modest nature. 
It is a good lecture based on a careful study of Petty’s own work and an 
honest acquaintance with the literature. A good and wide schooling in 
economic theory and history of economic teachings allows […] the author 
to sketch with a sure hand those historical and dogmatic [theoretical?] 
perspectives in which the teaching of Petty, that outstanding economist of 
the 17th century, should be considered. 
 
    2c) Even before 1916 Chuprov invited Slutsky to deliver a course of 
lectures on some subject, see below. The latter agreed adding, in his reply of 
27 June 1914: 
 
    I construct my own course in mathemat. statistics at the [Kiev] Commerc. 
Inst. on a purely mathematical basis devoting about a month (12 hours plus 
classes) to an introduction to analyt. geometry and different. calculus; I 
teach the method of least squares in its interpolation aspect8 (at first without 
considering the theory of probab.). After that the theory of correlation goes 
on easily enough. […] The experience of the previous year […] which I 
carried out with five of my regular listeners satisfied me more than the 
experience of the year before that when I had started with the elementary, 
the easy. While having a few dozens of students in the beginning, I lost all of 
them when passing on to more dry material and exercises. 
 
    Somewhat previously, Slutsky wished to decline that invitation, so that 
Chuprov argued (20 June 1914):  
 
    During Lent, […] courses on the theory of st-cs will be organized at 
Shaniavsky University in Moscow9 […]. Nik. Serg. [Chetverikov] told me 
that you do not want to take upon yourself the reading of the course in corr. 
which we thought to entrust to you. Pity indeed! It fetters our plans. We 
cannot do without correlation – correlation and interpolation must certainly 
occupy the central place. And whom can we charge with the task? […] Me? 
However, out of what will be left after deducing corr., namely interpolation, 
sample invest., some want to include for good measure stability [of 
statistical series], I can only take a part since I am unable to come to 
Moscow for more than a week. […] Again, from your own personal point of 
view I do not know whether it is correct to decline this offer. Of course, it is 
better to not to delay with the master’s exam. [The letter ends 
unexpectedly.] 
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    Chuprov’s correspondence with Slutsky during 1923 – 1925 testifies that 
these scholars remained close to each other. In particular, Chuprov then 
favourably mentioned two of Slutsky’s papers. With regard to the first one 
he wrote Chetverikov on 9 March 1924: 
 
    For me, the work [iv] is very interesting; both in its approach and in the 
results obtained it fully accords with what I arrived at for the coefficient of 
correlation.  
 
    And, about the second one [viii], in a letter of 3 Aug. 1925 to Slutsky: “I 
consider your analysis perfect”. 
    3.1. D. A. Grave – A. A. Markov, 4 Nov. 1912, Kiev 
    Archive of the Soviet Academy of Sciences, Fond 173, Delo 5, No. 1 
    Highly respected Andrei Andreevich, – I got to know E. E. Slutsky under 
the following circumstances. I was invited to a sitting of the Society of 
Economists at K. Comm. [Kiev Commercial] Inst. to attend a report on 
applying the Pearson theory to statistics. The report was delivered by 
Slutsky, a young man who had recently graduated from the [Kiev] 
University with a gold medal awarded for a work on political economy, but, 
because of some reasons, was not left at the University [to prepare himself 
for professorship]. 
    I inquired directly of Slutsky’s professor of political economy the reasons 
for this, and his answer surprised me by the justification unusual for a 
mathematical ear. According to his words, Slutsky is quite a talented and 
serious scientist, but the professor had not ventured to nominate him for 
being left at the University because of his distinct sympathy with social-
democratic theories. And when I was unable to refrain from stating that at 
the mathematical faculty the author is not usually asked about his political 
views, the professor advised me to leave Slutsky at the mathematical faculty. 
I was naturally obliged to say that I have absolutely no desire to intervene 
in the business of the law faculty and that I am therefore asking him to leave 
the mathematical faculty alone. After this encounter Slutsky became my 
student and protégé. Although I am not at all acquainted with his works and 
had not understood the mathematical part of his report. 
    The lawyers, professors at the K. Comm. Inst., who did not understand 
Slutsky’s book (1912) but desired to acquaint themselves with the Pearson 
theory, have asked me to explicate it properly in my course in insurance 
mathematics (1912). I do not know how to find a way out of this difficult 
situation: it is simply repulsive to read all this  
 
    [The sequel has no bearing either on Slutsky or probability and/or 
statistics. As also below, I myself inserted or specified the bibliographic 
information provided. For Grave, it was “repulsive” to read Pearson; cf. the 
now published letter of Slutsky to Markov (below).] 
    3.2. The Extant Part of the Unsigned and Unaddressed Letter 
(obviously, from Slutsky to Markov; no date)  
    Same Archive, Fond 173, delo 18, No. 5  
are not independent in magnitude from the sum of the already accumulated 
deviations or that the probabilities of equal deviations are not constant, we 
shall indeed arrive at the formula 
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    (1/y)dy/dx = x/F(x). 
 
In an infinite number of cases (naturally, not always!) F can be expanded 
into a Taylor series, and the first few (e.g., three) terms will ensure a 
sufficient approximation. These qualification remarks should have certainly 
been made. 
    Only experience can show how often do empirical polygons of 
distribution, which could with a sufficient apprximation be interpolated by a 
Pearson curve, appear in practice. Much material is already collected for 
answering this question in the positive. In many cases the Gauss curve will 
not do since asymmetric polygons are often encountered in practice. 
Interpolation by parabolic curves 
 
    y = ao + a1x + a2x

2 + … 

 
is unsuitable since these curves do not give an adequate picture at the edges 
of the figure: it is impossible to ensure their asymptotic approximation to 
the X axis; in addition, they lead to many superfluous inflexions. Pearson 
curves constitute the type that occurred to be practically the most suitable. 
    Since the Gauss curve in very many cases is well suited for representing 
statistical facts, especially in anthropology [anthropometry], it seems 
desirable also for the asymmetric Pearson curves not only to indicate that 
they are corroborated by practice, but in addition to provide a theoretical 
derivation that would put this curve [these curves] in the same line as the 
Gauss curve on the basis of the theory of probability (hypergeometric 
series). 
    The derivation on pp. 16 – 17 only serves to make the striking practical 
suitability of these curves less incomprehensible by means of the hypothesis 
on the action of infinitely many causes combining semi-randomly one with 
another. 
   2) The method of moments. Here, I allow myself to remark that neither 
Pearson, nor Lakhtin (1904) say that they proved that the method of 
moments brings 
 

    ∫ (y – Y)2dx 

 
to its minimal value. They only prove that the method ensures an 
approximation. It would have been interesting to investigate this problem 
and to indicate precisely when is the method of moments applicable, and 
when it is not. Lakhtin does it, but is he not mistaken? 
    I think that, quand même, approximate formulas should not be objected 
to. Indeed, you yourself (Markov 1908, p. iv) admit that such formulas might 
be used in probability theory even “without estimating their error” since 
“the aims of applied mathematics” demand this. You also state that 
approximate formulas should in addition be created for ensuring the 
calculations (Markov 1912, p. 77).10 At the same time, the method of 
moments is very convenient; and, since it is proved to provide an 
approximation for a large number of types of functions, its critical 
investigation is desirable. In many cases it is simply indispensable since the 
method of least squares sometimes leads to intolerable or even unrealizable 
calculations. If desired, I shall next time illustrate this proposition.  
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    3) The theory of correlation. Here, I shall allow myself for the time  
being …11 
    3.3. Slutsky’s Letters to Karl Pearson 
    I (Sheynin 1990/1996, pp. 46 – 47) published Slutsky’s letter of 31 March 
1913 to Chuprov. It occurred that Slutsky sent Pearson two manuscripts for 
publication in the Biometrika. Pearson had, however, returned both of them, 
and Slutsky, considering that he was treated improperly, asked Chuprov’s 
advice. Chuprov recommended that Slutsky submit his work to the Royal 
Statistical Society, and one of these manuscripts was indeed published by it 
(1914); the other one, on a modification of the difference method, had not 
appeared anywhere. 
    Now, I am able to make known three letters from Slutsky to Pearson;12 
Pearson’s letters are lost. Slutsky invariably gave his address as the 
Volodkevich Commercial “Schoole” in Kiev. Volodkevich was the name of 
his wife, and I am sure that since 1917 Slutsky never mentioned this private 
enterprise of his father-in-law. 
    3.3.1. Slutsky – Pearson, 23 April 1912 
    University College London, Library, Pearson Papers 856/4 
    Dear Sir, – I am sending for your approval a paper concerning a 
correction to be made in the theory of contingency. If you find no fallacy in 
chief results, will not the paper be of some interest to the readers of the 
Biometrica? [!] Should you find any fault making idle the whole of my 
reasoning, I hope you will not refuse to communicate me your kindly 
criticism. It is a pleasure to acknowledge beforehand my great debt to you 
for the slightest of hints on the fallacies possibly made in my work. I am, 
    Yours faithfully E. Slutsky 
    P.S. The summary of the results is to be found at the end of the paper. 
    3.3.2. Slutsky – Pearson, 6 May 1912 
    Kept at the same place, 856/7 
    Dear Sir, – I had the pleasure to receive your honored letter on the 3d  
May and I must excuse myself for answering so late – the reason is that I 
wanted much time for translating my letter in English. I thank you very 
much for your long and very interesting letter and for the proof which I am 
sorry not to have got yet, probably because it must be censured before I get 
it. Being you really very thankfull for your suggestiv and very valuable 
criticism and agreeing with you in many points, I fear nevertheless that I 
shall not be able to agree with you about their bearing concerning my main 
thesis. I think I can keep my ancient opinion about the best method of 
determining the probability we have in view, though after your letter I feel 
compelled to change its foundation. I take the liberty to begin with some 
general considerations and then I shall continue with the question in which 
we disagree. 
    1. There is not a single method for the determination of the probability 
that a given system of frequencies has arisen from random sampling. 
     A) The theoretical frequencies being known à priori, we can determine 
the probability of the given system of errors: 
 
    e1 = m1 – µ1, e2 = m2 – µ2, … P = Q(χµ

2;n′) – 
 
in the notation of my paper – where n′ is the number of groups, 
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  1                  ...
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r r .                                                    (1) 

 
    Now it is to be remarked that the method, even when applied to the same 
material, gives us very different results, the value of n′ being arbitrary. As 
you have shown (Pearson 1900, p. 160), by infinitesimal grouping P = 1 for 
any value of χ2 will appear. There is thus a number of groups n′m which 
brings the value of P to the minimum, and I think you will agree that this 
minimal value of P is that really significant for the probability in question. 
“Really significant” means but this: we cannot assume a value greater than 
this Pminim to the probability that the given system of frequencies has arisen 
by random sampling from the supposed theoretical population. 
    B) Let 
 
    θ1 = f1(m1; m2; …; mn), θ2 = f2(m1; m2; …), θq = fq(m1; m2; …)  
 
be functions of empirical frequencies such that 
 
    f1 (µ1; µ2; …) = 0, f2 (µ1; µ2; …) = 0, …, fq (µ1; µ2; …) = 0 
 
and let 

1θ
σ , 

2θ
σ , …, θ θi j

r , … be their standard deviations and correlations. 

Then the probability of our frequency distribution being a random sample of 
the theoretical population (µ1; µ2; …; µn) can be judged 
    α) From the probability of the deviation of any θi from its zero value. In 
this case 
 

    
2

2
θθ

θ2
exp( – ) θ .
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ii
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iP d

∞

= ∫  

 
    β) From the probability of the set of deviations from their zero values of a 
correlated system of functions θ1; θ2; …; θq 
 

    
1 2

2
θ ; θ ; ...; θ(χ ; 1)

q
P Q q= +  

 

where q is the number of independent values (θ1; θ2; …; θq), 
 
 

    
1 2

2 2 2
θ ; θ ; ...; θ θ θ θ θ θ θ θχ [ θ / σ ] 2 [ θ θ / σ ],

q i i jii i ij i jR R R R= +∑ ∑              (2) 

 

and R is the same as (1) but with θi replacing µ i. 
    The question of the relations between the results obtained by different 
methods seems to me to be a very difficult one. I think, however, that the 
following propositions hardly can meet objections. 
    Proposition 1. From all the values χ1, χ2, …, χs that is really significant 
which gives the least value for P. For ex. (Pearson 1902, p. 280 & 283 – 
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284): In the case (1 – 3) – Motion of bright Line –  the probability of the 
frequency distribution being a random sample from the general population 
distributed normally equals 1/23 if judged from the value of the criterion χ2 
and it is < 1/1000 if the probable error of the skewness will be taken into 
account. 
    Proposition 2. Should we take a great number of random samples from 
the general population and evaluate all values 
 

    χ2 with indices µ, θ1, θ2, …, θq, θiθj, θiθjθk, …, θiθj… θs, …  
 

for each random sample, the distribution of each χ2 must be that indicated 
by the theory within the errors of random sampling. 
    Proposition 3. Let us have χ1

2 (for n1 independent values θi; θj ; …; θk) 
and χ2

2 (for n2 independent values θ with other indices) and let n1 not be 
equal to n2. Then it is impossible that for all random samples χ1

2 = χ2
2 = χ2 

say. Indeed, the theoretical distribution of χ1
2 as given by Q (χ2; n1 + 1) 

differs from the theoretical distribution of χ2
2 as given by Q(χ 

2; n2 + 1) 
whereas χ1 being identical with χ2 their distributions must and will be also 
identical. 
    2. I come now to consideration of the point of our divergence and I 
confess that “if I writte 
 

    1ep =  1f p – N(1 fp + 2fp)/(N′ + N″) 
 

I vary the constitution of the general population for each pair of samples I 
take, whereas it must really be a constant, as we take all pairs of samples”. 
    For consequence χ2 proposed by me as the criterion of divergency cannot 
be regarded as your criterion for goodness of fit as worked out in your 
paper (Pearson 1900, pp. 160 – 163). In the notation of this letter it is not 
χ2

µ. But nevertheless it is significant. Let us have a contingency table [Table 
1] and let us look upon the values like 
 

    mij – Ni′Nj″/N = εij 
 

as on the functions of the group frequencies, varying from sample to sample, 
and becoming all zeros for the general population. Then my criterion of 
divergency χ2

ε [Slutsky wrote out the right side of (2) with ε replacing θ]; 
the corresponding value of 
 

    P = Q[χ2
ε; (s – 1)(t – 1) + 1] 

 

measures the probability “that a given system of deviations from the 
probable (εij = 0) in the case of a correlated system of variables (εij) is such 
that it can be reasonably supposed to have arisen from random sampling”. 

It is quite analogous with my 
1 2

2
θ ; θ ; ...; θχ

q
 and it is easely to be subsumed 

under your general theory in Pearson (1900, p. 157 – 160). 
    Let us suppose there is no correlation in the general population and let a 
great number of random samples be taken from it. Then the distribution of 
values of χ2

ε will be that given by Q[χ2
ε; (s – 1)(t – 1) + 1]. 

    I have shown in my paper that my criterion of divergency (χ2
ε) for a 

fourfold table is identical as to its numerical value with your square 
continugency χ2

µ. If so both theories cannot be valid as it is shown in the 
proposition 3 above. 
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    I am not able now to see any error in my reasoning and it seems me the 
divergence in our views resolves as follows: We do not know the theoretical 
frequencies and we use “the best available values”, i.e. Ni′Nj″/N as it occurs 
in many other cases. 
    (A) I think that they are not the best, and it seems to me you will agree 
that we should obtain far better values if we have had a theory of skew 
surfaces. Then fitting such a surface to the system of values like Ni′Nj″/N and 
integrating its volume for the base elements of the subgroups we have had 
indeed the best available values. 
    (B) Yet supposed the values like N′N″/N be “the best available”, there is 
still no ground that they are sufficiently good, for we can safely use the 
theoretical values deduced from the sample itself instead of the unknown 
quantities relating to the general population only if their probable errors 
are sufficiently small. That is the case with the standard deviation, when 
used to determine the probable error of the mean. In determining the 
goodness of fit we bring into the comparison the empirical frequencies with 
the theoretical ones deduced from the sample itself. But in using the method 
of moments for fitting the curves we reduce largely the probable errors of 
the theoretical group frequencies so that they become small as compared 
with the empirical frequencies. 
    For Ex. the frequency in Gaussian distribution, the base element being h, 
is µx ≈ yh whence σµ/µ = σy/y. But in this case  
 

    δy/y(x2/σ3)δσ, so that σy/y = (x2/σ2) N2 . 
 

For the empirical frequency mx we have 
 

σm = )]/(1[ Nmm − , σµ/µ = )/1()/1( Nm −  ≈ 1/√m. 

Let x = (1/2)σ, h = (1/8)σ, N = 450, m = µ. Then σµ/µ = σy/y = 0.008 and 
σm/m = 0.224 exceeding by 28 times the former value of procentual error of 
theoretical frequency. Let us take now a fourfold table [Table 2] and 
suppose the values a, b, c, d be proportional to the values in the general 
population. Let a′ = (a + b)(a +(1)c)/N. Then 

    σa = [a(1 – (a/N)]½, 

    σa′ = (1/N)[(a + c)2σ2
a+b + (a + b)2σ2

a+c + 

           2(a + b) (a + c) σa+b σa+c ra+b, a+c]
1/2 

where  
 
    2σa b+  = (a + b)[1 – (a + b)/N],  

    σa+bσa+cra+b,a+c = a – (a + b)(a + c)/N. 
 

 

2 2
,For 12,  σ  = 3, σ σ 12,  0,  σ 2.45.

For 12,  σ  =30,  σ 24.5.
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    Thus, taking for the theoretical frequency (a + b)(a + c)/N as determined 
by any random sample and dealing with every possible random sample we 
shall have our errors measured from the point the position of which is 
subject to errors of random sampling almost so great as the values we are 
measuring thereof. In consequence we shall obtain the values of χ2 on the 
average largely reduced as compared with the case we knew the à priori 
frequencies in the general population. In my paper are given the values of 
χ2
ε evaluated for random samples obtained by the experiment. The values of 

e which correspond to the ε in the notation of this letter were measured from 
the theoretical frequencies deduced from the data. If we measure them from 
the frequencies known in my case à priori: a = b = c = d = 12, we obtain, as 
a matter of fact, much greater values (given in the table here apart). If we 
use the same grouping as before we obtain [Table 3].  
    This seems to me to confirm my views that your theory is to be applied in 
the cases where we know the à priori frequencies but that in the cases we do 
not know them your χ2

µ must be replaced by my χ2
ε which is numerically 

identical with it, so that the whole difference in the results touches only the 
value of n′ being in the case we use χ2

ε,  
(s – 1)(t – 1) + 1. 
    It seems to me I have found now more stronger grounds for the proposed 
modification in the theory and I will be immensely grateful to you if you let 
me know your views on the matter. Again thanking you for your courtesy I 
am  
    Yours very faithfully E. Slutsky 
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    3.3.3. Slutsky – Pearson, 18 May 1912 
    Kept at the same place, 856/4 
    Dear Sir, – I take the liberty to write you again, before I have your 
answer on my previous letter. I am printing now a treatise (or a text-book) 
on the theory of correlation and I would be very gratefull to you if you let 
me know whether the probable error of the partial correlation coefficient 
can be reduced to the same form as the probable error of the total one, as 
mr Yule says.13 
    I have also brought fast [replace this German word by the proper English 
almost – O. S.] to the end a paper on a General test for Goodness of Fit of 
the Regression Curves. To keep your valuable time I do not send it to you 
and I take the liberty only to communicate you an idea of it you will easily 
appreciate. It is very simple but I am not able to refer to any previous 
mention of it. 
    In the notation of your memoir on Skew correlation (1905) the criterion 
will be simply 
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χ
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n′ = number of arrays + 1 for there is no correlation between the means of 
the x-arrays and the probability of a deviation is 
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    Quite analogous will be a criterion which can be applied in the physical 
sciences to test the probability that a given system of measurements can 
reasonably be supposed to correspond to the proposed functional 
relationship. If you will agree with this I can send you a more elaborate – 
but still a short paper – with the illustrations taken from your memoir on 
skew correlation (1905). 
    I excuse myself, dear sir, for my very imperfect English and for the 
trouble I give you and remain very faithfully yours E. Slutsky 
    3.3.4. Slutsky’s Letter to Aleksandr Nikolaevich Shchukarev, a 
specialist in physical chemistry (1928) 
    Archive of the Moscow State Univ., Fond 276, Inventory 1, No. 114 
    Slutsky made known his opinion about Shchukarev’s unnamed paper, 
perhaps answering the latter’s request. This paper (1928), which I located 
without much difficulty, was written extremely carelessly. In essence, 
Shchukarev vainly attempted to derive the Maxwellian law without 
introducing any stochastic ideas and it is therefore sufficient to say only a 
few words about Slutsky’s reply. 
    Slutsky indicated that Shchukarev had not nevertheless managed without 
stochastic considerations; admitted (perhaps too modestly) that he “hardly 
understands” physics but “somewhat catches” the logical structure of 
“suchlike theories”; and offered concrete remarks (unnecessarily since the 
paper was beyond repair). 
 

Notes 
    1. Short anonymous and hardly differing articles on Slutsky are included in the 2nd and 
3rd editions of the Bolshaia Sovetskaia Enziklopedia; the 3rd edition is available in an 
English translation (entitled Great Sov. Enc.). My references do not at all exhaust the 
literature on him. Sarymsakov (1948) praised his work in geophysics, and the authors of 
several sections of Stokalo (1970) described his mathematical achievements. Romanovsky 
(1935) indicated that Slutsky was chairman of a commission on applying statistical methods 
in industry (as a young man he studied for a few years at the machine-building department 
of the Munich polytechnic school [xix, § 2]). It seems, however, that, because of the 
negative attitude of the Soviet establishment towards statistics in general (§2), that 
commission was unable to be of essential use. 
    2. For a background to this section see Sheynin (1998). 
    3. Slutsky had been applying these discoveries mostly to economics, and his transition to 
other branches of knowledge was painful: disallowing a report that appeared in 1932 but 
was delivered by Slutsky in 1928, he had not published anything during 1930 – 1931. I also 
note that an English translation of his paper of 1927 was published in 1937. It found 
important application in investigating time series in economics (Allen 1950, pp. 209 – 210). 
    4. In 1990 the eminent mathematician Konüs told me that at the time he had also worked 
at the Conjuncture Institute. He was left alone; as Könus explained the attitude of those 
responsible for the decision-making, they had decided: “He is only a mathematician, not 
responsible for anything…”  
     5. In 1929 a paper by the mathematician and statistician N.V. Smirnov appeared in the 
Vestnik and Slutsky even before his move to Moscow had published four articles there. 
     6. Smit (1931, p. 4) clumsily declared that “the crowds of arrested saboteurs are full of 
statisticians”. Anderson, a student of Chuprov, testified (1959, p. 294): 
 
    I could have listed many highly reputed in Russia statisticians and many young and very 
promising students […] of Chuprov whose names had suddenly entirely disappeared after 
1930 from the Soviet scientific literature. 
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    7. Also see [xix, § 7]. In 1970 Chetverikov had given me (Russian) typed texts of these 
letters which I turned over to Seneta who acknowledged my help in obtaining “important 
materials” but had not elaborated and deleted my name from his translation of Chetverkov’s 
covering note (see below). He was concerned that I could have had problems with the 
Soviet authorities.  
    8. In § 3.2, Slutsky mentioned interpolation applied for representing empirical points by 
suitable curves. 
    9. Called after A. L. Shaniavsky (1837 – 1905). The University was established in 1908 
and closed in 1918 (see Great Sov. Enc., 3rd edition, vol. 29; also its English translation). 
    10. Slutsky obviously referred not to the paper itself as put out in the Matematich. 
Sbornik, but to its previously published offprint. Indeed, he mentioned the year 1911 and p. 
4 neither of which agree with the periodical. The appropriate page numbers in the 
translation (see References) are 77 and 78. 
   11. Slutsky discusses the Pearson curves. At the time (and even in 1928, in his letter to 
Shchukarev, see §3.3.4, which I only describe but do not quote) he sometimes wrote 
“theory of probability” instead of the correct Russian “… of probabilities”. 
    Slutsky derived the equation (see beginning of letter) in his book (1912, p. 17/2009, § 5, 
formula 5.4). Also there (1912, pp. 15 – 17 rather than 16 – 17) he obtained the normal 
distribution as the limiting law for the binomial distribution. Assume the unknown law (Y) 
as, for example, a polynomial of the n-th degree, then, in principle, its (n + 1) parameters 
can be determined given the appropriate moments. If the class to which Y belongs is not 
restricted, its unique determination is impossible even if “all” the moments are given. 
Slutsky’s question apparently touched on this problem of moments. 
    12. For some reason the pressmarks of two of the letters are identical. 
    13. Slutsky’s reference is J. Roy. Stat. Soc., 1907, pp. 6 and 47. In both these cases Yule 
was a participant in discussing the contributions of other authors. Just below Slutsky 
actually mentions an initial version of his future paper (1914). 
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XIX 

 

N. S. Chetverikov 

 

The Life and Scientific Work of Slutsky 
 

Zizn i nauchnaia deiatelnost E. E. Slutskogo (1959).  
Statisticheskie Issledovania (Statistical Investigations). Coll. Papers.  

Moscow, 1975, pp. 261 – 281 
First published 1959 

 
    The sources for this paper were Slutsky’s biography written by his wife 
(manuscript [location not provided; discovered by G. Rauscher in the 
Russian State Archive for Literature and Art (RGALI), Fond 2133, 
Inventory 2, No. 52 – 53]); Kolmogorov (1948) and Smirnov (1948); 
Slutsky’s autobiographies the first of which he presented when joining the 
Steklov Mathematical Institute in 1939, and the second one which he 
compiled for submitting it to the Uzbek Academy of Sciences on 3 
December 1942 [xvi; xvii]; Slutsky’s note [27]; his letters to his wife and to 
me; and my personal recollections. 
 
    [1] A historical perspective and a long temporal distance are needed for 
narrating the life and work of such a profound researcher as Evgeny 
Evgenievich Slutsky (7/19 March 1880 – 10 March 1948). Time, however, 
is measured by events rather than years; in this case, first and foremost, by 
the development of scientific ideas. 
    Only a little more than ten years have passed since E. E. had died, but the 
seeds of new ideas sown by him have germinated and even ripened for the 
first harvest, – I bear in mind the rapid development of the theory of random 
functions. [To repeat,] however, a comprehensive estimation of his total rich 
and diverse heritage will only become possible in the future. 
    The description of Slutsky’s life presents many difficulties occasioned 
both by complications and contradictions of his lifetime and the complexity 
of his spiritual make-up: a mathematician, sociologist, painter and poet were 
combined in his person. In essence, his life may be divided into three stages: 
the periods of seeking his own way; of passion for economic issues; and the 
most fruitful stage of investigations in the theory of probability and 
theoretical statistics. The fourth period, when he moved into pure 
mathematics1, had just begun and was cut short by his death. 
    E. E. grew up in the family of a teacher and educator of the Novinsk 
teachers’ seminary (former Yaroslav province). His father was unable to get 
along with the Director who had not been averse to embezzle state property, 
and, after passing through prolonged ordeals, his family settled in Zhitomir. 
There E. E. had learned in a gymnasium which he was later unable to recall 
without repugnance. His natural endowments enabled him to graduate with a 
gold medal and his exceptional mathematical abilities and the peculiar 
features of his thinking had been revealed already in school. Having been 
very quick to grasp the main idea of analytic geometry, he successfully 
mastered its elements all by himself and without any textbooks. 
    After graduating in 1899, he entered the physical and mathematical 
faculty of Kiev University. There, he was carried away by the political wave 
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of the student movement, and already in 1901, for participating in an 
unauthorized gathering (skhodka), he was expelled, together with 183 
students, and drafted under compulsion into the Army on the order of 
Bogolepov, the Minister of People’s Education. Because of vigorous public 
protests coupled with disturbances at all higher academic institutions, that 
order was soon disaffirmed. Nevertheless, already next year, for 
participating in a demonstration against the Minister Senger, E. E. was again 
thrown out of the University, and this time banned from entering any other 
Russian higher institution. 
    Only fragmentary information about Slutsky’s active political work at that 
time, including the performance abroad of tasks ordered by a revolutionary 
group, is extant, but even so it testifies to the resolve and oblivion of self 
with which he followed his calling as understood at the moment. Owing to 
financial support rendered by his grandmother, E. E. became able to enter 
the machine-building faculty of the Polytechnic High School in Munich. 
Being cut off from practical political activities, he turned to sociology and 
was naturally enthralled by its main field, political economy [economics].  
    He had begun by studying the works of Ricardo, then Marx’ Kapital and 
Lenin’s Development of Capitalism in Russia [1899], and turned to the 
classics of theoretical economy. Although technical sciences provided some 
possibilities for his inclination to mathematics to reveal itself, he felt a 
distaste for them. He mostly took advantage of the years of forced life 
abroad for deep studies of economic problems. At the end of 1904 E. E. 
organized in Munich a group for studying political economy and 
successfully supervised its activities. 
    [2] After the revolutionary events of 1905 [in Russia] he became able to 
return to his homeland. He abandoned technical sciences and again entered 
Kiev University, this time choosing the law faculty whose curriculum 
included political economy. His plans contemplating long years of studying 
theoretical economy with a mathematical bias have ripened. 
    Slutsky’s mathematical mentality attracted him to the development of 
those economic theories where the application of mathematics promised 
tempting prospects. However, now also his scientific activities and learning 
went on with interruptions. The years 1905 and 1906 were almost 
completely lost [because of revolutionary events] and in March 1908 he was 
expelled from the University for a year. As E. E. himself admitted, that 
disciplinary punishment followed after a “boyish escapade” resulting from 
his “impetuous disposition”. Nevertheless, in 1911, being already 31 years 
old, he graduated from the law faculty with a gold medal awarded for his 
diploma thesis Theory of marginal utility, a critical investigation in the field 
of political economy2, but his firmly established reputation of being 
a “red student” prevented his further studies at the university. 
    Such were the external events that took place during Slutsky’s first stage 
of life. They should be supplemented by one more development, by his 
marriage, in November 1906, to Yulia Nikolaevna Volodkevich. Before 
going on to his second stage, let us try to discuss what were the inner 
motives, the vital issues, the inclinations that had been driving E. E. at that 
time. Those years may be called the period when he had been searching his 
conscience. An indefatigable thinker was being born; a person who 
criticized everything coming from without, who avidly grabbed all the 
novelties on which he could test his own ripening thoughts. He looked for 
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his own real path that would completely answer his natural possibilities and 
inclinations. [He withdrew from practical revolutionary activities because he 
had soon understood that the path of a revolutionary was alien for him: in 
dangerous situations he was unable to orient himself quickly enough, he had 
no visual memory and he lacked many more of what was necessary for a 
member of an underground organization. N. C.] 
    E. E. was attracted by creative scientific work and he examined himself in 
various directions, – in technology and economics, in logic and the theory of 
statistics. In any of these domains, however, he only became aware of his 
real power when becoming able to submit his subject of study to 
quantitative analysis and mathematical thought. In one of his letters he 
wrote: 
 
    The point is not that I dream of becoming a Marx or a Kant, of opening 
up a new epoch in science, etc. I want to be myself, to develop my natural 
abilities and achieve as much as is possible for me. Am I not entitled to that? 
 
    He aimed at finding his place in science that would be in keeping with his 
natural gifts. In 1904, he wrote: 
 
    A man must certainly be working [only] in that field to which his 
individuality drives him. […] He must be living only there, where he is able 
to manifest it more widely, more completely, and to create, i.e., to work 
independently and with loving care. 
 
The word “independently” was not chosen randomly; it illuminated his 
creative life-work. 
    When taking up any issue, he always began by thinking out the initial 
concepts and propositions. He always went on in his own, special manner, 
and the ideas of other authors only interested him insofar as they could serve 
for criticisms. This originality of thought deepened as the years went by and 
gradually led Slutsky to those boundaries after which not only new ways of 
solving [known] problems are opening up, but new, never before 
contemplated issues leading the mind to yet unexplored spaces, were 
discovered. 
    The most remarkable feature of Slutsky’s scientific work was the selfless 
passion with which he seeked the truth and which he himself, in a letter to 
his wife, compared with that of a hunter: 
 
    You are telling me of being afraid for my work, afraid of the abundance of 
my fantasy […]. Is it possible to work without risk? And is it worthwhile to 
undertake easy tasks possible for anyone? I am pleased with my work 
[published] in Metron exactly because it contains fantasy. For two hundred 
years people have been beating about the bush and no one ever noticed a 
simple fact, whereas I found there an entire field open for investigation […]. 
It is impossible to avoid wrong tracks. Discovery is akin to hunting. 
Sometimes you feel that the game is somewhere here; you poke about, look 
out, cast one thing aside, take up another thing, and finally you find 
something .[…] 
    My present work [17] [of 1925 – 1926 on pseudo-periodic waves created 
by the composition of purely random oscillations – N. C.] is, however, 
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absolutely reliable. I am not pursuing a chimera, this is absolutely clear 
now, but it does not lessen the excitement of the hunt. In any case, I found 
the game, found it after the hunt was over […]. I am afraid that the purely 
mathematical difficulties are so great as to be insurmountable for me. But 
neither is this, after all, so bad. 
 
    [3] After graduating from the University, Slutsky plunged into the work 
of numerous scientific societies, and, at the same time was compelled to 
earn money and wished to pass on his views, knowledge, and achievements, 
into teaching. It seemed that he had left little time and strength for scientific 
work, but his creative initiative overcame every obstacle, and even during 
that difficult and troublesome period E. E. was able to publish his first, but 
nevertheless important investigations.  
    Already the list of the scientific societies whose member he was, shows 
how diverse were his interests and how wide was the foundation then laid 
for future investigations. In 1909, still being a student, he was corresponding 
member of the Society of Economists at Kiev Commercial Institute; in 
1911, he became full member, in 1911 – 1913, he was its secretary, and, in 
1913 – 1915, member of its council. In 1912 E. E. was elected full member 
of the [Kiev?] Mathematical Society; later on he joined the Sociological 
Society at the Institute for Sociological Investigations in Kiev, and in 1915 
became full member of the A. I. Chuprov3 Society for Development of 
Social Sciences at Moscow University. 
    Owing to his disreputable political reputation, Slutsky’s pedagogical work 
at once encountered many obstacles. In 1911 he was not allowed to sit for 
his Master’s examinations at Kiev University4

 and in 1912 he was not 
approved as teacher. The same year his father-in-law, N. N. Volodkevich, an 
outstanding educationalist of his time, took him on as teacher of political 
economy and jurisprudence at the [commercial] school established and 
headed by himself, but the Ministry for Commerce and Industry did not 
approve him as a staff worker. Only Slutsky’s trip to Petersburg and his 
personal ties made it possible for him to remain in that school and to be 
approved, in 1915, in his position. Yulia Nikolaevna taught natural sciences 
at the same school. The apartment of the young married couple was attached 
to the school building and it was there that his life became then “mostly tied 
to the desk and illuminated by the fire of creative life” (from his biography 
written by his wife). 
    Slutsky first became acquainted with theoretical statistics in 1911 – 1912 
having been prompted by Leontovich’s book (1909 – 1911). It is impossible 
to say that that source, whose author later became an eminent physiologist 
and neurohistologist, member of the Ukrainian Academy of Sciences, was 
distinguished by clearness or correct exposition of the compiled material. 
Nevertheless, it was there that the Russian reader had first been able to learn 
in some detail the stochastic ideas of Pearson and his collaborators, and 
there also a list of the pertinent literature was adduced. That was enough for 
arousing Slutsky’s interest, and we can only be surprised at how quickly he 
was able to acquaint himself with the already then very complicated 
constructions of the English statisticians-biologists by reading the primary 
sources; at how deeply he penetrated the logical principles of correlation 
theory; and at how, by using his critical feelings, he singled out the most 
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essential and, in addition, noticed the vulnerable spots in the Pearsonian 
notions. 
    It is almost a miracle that only a year later there appeared Slutsky’s own 
book [1] devoted to the same issues, explicated with such clearness, such an 
understanding of both the mathematical and logical sides, that even today it 
is impossible to name a better Russian aid for becoming acquainted with the 
principles of the constructions of the British school of mathematical 
statistics. And less than in two years the Journal of the Royal Statistical 
Society carried Slutsky’s paper [5] on the goodness of fit of the lines of 
regression criticizing the pertinent constructions of the English statisticians. 
A short review published in 1913 [3] shows how deeply E. E. was able even 
then to grasp such issues as Markov chains [a later term] and how ardently 
he defended Markov’s scientific achievements against the mockery of 
ignoramuses. 
    During those years, economic issues had nevertheless remained in the 
forefront. Even as a student, E. E. decided not to restrict his attention there 
to purely theoretical constructions and contemplated a paper on the eight-
hour working day. He buried himself in factory reports, established 
connections with mills, studied manufacturing and working conditions. 
Issuing from the collected data, he distributed the reported severe injuries in 
accord with the hours of the day and established their dependence on the 
degree of the workers’ tiredness. Earnestly examining economic literature, 
he connected his studies with compilation of popular articles on political 
economy as well as with his extensive teaching activities which he carried 
out up to his move to Moscow in 1926. 
    [4] E. E. remained in Volodkevich’s school until 1918 although school 
teaching was difficult for him. In the spring of 1915 he became instructor at 
the Kiev Commercial Institute. There, he read courses in sampling 
investigations and mathematical statistics, and, after the interruption caused 
by the World War, both there and at the Ukrainian Cooperative Institute, the 
history of economic and socialist doctrines. In 1917 Slutsky began teaching 
the discipline most congenial to him at the time, – theoretical economy. 
After the October revolution he taught in many newly established academic 
institutions: an elementary course in political economy at the Cooperative 
Courses for the disabled; introduction to the logic of social 
sciences at People’s University. The Commercial Institute remained, 
however, his main pedagogical place of work, and there he also read courses 
in theoretical economy and political economy (theory of value and 
distribution). 
    The listing above, even taken in itself, clearly shows that in those years 
Slutsky concentrated on issues of theoretical economy and, more 
specifically, on those that admitted a mathematical approach. After his 
diploma thesis and a small essay on Petty [4], E. E. published an 
investigation about “equilibrium in consumption” [6] that only much later 
elicited response and due appreciation in the Western literature5. Less 
important research appeared in Kiev and Moscow respectively [10; 11]. 
However, two considerable contributions to economics [14; 15] were still 
connected with Kiev. 
    By 1922 Slutsky had already abandoned theoretical economics and 
afterwards devoted all his efforts to statistics. He himself, in his 
autobiography, explained his decision in the following way: 
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    When the capitalist economics had been falling to the ground, and the 
outlines of a planned socialist economic regime began to take shape, the 
foundation for those problems, that interested me as an economist and 
mathematician, disappeared6. 
 
    This is a very typical admission: the decisive significance for E. E., when 
choosing a field for scientific work, was the possibility of applying his 
mathematical talent. His inclination was caused not as though by an 
artisan’s joy of skilfully using his tools, – no, he was irrepressibly attracted 
to abstract thinking, be it mathematics, logic, theory of knowledge or his 
poetic creativity. 
    [5] We already know that E. E. began his investigations in the theory of 
statistics in 1911 – 1914, his first contributions having been the book on 
correlation theory [1] and a paper on the lines of regression [5]. In the 
beginning of September 1912, in Petersburg, where E. E. had come to plead 
for being approved as teacher, he became acquainted, and fruitfully 
discussed scientific and pedagogic issues with A. A. Chuprov, who highly 
appraised his book7. During 1915 – 1916 Slutsky’s name regularly appeared 
in the Statistichesky Vestnik, a periodical issued by the statistical section of 
the A. I. Chuprov Society at Moscow University. There, he published 
thorough reviews [7] or short notes [8] directed against wrong interpretation 
of the methods of mathematical statistics.  
    In 1922, after an interval of many years, Slutsky returned to the theory of 
statistics. He examined the logical foundation of the theory of probability 
and the essence of the law of large numbers from the viewpoint of the 
theory of knowledge. In November 1922, at the section on theoretical 
statistics of the Third All-Russian Statistical Conference, he read a report of 
great scientific importance. It touched on the main epistemological issue of 
the theory of probability, was published [9] and then reprinted with 
insignificant changes.  
    In 1925 he issued another important paper [12] introducing the new 
notions of stochastic limit and stochastic asymptote, applied them for 
providing a new interpretation of the Poisson law of large numbers and 
touched on the logical aspect of that issue by critically considering the 
Cournot lemma as formulated by Chuprov8. Also in 1925, he published a 
fundamental contribution [13] where he defined and investigated the 
abovementioned notions, applied them for deriving necessary conditions for 
the law of large numbers, which he, in addition, generalized onto the 
multidimensional case. Later on this work became the basis of the theory of 
stochastic functions. 
    [6] By 1926, Slutsky’s life in Kiev became very complicated. He did not 
master Ukrainian, and a compulsory demand of the time, that all the lectures 
be read in that language, made his teaching at Kiev higher academic 
institutions impossible. After hesitating for a long time, and being invited by 
the Central Statistical Directorate, he decided to move to Moscow. 
However, soon upon his arrival there, he was attracted by some scientific 
investigations (the study of cycles in the economy of capitalist countries) 
made at the Conjuncture Institute of the Ministry of Finance. E. E. became 
an active participant of this research, and, as usual, surrendered himself to it 
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with all his passion. Here also, a great creative success lay ahead for him. In 
March of that year he wrote to his wife: 
 
    I am head over heels in the new work, am carried away by it. I am almost 
definitively sure about being lucky to arrive at a rather considerable 
finding, to discover the secret of how are wavy oscillations originating by a 
source that, as it seems, had not been until now even suspected. Waves, 
known in physics, are engendered by forces of elasticity and rotary 
movements, but this does not yet explain those wavy movements that are 
observed in social phenomena. I obtained waves by issuing from random 
oscillations independent one from another and having no periodicities when 
combining them in some definite way. 
 
    The study of pseudo-periodic waves originating in series, whose terms are 
correlatively connected with each other, led Slutsky to a new important 
subject, to the errors of the coefficients of correlation between series of that 
type. In both his investigations, he applied the “method of models”, of 
artificially reproducing series similar to those actually observed but formed 
in accord with some plan and therefore possessing a definite origin. 
    The five years from 1924 to 1928, in spite of all the troubles, anxieties 
and prolonged housing inconveniences caused by his move to Moscow, 
became a most fruitful period in Slutsky’s life. During that time, he 
achieved three considerable aims: he developed the theory of stochastic 
limit (and asymptote); discovered pseudo-periodic waves; and investigated 
the errors of the coefficient of correlation between series consisting of terms 
connected with each other. 
    [7] In 1928, E. E. participated at the Congress of Mathematicians in 
Bologna. The trip provided great moral satisfaction and was a grand reward 
deserved by sleepless nights and creative enthusiasm. His report on 
stochastic asymptotes and limits attracted everyone. A considerable debate 
flared up at the Congress between E. E. and the eminent Italian 
mathematician Cantelli concerning the priority to the strong law of large 
numbers. Slutsky [16] had stated that it was due to Borel but Cantelli 
considered himself its author. 
    Castelnuovo, the famous theoretician of probability, and other Italian 
mathematicians rallied together with Cantelli against Slutsky, declared that 
Borel’s book, to which E. E. had referred to, lacked anything of the sort 
attributed to him by the Russian mathematician, and demanded an 
immediate explanation from him. E. E. had to repulse numerous attacks 
launched by the Italians and to prove his case. 
    The point was that Slutsky, having been restricted by the narrow 
boundaries of a paper published in the C. r. Acad. Sci. Paris, had not 
expressed himself quite precisely. He indicated that Borel was the first to 
consider the problem and that Cantelli, Khinchin, Steinhaus and he 
himself studied it later on. However, he should have singled out Cantelli and 
stressed his scientific merit. Borel was indeed the first to consider the strong 
law, but he did it only in passing and connected it with another issue in 
which he was interested much more. Apparently for this reason Borel had 
not noticed the entire meaning and importance of that law, whereas Cantelli 
was the first to grasp all that and developed the issue, and his was the main 
merit of establishing the strong law of large numbers. E. E. was nevertheless 
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able to win. Understandably, he did not at all wish to make use of his victory 
for offending Cantelli. 
    He appreciated the Italian mathematician; here is a passage from his letter 
to his wife (Bologna, 6 September 1928)9: 
 
    [He is] not a bad man at all, very knowledgeable, wonderfully acquainted 
with Chebyshev, trying to learn everything possible about the Russian 
school (only one thing I cannot forgive, that he does not esteem Chuprov). 
In truth, he has brought fame to the Russian name in Italy, because he 
doesn’t steal but honestly says: that is from there, that is Russian, and that 
is Russian […]. Clearly one must let him keep his pride. 
 
    After a prolonged discussion of the aroused discord with Cantelli himself, 
and a thorough check of the primary sources, E. E. submitted an explanation 
to the Congress, agreed beforehand with Cantelli. The explanation 
confirmed his rightness but at the same time had not hurted Cantelli’s self-
respect. After it was read out, Cantelli, in a short speech, largely concurred 
with E. E. This episode vividly characterizes Slutsky, – his thorough 
examination of the problems under investigation, an attentive and deep 
study of other authors, and a cordial and tactful attitude to fellow-scientists. 
He was therefore able not only to win his debate with Cantelli, but to 
convince his opponent as well.  
    [8] In 1930, the Conjuncture Institute ceased to exist, the Central 
Statistical Directorate was fundamentally reorganized, and Slutsky passed 
over to institutions connected with geophysics and meteorology where he 
hoped to apply his discoveries in the field of pseudo-periodic waves. 
However, he did not find conditions conducive to the necessary several 
years of theoretical investigations at the Central Institute for Experimental 
Hydrology and Meteorology. [These lines smack of considerable sadness 
but they do not at all mean that Slutsky surrendered. N. C.] In an essay [27] 
he listed his accomplished and intended works important for geophysics. He 
also explicated his related findings touching on the problem of periodicity, 
and indicated his investigation of periodograms, partly prepared for 
publication [26]. Slutsky then listed his notes in the C. r. Acad. Sci. Paris 
[16; 18; 20 – 23] where he developed his notions as published in his 
previous main work of 1925 [13]. 
    To the beginning of the 1930s belong Slutsky’s investigations on the 
probable errors of means, mean square deviations and coefficients of 
correlation calculated for interconnected stationary series. He linked those 
magnitudes with the coefficients of the expansion of an empirical series into 
a sum of (Fourier) series of trigonometric functions and thus opened up the 
way of applying those probable errors in practice. Slutsky himself 
summarized his latest works in his report at the First All-Union Congress of 
Mathematicians in 1929 but only published (in a supplemented way) seven 
year later [30]. 
    Owing to the great difficulties of calculation demanded by direct 
investigations of the interconnected series, Slutsky developed methods able 
to serve as an ersatz of sorts and called by a generic name “statistical 
experiment”. Specifically, when we desire to check the existence of a 
connection between two such series, we intentionally compare them in such 
a way which prevents a real connection; after repeating such certainly 
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random comparisons many times, we determine how often parallelisms have 
appeared in the sequences of the terms of both series. They, the parallelisms, 
create an external similarity of connection not worse than the coincidences 
observed by a comparison of the initial series. Slutsky developed many 
versions of that method and applied it to many real geophysical 
investigations of wavy oscillating series. 
    E. E. did not belong to those statisticians-mathematicians for whom pure 
mathematics overshadowed the essence of studied phenomena. He thought 
that the subject of a methodological work should be determined by its 
material substance: 
 
    It seemed to me that, along with theoretical investigations, I ought to 
study some concrete problems so as to check my methods and to find the 
problems for theoretical work, 
 
he wrote in his autobiography submitted in 1939. Bearing in mind such 
aims, he studied the series of harvests in Russia over 115 years (compiled by 
V. G. Mikhailovsky), those of the cost of wheat over 369 years (Beveridge), 
series of economic cycles (Mitchell), etc. Passing on from economic to 
geophysical series, Slutsky then examined the periodicity of sunspots 
checking it against data on polar aurora for about two thousand years 
(Fritz10) and studied the peculiar vast information stored as annual rings of 
the giant sequoia of Arizona (mean data for eleven trees covering about two 
thousand years)11. 
    [9] And yet fate directed Slutsky to the domain of pure mathematics. In 
1934 he passed on to the Mathematical Institute of Moscow University and 
in 1935 abandoned geophysics. In 1939 he established himself at the 
Steklov Mathematical Institute of the Soviet Academy of Sciences. At the 
same time, having been awarded by Moscow University the academic status 
of Doctor of Mathematical and Physical Sciences honoris causa on the 
strength of his writings, and entrusted by the chair of mathematical statistics 
there, Slutsky apparently resumed the long ago forsaken teaching. 
[However, because of the situation that took shape at the University in those 
years, N. C.] teaching demanded more strength than he possessed at that 
time. As he himself wrote, 
 
    Having been entrusted with the chair of the theory of probability and 
mathematical statistics at Moscow University, I have convinced myself soon 
afterwards, that that stage of life came too late, and I shall not experience 
the good fortune of having pupils. 
 
    It seemed that, having consolidated his position at the Mathematical 
Institute, E. E. will be able to extend there his work on the theory of 
statistics. But his plans were too extensive, they demanded the establishment 
of a large laboratory, and, therefore, large expenses. That proved impossible, 
and Slutsky had to concentrate on investigations in the theory of stochastic 
processes and to plunge ever deeper into pure mathematics. 
    At the end of October 1941, when Moscow was partly evacuated, Slutsky 
moved with his family to Tashkent. A part of his [unpublished] works was 
lost. And still he [considered the year 1940/1941 as lucky and N. C.] wrote 
about that period: 
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    I was able to find a new solution of the problem of tabulating the 
incomplete Г-function providing a more complete, and, in principle, the 
definitive type of its table. The use of American technology allowed to 
accomplish the calculations almost completely in one year but the war made 
it impossible to carry them through. 
 
    The work had indeed dragged on, and even after his return to Moscow 
three more years were required for their completion. I cannot fail to mention 
the selfless help rendered by N. V. Levi, a woman employee of the 
Mathematical Institute, who accomplished that task when Slutsky had 
already begun feeling himself ill. He developed lung cancer, and it was a 
long time before the disease was diagnosed although E. E. himself never got 
to know its nature. He continued to work on the Introduction to the tables 
where he was explaining the method of their compilation, but it was N. V. 
Smirnov who wrote the definitive text. On 9 March 1948 Slutsky was still 
outlining the last strokes of the Introduction, but next day he passed away. 
    [10] Already in Kiev Slutsky had been deeply interested in the cognitive 
and logical side of the problems that he studied, especially concerning his 
investigations in mathematical statistics. His first independent essential 
writings were indeed devoted to these general issues. Later on, he essentially 
cooled down for them; he either solved them to a required by him degree, or 
his great success in more concrete investigations overshadowed 
philosophical problems. In any case, in the middle of the 1940s, E. E. even 
with some irritation refused to discuss purely logical concepts although he 
had been unable to disregard the then topical criticism levelled by Fisher 
against the problem of calculating the probabilities of hypotheses (of the 
Bayes theorem). 
    First of all Slutsky took it upon himself to ascertain the relations of the 
theory of probability to statistical methodology. To this aim, he singled out 
the formal mathematical essence of the theory itself by expelling from it all 
that, introduced by the philosophical interpretation of the concept of 
probability. So as to achieve complete clearness, he proposed to abandon the 
habitual terms and to make use of new ones: disjunctive calculus, valency 
(assigned to events), etc. To assign, as he stated, meant to establish some 
relation R between an event and its valency in accord with only one rule: if 
event A breaks down into a number of alternatives, the sum of all of their 
valencies must be equal to the valency of A. The valency of the joint event 
AB, that is, of the occurrence of the events A and B, was determined just as 
formally. These relations between valencies were included in the axiomatics 
of the disjunctive calculus, sufficient for developing it as a mathematical 
discipline. Its applications depended on the contents which we might 
introduce into the term valency and which can be probability, frequency, or, 
as a special notion, limiting frequency. 
    To what extent will these interpreted calculuses coincide and cover each 
other, depends on the contents of their axiomatics, which, under differing 
interpretations, can be distinct one from another. However, these 
distinctions cannot concern the purely mathematical discipline, the 
disjunctive calculus, because its axiomatics is constructed independently 
from the interpretation of the subject of valency [9]. When explaining his 
understanding of the logic of the law of large numbers, Slutsky issued from 
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those considerations, and he also made use of the notions of stochastic 
asymptote and stochastic limit. [Chetverikov describes here Slutsky’s paper 
[13]: I advise readers to look up that contribution itself. O. S.] 
    Slutsky also criticized the purely logical Chuprov – Cournot [Cournot – 
Chuprov] construction that aimed at connecting probabilities with 
frequencies of the occurrence of phenomena in the real world, at throwing a 
“bridge” between them. He thought that the essence of the so-called Cournot 
lemma consisted in attaching to the law of large numbers the importance of 
a law of nature without any qualifying remarks about the probability of 
possible, although extremely rare exceptions. The notion of probability 
cannot be removed from the Cournot lemma, so, as he concluded, the logical 
value of the “bridge” itself is lost [12] 12. 
    Having been especially prompted by the need to work with time series 
and issuing from the concept of stochastic limit (asymptote), E. E. also 
constructed a theory of random functions. [A description of Slutsky’s 
pertinent findings follows. O. S.] 
    An important discovery made by Slutsky in the mid-1920s consisted in 
that he connected wavy oscillations with random oscillations and showed 
how the latter can engender the former […]. Wavy oscillations are 
extremely common (for example, in series occurring in economics and 
meteorology), whereas unconnected randomly oscillating series are met with 
not so often. A practically important problem is, therefore, to derive the 
errors of the various general characteristics, – of the mean, the standard 
deviation, the correlation coefficient, – for connected series 13.  
    E. E. devoted much effort to the solution of that problem. His formulas 
are bulky, see for example the expression for the error of the correlation 
coefficient [24, p. 75]. Simpler formulas for particular cases are in [27]. 
Later Slutsky examined the possibility of applying the χ2 test and its 
distribution to connected series as well as of determining the required 
magnitudes through the Fourier coefficients [25; 26]. 
    By issuing from his theory of connected series, and allowing for the 
course of stochastic processes, Slutsky was able to provide a methodology 
of forecasting them, including sufficiently long-term forecasting, with given 
boundaries of error [29]. 
    We ought to dwell especially on his method of models (of statistical 
experimentation) for discovering connections between phenomena. His idea 
was as follows. When studying many problems not yet completely solved by 
theory, it is possible to arrange a statistical “experiment” and thus to decide 
whether the statistical correspondence between phenomena is random or 
not. For example, when selecting a number of best and worst harvests in 
Russia from among the series collected by Mikhailovsky for 115 years, we 
can compare them with the series of maxima and minima of the number of 
sunspots for more than 300 years. If such comparisons are [if the 
correspondence is] only possible after shifting one of the series with respect 
to the other one, then, obviously, the coincidences will be random. 
However, since the sum of the squares of the discrepancies14 is minimal 
when those series are compared without such shifting, we may be 
sufficiently convinced in that the coincidences are not random [28]. 
    I am unable to appraise Slutsky’s purely mathematical studies and am 
therefore quoting most eminent Soviet mathematicians. Smirnov (1948, pp. 
418 – 419), after mentioning Slutsky’s investigation [13], wrote: 
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    The next stage in the same direction was his works on the theory of 
continuous stochastic processes or random functions. One of Slutsky’s very 
important and effective findings here was the proof that any random 
stochastically continuous function on a segment is stochastically equivalent 
to a measurable function of an order not higher than the second Baire class. 
He also derived simple sufficient conditions for a stochastic equivalence of a 
random function and a continuous function on a segment, conditions for the 
differentiability of the latter, etc. These works undoubtedly occupy an 
honourable place among the investigations connected with the development 
of one of the most topical issues of the contemporary theory of probability, 
that [issue or theory?] owes its origin to Slutsky’s scientific initiative. 
    The next cycle of Slutsky’s works (1926 – 1927) was devoted to the 
examination of random stationary series, and they served as a point of 
departure for numerous and fruitful investigations in this important field. 
Issuing from a simplest model of a series obtained by a multiple moving 
summation of an unconnected series, he got a class of stationary series 
having pseudo-periodic properties imitating, over intervals of any large 
length, series obtained by superposing periodic functions. His finding was a 
sensation of sorts; it demanded a critical revision of the various attempts of 
statistical justification of periodic regularities in geophysics, meteorology, 
etc. It occurred that the hypothesis of superposition of a finite number of 
regularly periodic oscillations was statistically undistinguishable from that 
of a random function with a very large zone of connectedness. 
    His remarkable work on stationary processes with a discrete spectrum 
was a still deeper penetration into the structure of random functions. In this 
case, the correlation function will be almost periodic. Slutsky’s main result 
consisted here in that a random function was also almost periodic, belonged 
to a certain type and was almost everywhere determined by its Fourier 
series. 
    These surprisingly new and fearlessly intended investigations, far from 
exhausting a very difficult and profound problem, nevertheless represent a 
prominent finding of our science. With respect to methodology and style, 
they closely adjoin the probability-theoretic concepts of the Moscow school 
(Kolmogorov, Khinchin), that, historically speaking, originated on a 
different foundation. The difficult to achieve combination of acuteness and 
wide theoretical reasoning with a quite clearly perceived concrete direction 
of the final results, of the final aim of the investigation, is Slutsky’s typical 
feature. 
 
    Proving that Slutsky’s works were close to those of the Moscow school, 
Kolmogorov (1948/1962, p. 70) stated: 
 
    In 1934, Khinchin showed that a generalized technique of harmonic 
analysis was applicable to the most general stationary processes considered 
in Slutsky’s work […]. The modern theory of stationary processes, which 
most fully explains the essence of continuous physical spectra, has indeed 
originated from Slutsky’s works, coupled with this result of Khinchin. 
    After E. E.’s interest in applications had shifted from economics to 
geophysics, it was quite natural for him to pass from considering connected 
series of random variables to random functions of continuous time. The 
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peculiar relations, that exist between the different kinds of continuity, 
differentiability and integrability of such functions, make up a large area of 
the modern theory of probability whose construction is basically due to 
Slutsky [19; 20; 26; 30 – 33] 15. Among the difficult results obtained, which 
are also interesting from the purely mathematical viewpoint, two theorems 
should be especially noted. According to these, a ‘stochastically continuous’ 
random function can be realized in the space of measurable functions [31; 
33]; and a stationary random function with a discrete spectrum is almost 
periodic in the Besikovitch sense with probability 1 [32]. 
 
    Kolmogorov then mentions the subtle mastery of Slutsky’s work on the 
tables of incomplete Г- and B-functions that led him to the formulation of 
general problems. The issue consisted in developing a method of their 
interpolation, simpler than those usually applied, but ensuring the 
calculation of the values of these functions for intermediate values of their 
arguments with a stipulated precision. For E. E., this, apparently purely 
“technical”, problem became a subject of an independent scientific 
investigation on which he had been so enthusiastically working in his last 
years. He was able, as I indicated above, to discover a new solution of 
calculating the incomplete Г-function, but that successful finish coincided 
with his tragic death.  

 

Notes 
    1. Chetverikov thus separated the theory of probability from pure mathematics. O. S. 
    2. Still extant at the Vernadsky Library, Ukrainian Academy of Sciences, Fond 1, No. 
44850 (Chipman 2004, p. 355). Translated into Ukrainian (Kiev, 2006). O. S. 
    3. A. I. Chuprov, father of the better known A. A. Chuprov. O. S. 
    4. He only held them in 1918, after the revolution, at Moscow University. O. S. 
    5. Slutsky made the following marginal note on a reprint of Schults (1935): “This is a 
supplement to my work that began influencing [economists] only 20 years after having 
been published”. N. C. 
    6. This explanation would have only been sufficient if written before 1926. Below, 
Chetverikov described Slutsky’s work in theoretical economics during 1926 – 1930 at the 
Conjuncture Institute and then implicitly noted that in 1930 the situation in Soviet statistics 
had drastically worsened. I [xviii, § 2] stated that Slutsky had abandoned economics largely 
because of the last-mentioned fact. On the fate of the Conjuncture Institute see also Sheynin 
(1990/1996, pp. 29 – 30). Kondratiev, its Director, who was elbowed out of science, 
persecuted, and shot in 1938 (Ibidem), had studied cycles in the development of capitalist 
economies. In at least one of his papers, he (1926) had acknowledged the assistance of 
Chetverikov and Slutsky, a fact that Chetverikov naturally had to pass over in silence. 
Three papers devoted to Kondratiev are in Ekonomika i Matematich. Metody, vol. 28, No. 
2, 1992. O. S. 
    7. I (1990/1996, p. 44) reprinted Chuprov’s review originally published in a newspaper. I 
also made public Slutsky’s relevant letters to Markov and Chuprov and Slutsky’s scientific 
character compiled by Chuprov (pp. 44 – 50), see [xviii]. Slutsky’s correspondence with 
Chuprov discussed, among other issues, the former’s encounter with Pearson. Three letters 
from Slutsky to Pearson dated 1912 are now available [xviii]. Chuprov was six years older 
than Slutsky, had much more teaching experience, and was the generally accepted head of 
the [Russsian] statistical school. In the [Petersburg] Polytechnic Institute, he laid the 
foundation of teaching the theory of statistics. O. S. 
    8. Chetverikov repeated the mistake made by Chuprov (1909/1959, pp. 166 – 168). The 
latter stated that Cournot had provided a “canonical” proof of the law of large numbers. In 
actual fact, Cournot did not even formulate that law (and did not use that term), and his 
“Lemma” (a term only used by Chuprov himself) had simply indicated (after D’Alembert!) 
that rare events did not happen (Cournot 1843, §43). Chuprov, however, interpreted that 
statement as “did not happen often”. Chetverikov was translator of Cournot (Moscow, 
1970). Note that Slutsky [12, p. 33] followed Chuprov. O. S. 
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    9. The translation of the passage below is due to Seneta (1992, p. 30) who published the 
letter (as well as another relevant one from Slutsky to his wife) in full. In 1970 Chetverikov 
had given me copies of these letters and about 1990 I sent them to Seneta who 
acknowledged my help in obtaining “important materials” but, being concerned that I could 
have problems with the Soviet authorities, did not elaborate. I (1993) explained all that and 
provided additional material concerning Chuprov, Slutsky and Chetverikov.  
    No one involved including Slutsky knew that the main merit of discovering the strong 
LLN belonged to Hausdorff. O. S. 
    10. Hermann Fritz (1830 – 1893), see the appropriate volume of Poggendorff’s 
Handwörterbuch. O. S. 
    11. Slutsky’s large work on those annual rings including all the pertinent calculations got 
lost during his evacuation from Moscow. N. C. 
    12. Chuprov and Slutsky formulated the “Cournot lemma” not as Cournot himself did, 
see Note 8. O. S. 
    13. These errors are usually many times greater than the respective errors in unconnected 
series. N. C. 
    14. A loose but understandable description. O. S. 
    15. I changed the numbering, here and below, to conform to that in the present paper. O. 
S. 
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Foreword 

  
Predislovie. Slutsky E. E. (1960), Izbrannye Trudy (Sel. Works). Moscow  

 
    The contents of the scientific heritage of the outstanding Soviet 
mathematician Evgeny Evgenievich Slutsky are very diverse. In addition to 
mathematics and mathematical-statistical investigations proper, a number of 
his works are devoted to problems in mathematical economics, some 
problems in genetics, demography, physical statistics, etc. It seems 
unquestionable, however, that Slutsky will enter the history of our national 
mathematics as one of the founders of the theory of stochastic processes, of 
that branch of the theory of probability which is the main current channel of 
research stimulated by ever widening demands made by contemporary 
physics and technology.  
    Being absolutely specific both in their final goal and approach to solving 
problems, and distinctively combining these qualities with rigour of 
mathematical treatment, Slutsky’s fundamental contributions to the theory 
of random functions are an excellent introduction to this topical subject.  
    These Selected Works include all Slutsky’s main writings on the theory of 
random functions and his most important investigations on statistics of 
connected series. Commentaries adduced at the end of the book trace the 
numerous links between his work and modern research. A complete [an 
almost complete] list of his scientific publications is appended. We take the 
opportunity to express our thanks to Yulia N. Slutsky and N. S. Chetverikov 
for the materials that they gave us. 
 
 
 


