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Foreword to the Fifth Edition

| have prepared this edition after the death oikhin, an eminent
scientist and pedagogue. His name is connectedmatiy ideas and
results of modern probability theory. To him is dusystematic
application of the methods of the set theory ardiieory of functions
of a real variable in probability theory; the constion of the
fundamentals of the theory of random processesxtnsive
development of the theory of summation of indepehdendom
variables; and the development of a new approatfetproblems of
statistical physics and of a harmonious systentssadxposition.
Together with S. N. Bernstein and A. N. Kolmogorkhjnchin shares
the merit of constructing the Soviet school of @ioitity theory which
is playing an outstanding role in modern science.

| am happy to have been his student. We whisebiook when the
Great Patriotic War had been victoriously endind aar examples
reflected elementary military problems. Now, fiftegears after our
victory, when the country is covered by scaffolfles@w buildings, it
is natural to extend the scope of those examplésekactly for this
reason that, without changing the general exposiithe elementary
essence of the book, | allowed myself to substitete examples for
many of the previous ones. With a few exceptiomatle the same
alterations in the French edition of this book {&a960).

Moscow, 6 October 1960. B. V. Gnedenko

Foreword to the American Edition

In recent years, the theory of probability has @&eguexceptionally
great importance for the development of mathemésetf as well as
for the progress of literally all branches of natigtience, technology
and economy. Its role is now beginning to be ackadged in
linguistics and even in archaeology. It is for tréason that it is
essential to popularize its ideas and results delwas possible and in
all their varieties.

In many countries there is a persistent demanthf®mtroduction
of the elements of the theory of probability inte thigh-school
curriculum. This point of view was also shared hyYa. Khinchin
(1894 — 1959). Not long ago, | found a short maripsof his in
which he discussed his views on the place of therthof probability
in the teaching of school mathematics and he niotgeneral outline
the content and nature of presentation.

| am happy that the present little book is accésgdothe American
reader. During the fifteen years that passed flwrtime the first
Soviet edition was published, many interesting wagpeared which
extended the field of application of probabilitgtry and about which
one could tell in a captivating manner even in pytar booklet.
However, | did not wish to disturb the plan or etgf what was
thought out by my teacher and me in the last mooittise war, which
swept over the countryside and cities of my coulikeya hurricane.
Changes only touched upon certain examples whdgectunatter
was determined by the time when the booklet wakemri These



changes were made by me in the fifth Soviet editvbich is to be
published almost simultaneously with the Americditien.

24 April 1961. B. V. Gnedenko

Translated from Russian by Leo F. Boron, the tioslof the
booklet for its American edition

Foreword to the Seventh Edition

For the second tiienyself without my teacher and co-author
introduce changes by adding a new chapter. Whetoweeived the
ideas of compiling an elementary book on probabilieory, we had
before our eyes young people graduated from secpsdhool and
thrown away from science by the whirlwinds of thee@& Patriotic
War. Later, it turned out that the circle of ounders was
incomparably wider; it was our book that had acagieal engineers
and economists, biologists and linguists, physikiamd military men
with the ideas and methods of probability theory.

| am pleased that neithesun country nor abroad readers had lost
interest in our book. It goes without saying thnet thange of our
readership should somewhat influence the contdriteedook. And,
since the theory of stochastic processes is noynga special role in
numerous applications of probability theory andtsrdevelopment, |
considered it necessary to add a short introdu¢tidhat important
field of ideas and studies. Taking into accountgbeeral aim of the
book, | have accordingly paid most attention toagalty acquainting
the readers with the practical issues which leatiedheory of those
stochastic processes rather than to describinipéon the appropriate
theory or analytical methods.

I will be really grateful tay readers for submitting any desires
concerning the contents or style of the book aedesence of the
examples considered there.

Moscow, 10 Dec. 1969. B. \hedenko

From the Foreword to the Eighth Edition

Thirty five years have passed since the appearairbe first
edition of this book written on the suggestiontad tate Khinchin.
After his death | have inserted various changesaaititions. The
book did not lose readers and | am pleased tha¢ sdrthem have
accordingly been led to deep thoughts about applyiobabilistic
methods in engineering, management and economics.

It is also pleasant that the book had been warnelgamed abroad;
it ran through several editions in [seven countriesl was published
in [more than five others]. This edition only diféefrom the previous
by small editorial changes, but life is going onl &nvould like to hear
the readers’ wishes about desirable additions harthtions.

Moscow, September 1975. B. V. Gnedenko

Foreword to the Present Translation
I. The book. It has been greatly successful, witness the Faidsvo
to some of its previous editions. To my surprisés hardly
satisfactory, and | only hope that my appended N@iasigned, unlike
the authors’ Notes now accompanied by letters G&#kg tiny



insertions and question marks in the text itself explain the
situation. Here are my conclusions.

1. The book is written very carelessly as mentiometid of my
Notes. Just one example: artillery firing is mendd more than once,
and each time the scatter of the shells is onlgickemed along the line
of firing. Only once (Note 35) the authors obliquetmark that the
shellsfall around Carelessness was apparently the reason for
mentioning quite unnecessary details as well. Thostted in the
translation), four main causes of stoppages of barm listed (§ 2.2).

2. Several opportunities to insert important remaesmissed
althoughthe student is a torch to be fired rather than atainer to be
filled. The shortcomings of the Bayesian approach arendatated
(Note 13), the Bernoulli theorem is discussed usfsattorily (Note
20), chaotic motion is not mentioned (Note 51)edirand inverse
theorems are not discussed in a general way (Ngtargl neither is
sampling (Note 40). Nothing is said about the regpfinumber of
significant digits in approximate calculations ahd authors
themselves mistakenly indicated doubtful and unsseogy digits (Note
112).

3. The notions of probability and expectation ardifiesl by
common sense without indicating the accepted fomehod,;
moreover, statistical probability is describedlaoretical (Note 27).
Possibly confusing additional wordsl\yays purelyrandom etc.) are
inserted into statements and definitions (Note 30).

4. Historical comments are unsatisfactory. Chebyssi@voperly
mentioned in connection with the law of large nunsbbut Poisson is
left out (Note 39).

5. Some examples concerning the measurement of destaamd
artillery firing (Notes 37 and 46) belong to fagyld and the
discussion of the errors of measurements (Notemd42, also Note
37) is unsatisfactory.

6. Population statistics is represented by two exampbncerning
the sex ratio at birth (carelessly stating the phility of a male birth),
see Note 16. The authors should not, however, dradd for
neglecting this field of statistics: millions péred in the GULAG, and
the war claimed still more lives. For many yearpydation statistics
remained a touchy subject. The results of the ceabU937 were
allegedly sabotaged and the Central Statisticaddirate decimated
(Sheynin 1998). Kolmogorov (Anonymous 1955, pp. £568)
avoided mentioning population statistics in hisorgjpf 1954.

The complete absence of examples based on gambamfe seems
doubtful.

. Its American translation of 1961. It is dated since Gnedenko
had inserted new additions and even a whole nety(lpart 3). Then,
the translator, Leo E. Baron, followed the Russiaginal without any
comments and too often left the (naturally, Rugs&mucture of
phrases unaltered. He, or tRditorial collaborator Sidney F. Mack,
appended a Bibliography but it has no connectidh thie text itself.

[ll. The authors. Both are generally known, but | am adding some
comments. | published a joint paper w@&nedenko(Gnedenko &
Sheynin 1978) and certainly know that Gnedenkoshmdessfully



studied the work of Chebyshev, Markov and Liapuriu,that he left
aside the history of probability as developed bifgn scholars. This
fact is clearly visible here as well as in his gd$anedenko 2001 and
perhaps before that) which should have appearg@&@ earlier.

Among other methodical and pedagogical contribwtidninchin
left a concise treatise on mathematical analy€94&}, a possibly
rather too shortened textbook for university stugléh953) and a
posthumously published essay on the Mises the@§1()l Gnedenko
edited it and explained that the celebrated joutdspekhi
Matematicheskikh Naukad rejected its manuscript. Unfortunately,
the cause of rejection remains unknown.

Little known is Kolmogorov’s acknowledgement (198256, p.
0003) inserted in his great book:

| wish to express my warm thanks to Mr. Khinchihe Wwas read
carefully the whole manuscript and proposed sevi@enahreré)
improvements

On the other hand, Khinchin’s invasion of statatighysics (1943)
was unsuccessful. Here is Novikov (2002, p. 334)setpaper
deserves to be translated in full:

Khinchin attempted to begin studying the justifmatof statistical
physics, but physicists met his contributimnthat subjectlith deep
contempt. Leontovickan eminent and widely known physicisgid ...
that Khinchin does not understand anything

But the most disturbing fact is the appearancetoh&hin’s (1937)
glorification of the Soviet regime published at peak of the Great
Terror. In October 1937 a “Colloque des probalshit®ok place at the
Genéve University. Among the participants were GrarReller,
Hostinsky and other most distinguished scholars sigoed
Complimentgo Born on the occasion of his birthday (Staatsibrl.
Preussische Kulturbesitz. Manuskriptabt. Nachl.nBi29). No
wonder that there were no Soviet participants! imi@tion about the
Great Terror should have been prevented. So mudkHiochin’s
kowtowing ...

In 1986, a second edition of the Russian transiaifqgart 4 of
Jakob Bernoulli'sArs Conjectandhad appeared complete with three
commentaries, one of which was mine. A subeditiof iee to
suppress my reference to Khinchin. He had not etdbd and |,
regrettably, did not ask for any explanations. Eaddor was the late
Yu. V. Prokhorov, a well-known student of Kolmogero

Oscar Sheynin
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Chapter 1. Probabilities

1.1. The Notion of Probability. If under some conditions (the same
target, distance and rifle) a certain shot achi®28$ of hits, it follows
that on the average he hits the target about 92stimat of a hundred
(and therefore fails approximately 8 times). Of rs&l he will
sometimes be successful 91, or 90, or 93 or 94stiime can even hit
the target much less or much more than 92 timdsntibe meanafter
numerous attempts made under the same circumstdhisefsequency
of hits will remain invariable until there occursnse essential change
(for example, this shot can raise his skill andieah, again in the
mean, 95 or more hits out of a hundred).

Experience proves that in most cases shots indemged about 92
times out of a hundred. Less than 88 hits or muaia ©6 do occur, but
only rarely. That figure, 92, the indicator of tldll of our shot, is
usually verystablewhich means that under the same conditions the
frequency of his hits will in most cases be almogariable. Only as
an exception it will somewhat considerably deviaten its mean
value.

One more example. In a certain workshop about Thb#hte articles
manufactured under given conditions are substandaith means
that in a batch of, say, a thousand articles, ab6utill be useless.
This figure will certainly be sometimes larger atdimes smaller, but
in the mean it will be near to 16. In most batcbia thousand articles,
it will also be near to 16. We certainly supposa til the conditions
of work are invariable.

Such examples can obviously be indefinitely muikigh And we
invariably see that, havingpmogeneous mass operatignden firing
many times over, manufacturing articles en massegeing on under
given conditions, the frequency of one or anotleauaring important
event (of hitting the target, obtaining a substaddaticle etc) is
almost always approximately the same; only rarekysdt somewhat
considerably deviate from some mean figure.

We may therefore say that, under strictly estabtistonditions, this
mean figure is a typical indicator of the given siaperation. The
frequency of hits characterizes the skill of thetsthe frequency of
the occurred substandard articles estimates thayjagthe
production. It is thus self-evident that the knadge of such
indications is very important for most various aaailitary science,
technology, economics, physics, chemistry etc. Tdilw us to
estimate previous mass phenomena as well as teefthe outcome
of some future mass operation.

If on the average and under given conditions a khethe target 92
times out of a hundred, we say that for him, andienrthose conditions,
the probability of hitting the targetmounts to 92% or 92/100 or 0.92.
If in a certain workshop, again in the mean andenrgiven conditions,
16 substandard articles occur out of each thousaeday thathe
probability of manufacturing a substandard artielmounts there to
0.016 or 1.6%.

So what do we call the probability of an event igiveen mass
operation? Now, it is not difficult to answer tlgjgestion. A mass



operation is always a numerous repetition of singtditary operations
(of shooting, of manufacturing an article etc). We interested in a
certain result of a solitary operation (of a susf#ssingle shot, of the
quality of a given article etc) but, first of alh, the number of such
results in some mass operation (in the numbertsf df substandard
articles etc).

The relative frequency ofsuccessfutesult in a given mass
operation we will indeed call tiggrobability. However, we should
always bear in mind that the probability of oneanpther event (result)
only makes sense if our mass operation goes orr sivitely defined
conditions. As a rule, any essential change ofdlwasditions leads to
a change of the appropriate probability.

Suppose that in the mean an ew&iftor example, a successful hit
of the target) is achieveatimes out ob solitary operations (shots) of
a mass operation. Then the probability sliacessfubutcome of a
solitary operation is/b, the ratio of the mean achieved number of
such_successfalutcomes to the number of all the solitary operagi
comprising the given mass operation.

If the probability of some event &b, it can obviously appear either
more or less often thamtimes in each series bfsolitary operations.
Indeed, it only occurs aboattimes in the mean and in most serieb of
operations the number of the occurrences of thetitewill be near to
a, especially if b is a large numher

Example 1In a certain town there were born during the fipsarter
of some year:

In January, 145 boys (b) and 135 girls (g); inrk&t two months,
respectively, 142 b and 136 g; and 152 b and 14w high is the
probability of a male birth? The relative frequeascivere

145/280~ 0.518 = 51.8%; 142/2780.511 = 51.1%;
152/292~ 0.521 = 52.1%

The arithmetic mean of those frequencies is ne@r3b6 = 51.6%.
Under given conditions it is the probability sought the figure 0.516
is well known in demography, the science that tssidhanges in
populations. Under usual conditions the relatiegfrencies of male
births during different intervals of time do nosestially deviate from
that figure.

Example 2A remarkable phenomenon was discovered in the
beginning of the 19 century:the Brownian motiomamed after the
British botanist Brown. Minutest particles of a stance suspended in
a liquid® are moving chaotically and without any visiblesea. For a
long time the cause of this apparently spontanemtton remained
unknown, but the kinetic theory of gases provideihaple and
exhaustive explanation. That motion is due to tiexks inflicted by
the molecules of the liquid upon those particld®e Kinetic theory
allows us to calculate the probabilities that igiveen volume of the
liquid there will be none, one, two, ... particlestioé suspended
substance.

Series of experiments had been carried out forkihgdthe
theoretical results. We provide the data of 51&oletions of



minutest particles of gold suspended in water nigdde Swedish
physicist Svanberg. He found out that in the olegspace no
particles occurred in 112 cases; 1 particle appebs8 times; and 2, 3,
4,5, 6 and 7 particles appeared 130, 69, 32a8d11 time (times).
The relative frequencies of those cases were

112/518 = 0.216; 168/518 = 0.324; 130/518 = 0.251;
69/518 = 0.133; 32/518 = 0.062; 5/518 = 0.010; and
(twice) 1/518 = 0.002

His results agreed very well with the theoreticaligdicted
probabilities.

Example 31n a number of practically important problemisivery
important to know the possible relative frequenckthe occurrence
of different letters of the Russian [Cyrillic] algbet. Thus, when
compiling a set of types in a printing house inipractical to collect
the same number of each letter since some occsidmmably oftener
than the others. Studies of literary texts lechmdstimation of those
frequencies, see Table 1 borrowed from A. M. arM.lYaglom
(1957/2007).

[Table 1 lists the relative frequencies of the splaetween words
and of the 31 letter of the alphabet (letieesdé are combined).
Some frequencies: the space, 0.175, lettensd ¢ andé): 0.090 and
0.072, then down te and¢: both 0.002.] Thus, out of a thousand
randomly chosen spaces and lettgnsill occur twice; letters ando
and the space will be found 28, 90 and 175 timbs. Tlable provides
a sufficiently valuable indication for compilingtseof types.

Such investigations have recently been also widpplied for
revealing peculiar features of the Russian langaageof the literary
style of various authors. Information about wiresseges can be
applied for constructing optimal wire codes andstbasuring a faster
transmission of messages by a lesser number of.digirned out
that the wire codes which had been applied durirgldhWar 1l were
not sufficiently economicél

1.2. Impossible and Certain EventsThe probability of an event is
always either a positive number or zero. It carexaed 1 since the
numerator of the fraction that determines it carbelarger than its
denominator (the number sficcessfubperations cannot exceed the
number of all of them). We will denote the probabibf eventA by
P(A) so that for any event

0<PA) <1.

The higher is ) the more often will ever& occur. Thus, the
higher is the probability of hitting the targetetmore often will the
shot achieve his goal, the more skilful he ishtfywever, the
probability of an event is very low, it occurs fgreand if P@A) = 0,
eventA either never occurs or happens extremely raredycam
therefore be considergulactically impossibleOn the contrary, if )
is near to unity, the numerator of the fraction ethéxpresses that
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probability is near to its denominator, an overwalg number of
operations is successful and such events occupst cases.

If P(A) = 1, eventA appears always or almost always and we may
consider ifpractically certain and reckon on its occurrence for sure.
Then, if PA) = 1/2, evenA happens in about a half of the cases so that
approximately thsuccesseandfailures are equally numerous. If R(
> 1/2, evenfA occurs more often than fails; otherwise, iAP€ 1/2, it
happens less often than fails.

How low should the probability of an event be fonsidering it
practically impossible? No all-embracing answegassible, all
depends on how important is the problem at hands;TB.01 is a
small number. If it is the probability that a sh&lll not explode on
impact, about 1% of the fired shells will be usslékhis can be
accepted, but the same probability that a parachilitaot open is
certainly intolerable.

These examples prove that for each problem thessitoie low
probability of an event ought to be establisheatsfand for
harmlessly deciding that that event is practicatipossible.

1.3. A Problem.A shot hits the target with probability 0.80; amet
shot, under the same conditions, hits it with philitg 0.70. Both fire
at the same time and required is the probabilitiyitting the target at
least once.

Solution, first method. Suppose that they fire 100 times. The first
shot will hit the target approximately 80 times daill about 20 times.
The second shot succeeds 70 times in the meantonéd when the
first shot fails. The target is hit 80 + 14 = 9%hdis and the probability
of success, when both are firing at the same tign@4% or 0.94.

Solution, second methodAgain suppose that they fire a hundred
times. The first shot fails about 20 times, theoselcshot fails
approximately 30 times, or about 3 times in 10ifes in 20]. It can
therefore be expected that 6 times the targetatllbe hit by either,
but 94 times at least once. The result is the ssrabove.

This problem is very easy, but nevertheless itdagach very
important conclusion: There are cases in whictptiebabilities of
more complicated events can be expediently deffrged the
probabilities of simple or less complicated eveAtsually, there are
very many such cases, and not only in militaryrsméebut in any
science, in any practical activity in which masgmpbmena are
involved.

It would certainly be inconvenient to devise a $glemethod for
solving each new problem; science invariably attesnip create
general rules for solving similar problems mechalfyoor almost so.
In the area of mass phenomena the science thdtdshethe
compilation of such rules is call¢lde theory of probabilityand here
we offer its elements|t is a chapter of mathematics just like
arithmetic or geometry. Consequently, it works tsicereasoning and
its tools are formulas, tables, charts etc.

11



Chapter 2. The Rule for the Addition of Probabilities

2.1. The Derivation of the Addition Rule.This is the simplest and
the most important rule applied for calculatinglmbilities. For each
shot firing at a target, there exists some profigtaf hitting it from a
given distance. Let 1 be a small circle drawn entdlrget, and denote
concentric circles of increasing radii forming rinigy 2, 3, 4 and 5 and
the region partly situated beyond the target byugppose now that a
certain shot has probability 0.24 of hitting ciréleand of hitting ring
2, 0. 17. We already know that in the mean 24 stiillets out of a
hundred will hit circle 1, and 17 bullets will hihg 2. Call such
resultsexcellentandgoodand determine the probability that the result
of one attempt will be either excellent or good.

This is an easy problem. Approximately 24 and 1lfelsiout of a
hundred will ensure excellent and good resultsaesgely, so that 41
bullet will hit either the circle or the ring. Theeobability sought will
be 0.24 + 0.17 = 0.41. It is thus the sum of tlababilities of an
excellent and a good result.

Another example. A man is awaiting either tram 2&am 16. He
is standing at a tram stop for trams 16, 22, 263dndnd we suppose
that all of them come approximately equally oftéfhat is the
probability that the first tram to appear will bietle required route?
The probability that the first tram will be numlis is obviously 1/4,
and the same probability exists for tram 26. Thabpbility sought is
therefore 1/2, the sum of 1/4 and 1/4, of the tnabpbilities.

And now the general reasoning concerning some p@estion.
Suppose that it is established that on averagadh series ad
solitary operations

a1 times resulA; was observeds, times resuli,, etc.

In other words, the probability of evefst is ai/b, of eventA,, ay/b,
etc. Required is the probability that any one olthresults will occur
in a solitary operation. The event which interestzan be denoted by
(Ar orAzor...). In a series df operations it occurg{ + a, + ...)
times and the probability sought is

Qr&Y.._a, 8,
b b b

This can be written as
PALorAzor...)=PQA) + PAY) + ...

In both examples and here, in the general reaspwegssumed that
any two of the considered events (for exampleandA;) aremutually
incompatiblei.e., that they cannot occur in the same solitgrgration.
Thus, a tram cannot be both needed and not nek@ditier satisfies
the passenger’s need or not.

This assumption about mutual exclusiveness of ¢parate results
is very important. If it does not take place, thdition rule stated

12



below becomes wrong and its application leads asgmistakes.
Consider for example the problem solved at thear§l1.3. It was
required to derive the probability that, when bsiiots fire at the same
time, the target will be hit either by the firsttbem or by the second.
Their probabilities of success were 0.8 and 0.7aditect application
of the addition rule leads to probability of sucscegual to 0.8 + 0.7 =
1.5. This is nonsense since probabilities canno¢edt unity. We
arrived at this wrong and senseless result sincesed the addition
rule in a case in which it is inapplicable: thos® individual results
arecompatible It is quite possible that both shots hit the ¢amf the
same time.

A considerable part of mistakes made by beginnéesw
calculating probabilities is caused by such a wrapglication of the
addition rule. It is therefore necessary to be liady on guard against
this mistake. When applying the addition rule, ¢hedhout fail
whether each two of the studied events are readigmpatible.

And now we may formulate the geneaaldition rule

The probability of the occurrence in some operatibany of the
resultsAg, Ay, ..., A, (N0 matter whichis equal to the sum of their
probabilities if only each two of them are mutudtigompatible

2.2. Complete Systems of Event&ne third of a certain State loan
bonds gradually wins during a twenty-year peribé, dther bonds are
then repaid. Each bond thus wins with probabili§ dnd is repaid
with probability 2/3. The two events azentrarywhich means that
one and only one of them certainly occurs. The stitheir
probabilities, 1/3 + 2/3, is unity which is not atental.

In general, ifA; andA; are contrary events, and in a serieb of
operationg; occursa; times, and?; occursa, times, then, obviously,
a; +a; =b. And indeed,

P(A1) = ai/b, P(A2) = aglb,
P(A1) + PA2) =a/b + a/b = (ay + az)/b = 1.

The addition rule leads to the same result: silncgrary events are
mutually incompatible,

PA1) + P@A2) = PAL or Ay).

But the event4, or A) is certain since it ought to occur by definition
of contrary events and its probability is unity. \Again have

PA) + PAy) = 1.

The sum of the probabilities of two contrary evésisnity.

This rule can be very importantly generalized whgproved in a
similar way. Suppose that there are such arbirarény @) eventsA,,
A, ..., A, that one and only one of them occurs withoutife@ach
solitary operation. Such group of events is calledmplete systenn
particular, any pair of contrary events makes gpraplete system.

The sum of the probabilities of the events compyisi complete
system is unity

13



Indeed, by the definition of a complete system taviy of its events
are mutually incompatible and

PA) + PA) + ... + PA) = PALorAz or ... orAy).

The right side of this equality is the probabilitfya certain event and
therefore equals unity:

PQ) + PAy) + ... + PA,) = 1, QED.

Example 1A shot firing at a target described in § 2.1 hitshe
mean, 44 times the circle 1; 30, 15, 6, 4 and-pdaiitt (points) is (are)
contained within rings 2, 3, 4, 5 and region 6, and

44 +30+ 15+ 6+ 1=100.

These results obviously constitute a complete systeevents
whose probabilities are 0.44, 0.30, 0.15, 0.064 @ufd 0.01. Their
sum is unity. Some hit-points in region 6 cannotbented, but the
appropriate probability can be calculated by suling the sum of all
other probabilities from unity.

Example 2At a certain factory out of each hundred stoppaijex
loom which required the weaver’s attention, 22,27,and 3 in the
mean occurred because of four definite main catresgectively (and
the other stoppages had other causes). The pritieghalf those four
causes are 0.22, 0.31, 0.27 and 0.03. Their sn83and the
probability of the other causes is 1 — 0.83 = Gibte all the causes
comprise a complete system of events.

2.3. ExamplesThe theorem about the complete system of events
often successfully serves as a foundation for ¢theasledprior
calculation of probabilities. Suppose that we sttidydistribution of
cosmic particles over a rectangular surface sutidivinto 6 identical
squares. We have no sufficient reason to assunéhtbee particles
will more often come to rest on one of these scqgieather than on
anothef.

So let us assume that the appropriate probabiptig®, ..., ps, Ps
are identical. If we are only interested in obsegvihe rectangular
surface, each of the six probabilities will be ddo&l/6 since their
sum is unity by the theorem above. This conclusigpends on
assumptions and ought to be verified by experimdmniisin such cases
we are so accustomed to a positive answer thadractically fully
justified to rely on those theoretical assumptiemsn before
experimentation.

In such cases we usually say that the given operatn have
differentequally probableesults; here, the cosmic particles can come
to rest on any of the six squares with probabiliy. Such prior
calculations are important since they allow usot@$ee events when
mass operations are either impossible or extrediéfigult to carry
out.
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Example 1The numbers of Soviet State bonds had usually bee
expressed by five digits (for example, 59607). Rexglis the
probability that the last digit of a randomly choseinning bond is 7.

According to the definition of probability, we hateconsider a
long table of drawings and find out in how manyesathe last digit of
the number of winning bonds was seven. The ratth@humber of
those cases to the complete number of winning basitlse the
probability sought. However, each of the 10 digit4, 2, ..., 8, 9 has
the same chance to be the last one of the numlibe efinning bond.
Without hesitating, we assume that the probalsidyght is 0.1.
Verification of thisprevisionis easy: select the table of any drawing
and convince yourself in that each of the 10 diigitthe last one in the
numbers of the winning bonds in approximately 1#1@ll case

Example 2A telephone line between points A and B two kik&tras
apart was torn somewhere. Required is the prolpatilat the rupture
occurred not farther than 450from A. So let us mentally separate the
entire distance AB into metres. Since all the apgantervals are
practically homogeneous, we may assume that tHeapilities of the
rupture occurring in each of them are identicahifir to the above,
we easily decide that the probability sought is/2600 = 0.225.
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Chapter 3. Conditional Probabilities
and the Multiplication Rule

3.1. The Notion of Conditional Probability. Suppose that two
factories are manufacturing light bulbs and thaytproduce 70 and
30% of the entire output respectively with standauth$ comprising
83 and only 63% of their respective totals. Itas difficult to
calculate that in the mean the customer gets Tidatd bulbs out of a
hundred or that the probability of buying a staddaulb is 0.77.
Indeed, 0.83 + 0.363 = 77. But suppose now that you buy bulbs only
manufactured by the first factory, then that proligtwill be 0.83.

This example shows that when the general conditioer which
an operation is proceeding are coupled with anngisdly new
condition (only the bulbs produced by the firsttfag are taken into
account) the probability of one or another outcarhe solitary
operation can change. This is evident since themdself of
probability requires that the set of conditionsgemwhich the given
mass operation is going on, is strictly establisti&eherally, an
addition of some new condition to that set essythanges it. The
mass operation will continue under new conditiagngijll be another
operation and consequently the probabilities of an@nother ensuing
result will change.

And so, we have two differing probabilities of theme event, of a
purchase of a standard bulb. Until we impose atitiaddl condition
(until taking into account the manufacturer) we édawabsolute
probability, 0.77, of buying a standard bulb; after addingrtée
condition we have aonditional probabilityof the same event, 0.83,
somewhat differing from 0.77.

Denote the event of purchasing a standard bulb, land leB be its
being manufactured by the first factory. TheAR{sually denotes the
absolute probability o\, and RB(A), the probability of the same event
provided that the bulb was manufactured by the férstory. Then

P(A) = 0.77, R(A) = 0.83.

Since probabilities, strictly speaking, are onlfinkd under some
exactly determined conditions, then, in the litaghse, each
probability is conditional whereas absolute probigds do not exist.
However, in most problems all the studied operatiare proceeding
under a definite set of conditions K which are sagagul to be
invariably satisfied. When no other conditions gxtde are imposed,
we call the ensuing probabiligbsolute andconditionalif in addition
some other strictly stipulated condition(s) is Jameposed.

Thus, in our example we certainly assume that babs
manufactured under some definite conditions, iralde for all of
them. This assumption is so unavoidable and sétfeew that we did
not even deem it necessary to mention it. If, wherchasing a bulb,
we do not impose any additional condition, the piolity of one or
another result of its test is called absolute. W&mme additional
conditions are imposed, the appropriate probadslitwill be
conditional.
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Example 1Above, the probability of a bulb being manufaetliby
the second factory is obviously 0.3. It is estdids that the bulb is
standard and required is the probability that i weanufactured by
that second factory.

Out of every thousand bulbs put on sale 770 ath@maverage
standard, 581 of them manufactured by the firabfgcand 189, by
the second The probability sought is 189/7700.245. This is the
conditional probability calculated under the asstiompthat the bulb is
standard, and we may conclude that

P(B)=0.3, R B k 0.24

where B denotes the failure of eveBt

Example 20bservations made during many years in a certain
district established that, out of 100,000 childagied 10, 82,277 in the
mean live until 40 years and 37,977, until 70 yeBRequired is the
probability that a mafthe sexes are not distinguished}0 years old
will live until 70 as well. The probability sougtst 37,977/82,27%
0.46.

Denote byA andB the events of a child 10 years old living until 70
and 40 years. Then, obviously,

P(A) = 0.37977= 0.38, R(A) = 0.46.

3.2. Derivation of the Rule for Multiplying Probabilities. Return
to the first example of § 3.1. Out of a thousantb®put on sale the
second factory manufactures 300, 189 of them imtban being
standard. The probability that the bulb was martufad by the

second factory (eveR) is
P(B) = 300/1000 = 0.3

and the probability of its being standard givert ihevas
manufactured by the second factory is

P, (A) = 189/300 = 0.63.

And so, out of the 1000 bulbs 189 are manufactbsetthe second
factory and are standard and the probability ofj¢ive occurrence of

eventsA and B is
P(Aand B) = 189/1000 = (300/1000)(189/300) =B(P, (A).

This multiplication rulecan easily be extended on the general case.
Suppose that resut occursmtimes in the mean in each seriesof
operations, and in each new seriesiafuch operationktimes appears
resultA. Then this joint occurrence of eve®fndA in each series of
n operations will occur in the me&times. Thus,

P®) = m/n, Ps(A) = l/m, P@ andB) = I/n = (m/n)(/m) = P@)P(A). (3.1)
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The multiplication rule. The probability of a joint occurrence of
two events is equal to the product of the probghbdf the first event
by the conditional probability of the second ca#tel under the
assumption that the first event had occurred

We may certainly say that any of the two eventhésfirst one so
that in addition to formula (3.1) we may just adlwsay that

P(A andB) = PA)PA(B). (3.1%)
An important relation follows:
PA)PAB) = PB)P:(A). (3-2)
In our example we had
P(A andB) = 189/1000, R¥) = 77/100, R B) = 189/770

and formula (3.1*) is confirmed.

Example 96% of the articles manufactured at a certaitofgicare suitable
(eventA) and 75% of them are of top quality (ev8ht Required is the
probability that an article manufactured therefigop quality. We ought to
find P(A andB) since a top quality article (eveB} should first of all be
suitable (evend).

According to the conditions of the problem

P(A) = 0.96, R(B) = 0.75
and by formula (3.1%)

P@ andB) = 0.960.75 = 0.72.

3.3. Independent EventsAfter a test of tensile strength of two
skeins of thread produced by different looms itwoed that a
specimen of some length taken from the first skeidures a certain
standard load with probability 0.84, and with prioitity 0.77 if taken
from the second skelh Required is the probability that both these
specimens endure that load (evArandB).

We require P4 andB) and apply the multiplication rule

P(A andB) = P@A)PA(B).

Here PA) = 0.84, but what is the meaning of(B)? According to the
general definition of conditional probabilitiesjstthe probability that
the specimen taken from the second skein enduedsak if the
specimen from the first skein endures it. Howetreg,probability oB
does not depend on evekbccurring or not. Practically speaking, it
means that the per cent of tests in wiBdiakes place does not depend
on the strength of the specimen taken from the gkeirt™:

PA(B) = P@) = 0.78, PA andB) = PA)P(B) = 0.840.78 = 0.6552.
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As compared with all the previous examples, this igmpeculiar in
that, as we see, the probability®floes not change when we add to
the general conditions the requirement thatght to occur. In other
words, the conditional probabilitya@) is equal to the absolute
probability PB). In this case we simply say theatent B does not
depend on event A

It is easy to check that in this caseloes not depend deither.
Indeed, since &£B) = PB), then, by formula (3.2),d4PA) = P@) as
well which indeed means that evéntioes not depend on evéht
Independence of two events is thus a mutual prppére see that for
independent events the multiplication rule becoasgxecially simple:

P(A andB) = PR)P@®). (3.3)

Whenever we apply the addition rule we ought tatdigh
beforehand that the given events are incompatibiet the same,
whenever we apply the rule (3.3) we ought to eshlwhether the
eventsA andB are independent. Neglect of this indication |eads
large number of mistakes. If the eveAtandB are dependent, formula
(3.3) becomes wrong and should be substitutedrbgre general
formula (3.1) or (3.1%).

Rule (3.3) is easily generalized on the probabdityhree or more
independent events. Suppose we have tmaeally independent
eventsA, BandC. This means that the probability of neither ofthe
depends on whether the other events occurred oAndtsince the
three events are independent, according to forg3u&

P(A andB andC) = P andB)P(C).
Again apply formula (3.3) for determiningA&ndB), then
P(A andB andC) = PQ)PB)P(C). (3.4)

The same rule obviously takes place when the siugtieup
consists of any number of events if only theyrargually independent
if the probability of each does not depend on weethe other events
occurred or not.

The probability of the joint occurrence of any nianbf mutually
independent events is equal to the product of {ireibabilities

Example 1A worker services three lathes. The probabilitieg no
service is needed for an hour are 0.9, 0.8 andrésgectively.
Required is the probability that during an houvss will not be
needed at all.

Assume that the lathes are operating independfntly each other.
Then, by formula (3.4), the probability sought is

0.90.80.85 = 0.612.
Example 2Retain the conditions of the previous example and

determine the probability that during an hour asteone lathe will not
require attention. The probability sought is of tiyee PA or B or C)
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and we certainly begin thinking about the additiole. However, we
see at once that that rule is here inapplicablgtwo events, and even
all three of them are compatible with each othedekd, two or even
three lathes can certainly continue working duanchour. And even
independently from this consideration we immediasele that the
sum of the three given probabilities considerabigeeds unity and
cannot therefore be any probability at all.

For solving this problem we note that the contiangbabilities of
the lathes requiring attention are 0.1, 0.2 an8.0They are mutually
independent and by rule (3.4) the probability #ilbof them occur is

0.1.0.20.15 = 0.003.

However, the eventll three lathes require attenticendat least
one does not require attentiane contrary, their sum is unity and the
probability sought is therefore 1 — 0.003 = 0.98/hen a probability
of an event is so high, we may assume that itastfmally certain.
This means that during an hour at least one latheentinue working.

Example 3250 devices are tested under specific conditiohs.
probability that a definite device fails during laour is 0.004, the
same for all of them. Required is the probabilitgttduring an hour at
least one device fails.

For one device the probability of working duringteour is 1 —
0.004 = 0.996 and the probability that none fai|diy the
multiplication rule for mutually independent ever@996°°. The
probability sought is 1 — 0.996~ 5/8.

Although the probability of a failure for each dewiis not higHis
tiny], for a large number of them the probability ofeatst one failure
is rather considerable. The reasoning in the tebdaamples can be
easily generalized and lead to an important gemetal In both cases
we discussed probabilitiesAR(or Az or ... orA,) of the occurrence of
at least one of some mutually independent evénta,, ..., An.

Denote byA the failure of everk, thenA, and A are contrary and
PA) +P(A) = 1.

On the other hand, events, A,, ..., A are obviously independent
so that

P(A and A, and ... andA)) =
P(A)P(A) ... P(A) = [1-PA)] [1 - PA)] ... [1 - PAY)].
Finally, events&; or A; or ... orA;) and (A and A, and ... andA,)

are obviously contrary (either at least one evgrdccurs or all the
eventsR take place). Therefore,

P@ALorAyor...orA) =1-P@ and A, and ... andA) =
[1-PA)][1-PE] ... [1-PA. (3.5)
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This important formula allows us to calculate thel@ability of the
occurrence oét leastone of the eventdy, Ay, ..., A, given their
probabilities. It is valid then and only then whadhthose events are
mutually independent. In particular, when all ther@sA, have the
same probability (as in Example 3),

PAorAyor ... orA) =1 — (1 9)". (3.6)

Example 4 A machine part is a right parallelepiped. Itugable if
the length of each of its edges deviates from tdwedsrd not more
than by 0.0Inm The probabilities of such unacceptable deviatimhs
lengths, widths and heights are

P1= 0.08,p2 = 0.12,p3 =0.1.

Required is the probability that a machine patrisuitable. This
happens when at least one deviation exceedsfindDeviations of
the three dimensions are usually considered mytiralependent

(since they are occasioned by different causesyhenhay therefore
apply formula (3.5):

1-(1-p)(1 —p2)(1—ps)=0.27.

Out of each hundred machine parts 73 in the melmevsuitable.

21



Chapter 4. Corollaries of the Addition and Multipli cation Rules
4.1. Derivation of Some InequalitiesReturn to our example
concerning light bulbs (8§ 3.1) once more and denote

A, a standard bulbA , a substandard bulb;
B and B, a bulb manufactured by the first and the secootbfg

EventsA and A are obviously contrary just as eveBtandB. If a
bulb is standard (eve®, it is manufactured either by the first (event

A andB) or by the second (eveAtand B) factory. These two events
are obviously incompatible and by the addition rule

P = P@A andB) + P@A and B), (4.1)
P®B) = PA andB) + P(A andB). (4.2)

Consider now even®(or B). There are three possibilities for its

occurrenceA andB; Aand B ; and A andB. Any two of them are
incompatible and by the addition rule we have

P(AorB) = P@A andB) + PA and B) + P(A andB). (4.3)

Adding up equations (4.1) and (4.2) and taking atoount
equation (4.3) we easily derive

P@®) + PB) = PA andB) + PA orB),
PAorB) = PA) + PB) — PA andB). (4.4)

This is a very important result. True, we consideagarticular
example, but our reasoning was so general thatahelusion can be
thought to hold for any pair of everAsandB. Until now, we only
derived expressions for the probabilityAR(r B) under very particular
assumptions about the connection between thoseseesmdB (at
first, we considered them incompatible, then mdguadependent).

However, formula (4.4) takes place without any tiddal
assumptions for any pair of evet&ndB. True, we should not forget
an essential difference between formula (4.4) amdgpoevious
formulas. Until now, the probability R(or B) had always been only
expressed through B and PB) and we were then invariably able to
derive a single value for the evetdr B).

The essence of formula (4.4) differs: in additiane, have to know
P(A andB), the probability of the joint occurrence of theeatsA and
B. In the general case, in which the connection betwthese events is
arbitrary, it is usually not easier to calculatatthrobability than the
probability PA or B). Consequently, formula (4.4) is rarely applied
although its theoretical importance is very consitée.

And now, by issuing from it, we will easily derieair previous
formulas. If event#\ andB are incompatible, the ever &ndB) is
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impossible, P& andB) = 0, and formula (4.4) leads to the addition
formula

P@A andB) = PA) + PB).
Then, ifA andB are independent, formula (3.3) provides
P(A andB) = PA)P(B)

and formula (4.4) leads to

PAorB) =P@) + PE) - PAPE) = 1 -[1-PR][1 - PE)]

which is formula (3.5) fon = 2.
We will now derive an important corollary of thensaformula
(4.4). Since identically A(andB) > 0, it follows that always

PAorB) <PA) + PB). (4.5)

This inequality can be generalized on any numbewvehts. Thus,
for three events,

PAorBorC)<P@AorB) + PC)<PQ) + PB) + PC)

and we can now pass on to four events etc. Heheigeneral result:

The probability of the occurrence of at least omerg out of some
number of them is never higher than the sum of grebabilities

Equality only takes place when any two of thosenevare
incompatible.

4.2. The Formula for Complete Probability. Return once more to
our example concerning light bulbs (§ 3.1) anduormtation in § 4.1.
We have more than once seen that the probabilitesa standard
bulb was manufactured by the second and the fictofies were

P.(A) = 189/300 = 0.63,&A) = 581/700 = 0.83.

Suppose that both these probabilities are knovwmedisas the
probabilities that the bulb was manufactured béhfactoriegfor
some reason mentioned in the inverted order: by thérst and
second factories]

P®) =0.7, PB) =0.3.

Required is the absolute probability¥p¢hat a bulb is standard
without any assumptions about its manufacturer useteason in the
following way. Denote b¥ andF the compound events that the bulb
was manufactured by the first and the second facEkach bulb was
manufactured either by the first or the secondofgcand therefore
eventA is tantamount to evenE (or F). These events are incompatible
and by the addition rule
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PA) = PE) + PF). (4.6)

On the other hand, as it follows from the aboventk is
tantamount to evenfA(andB). Therefore, according to the
multiplication rule,

PE) = PB)Ps(A)

and in exactly the same way
P(F) = P(B)Ry(A.
Substituting these two expressions in equality)(#® obtain
P@) = PB)Ps(A) + P(B)R(A),

the formula that solves our problem. Substitutimg given data we get
PA) = 0.77.

Example Seeds of wheat of sort | are stored for sowirgeyT
contain a small admixture of seeds of sorts I],dHd V. Choose a
seed and denote its being of these sort&;bp,, As andA,
respectively. It is known that

P(A;) = 0.96, PA\) = 0.01, PAs) = 0.02 and R4y) = 0.01.

The sum of these probabilities is unity as it sticag for a complete
system of events. The probabilities that an eataioimg not less than
50 grains will grow out of a seed are respective0, 0.15, 0.20 and
0.05. Required is the absolute probability of anheaving not less than
50 grains (everk).

By the conditions of the problem

P,(K)=050, R K 0.5 PK 3 0.20,PK(=) 0.

The probability sought is Rj. Denote byE; the event that a seed is
of sort | and that the ear which grew out of it hasless than 50
grains. That evenE,, is therefore tantamount to eveA§ @ndK). We
also denote bi,, E; andE, similar eventsA, andK), (A;s andK) and
(A4 andK).

For evenK to arrive the occurrence of one of the evéitE,, E;
or E4 is necessary. Since any two of them are incomlgatile
addition rule provides

PK) =PE) + PE) + PEs) + PEs). 4.7)

On the other hand, by the multiplication rule

PEy) = PA andK) = P@Ay) B, (K)
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and similar expressions hold fs, E; or E4. Substituting these
expressions into formula (4.7) we get

PK) =P&)P, K) +PA)PF, (K) +
Ps) P, (K) + P@A) P, (K), (4.8)

a formula that evidently answers our problem. Stuligig the given
data we obtain () = 0.486.

The examples considered here in detail lead tonpoitant general
rule which we are now able to formulate and justifthout any
difficulties. Suppose that a given operation admaiiltsa, A, ...,
A, constituting a complete system of events. To feitaheans that
any two of those events are incompatible with eztbler and one of
them occurs for sure.

Then for any possible residtof this operation to occur we have
formula (4.8) withn terms instead of 4. It is usually callét formula
of complete probabilitylt is proved just like it was done in the two
examples above. First, the appearance of d¢@atjuires the
occurrence of one of the eventg §ndK), and, by the addition rule,

PK) = Zn:P(A andK) . (4.9)

Second, according to the multiplication rule,
P(A andK) = P@&) P, (K).

Substituting this expression in equality (4.9) wi# indeed arrive at
formula (4.8).

4.3. The Bayes FormulaThe formulas of § 4.2 allow us to derive
an important result having numerous applications.Mgin by a
formal justification and postpone the ascertairohthe meaning of
the final formula.

Suppose that once more eveMsA,, ..., A, constitute a complete
group of the results of some operatiorKlis one of these results, then,
by the multiplication rule,

P(A andK) = PA) P, (K) = PK)P«(A), 1<i<n
and therefore

PAIR K) | . _

Px(A) = P(K) y 4SS

Expressing the denominator by the formula of comepbeobability
(4.8) we gethe Bayes formula
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ey = PAIR )

> PAR K)

,1<i<n. (4.10)

This formula is mostly applied as is shown in tbkofving example.
Suppose that a target is situated on a segment Mbdhwve mentally
separate into five small intervalg &, a, b, ¢; in that order. The exact
location of the target is unknown and we can oalythat the
probabilities of its being on those intervals are

P(a) = 0.48, P = P(=p) = 0.21, P(¢) = P(¢) = 0.05.

The sum of these probabilities is unity. The higlpesbability
corresponds to interval and we naturally fire at it. However, owing
to unavoidable errors the target can also be hitsflocated elsewhere.
The probabilities of the hits arg(R) = 0.56 if the target is located on
a. Other probabilities are

R, (K)=0.18 P K F 0.16, PK( 3 0.06,K(=) 0

[the sum of these probabilities is 0.98]
Suppose now that the target is hit (eueritas occurred). The
probabilities of the location of the target, i.the numbers P(a),
P(by), ..., are estimated anéfv The qualitative essence of this
operation is evident even without any calculatidhsie aimed at
interval a and hit the target, the probability Rfayht to be heightened.
However, we wish to estimate numerically this raagal, to derive
an exact expression of the probabilitiege®, R(b,), ...given that the
target was hit. The Bayes formula (4.10) immediapebvides the
answer:

pe(a) = P@R &) s
P@R K PRIPK ¥ + Plc )PK(

We see that fa) is indeed higher than P(a).

In a similar way we can easily calculate the praltas Pc(by), ...
of the other possible locations of the target. Waetually calculating,
it is expedient to note that the expression ofpttudabilities as
provided by the Bayes formula only differ in theirmerators; the
denominators are the same and equal kg PQ.34.

We can describe the general pattern in the follgwiay. The
conditions of an operation contain an unknown elgrabout whichn
different hypothesea, A, ..., A, constituting a complete system of
events can be formulated. We somehow know therr pri
probabilities® P(A) and we also know that according to hypothésis
some everK (for example, a hit of the target) has probabify(K ),

1<i<n. This is the probability of eveilt provided that hypothes#
is true.
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If K occurred as the result of an experiment, the fitibas of the
hypotheseg\ ought to be reappraised, and their new probadsliti
P«(A) determined. This is what the Bayes formula does.

Atrtillery firing begins by preliminary shots for epifying the
location of the target. The unknown element caa bésany other
condition of firing (in particular, some peculiagature of the guf?]).
Very often a few such shots are fired, and the lpralzonsists then in
calculating the new probabilities of the hypotheseshe basis of the
results obtained. In all such cases the Bayes flareasily solves the
problem at han.

For the sake of brevity we denote

PA) =P, B, (K) =pi, 1<i<k[n].

The Bayes formula is then written simpler:

Pc(A) = RR , 1<i<n.

n

2.Pn
r=1

Suppose that a volley sftrial shots were fired and resit
appearedantimes and faileds— n) times. Denote bi* this result of
the volley. We may assume that the results of éparste shots are
mutually independent events. If hypotheaiss true the probability of
resultk is p; and consequently the probability of the contrangr, of
the failure ofK, is (1 —). Then, by the multiplication rule for
mutually independent events, the probability thatresulk occurred
afterm definite shots ig"(1 —p)*™

Any m shots out 08 can be selected aidcan therefore occur in
C."incompatible ways (in the number of combinations efements

takenm at a time). By the addition rule we therefore have
Py (K =CI'p'(l- p)*" 1<i<n
and according to the Bayes formula

P.(A)= nFl’p a-r)
ZRprm(l_ p)s—m

,1<i<n. (4.11)

This is the solution of the problem. Such problerosur not only in
artillery but in other fields of human activities well.

Example 1Return to the beginning of this section. Requigeithe
probability that the target is situated in interaaf two shots aimed at
that interval were successful.

Denote a reiterated hit B¢*. By formula (4.11) we have
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P(@)R K)f

P (A)= .
e ) P@)R K)F + PB)IR K)I+ ...

A simple calculation which we leave for the readeilsconvince
them that the probability that the target is sidat interval a will
heighten still more.

Example 2An article manufactured at a certain factorytédard
with probability 0.96. The articles are tested isiraplified way: a
positive answetris provided with probability 0.98 if the article i
standard but only with probability 0.05 otherwiBequired is the
probability that an article which stood two teststiandard.

Here, the complete system of hypotheses is compafsach
contrary events: the article is, or is not stand@keir prior
probabilities are P= 0.96 and = 0.04. Under these hypotheses the
probabilities that an article will stand the testjay = 0.98 andb, =
0.05. After the two tests the probability of thesfihypothesis,
according to formula (4.11), will be

2
REL _ 0.9600.98 - 0.9999
Rp’+RE 0.960.98+ 0.040.05

In one case out of ten thousand we can be mistak@monsider a
standard article substandard. Usually this resudbiod enough.

Example 3After examining a patient three illnes#asA, andAs
were suspected and their probabilities under gogditions were

P, =1/2, B=1/6 and P= 1/3.
An additional analysis, which provides a positive\aer with
probabilities 0.1, 0.2 and 0.9 respectively, wasspribed and carried
out 5 times. In four cases the result was posdiwe required are the
probabilities of each illness after these analyses.

By the multiplication rule in case of illnegg the probabilities of
the stated outcomes of the analyses are

p1 = C£0.1%0.9,p, = C0.2%0.8,ps = C70.9"0.1.

According to the Bayes formula we find that aftes ainalyses the
probabilities of those illnesses become respegtivel

P RR BB

When substituting the data, we have identical dénators
1/2:0.1*0.9 + 1/60.2%0.8 + 1/30.90.1

and numerators
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1/2:0.10.9, 1/60.2*0.8, 1/30.9%0.1.

Calculation provides probabilities ca. 0.002, c@ltand ca. 0.988.
The three eventd;, A; andAg constitute, as they had previously, a
complete system of events so that the sum of theadkprobabilities
is unity, again as previously, which serves foratireg the calculation.
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Chapter 5. The Bernoulli Pattern

5.1. Examples.The length of about 75% of the fibres of cottoraof
certain sort is shorter than #fm(short fibres or short) and about 25%,
longer than, or equal to 4Bm(long fibres or long). Required is the
probability that two out of three randomly selecspdcimens are short
and one is long.

Denote byA the event of selecting a short fibre andBhyhe
contrary event. Then, evidently,&)(= 3/4, PB) = 1/4. Denote also by
AABthe compound event consisting of two short fipegcgmens and a
long third specimen. The meaning of notatBBA, ABAetc is evident.
Required is the probability of eve@t of two short fibres and one long.
It occurs in three possible ways,

AAB, ABAandBBA (5.1)

Any two of them are mutually inconsistent and bg #aldition rule

P(C) = PAAB + PABA) + PBAA.

The terms in the right side are identical sincestection of the
specimens can be assumed mutually independentrdingdo the
multiplication rule for mutually independent evettie probability of
each pattern (5.1) is a product of three factorsdiwvhich are F¥) =
3/4 and one is B) = 1/4 and thus is (3/2}/4 = 9/64 and

P(C) = 39/64 = 27/64,

which is our answer.

Example 20bservations lasting many decades have estathltbhé
out of a thousand births 515 newborn babies are'bapd 485 are
girls. A family has 6 children and it is requireddetermine the
probability that among them there are not more thgirls.

For the studied event to occur there should bedd,2Lgirls; denote
the respective probabilities of those events §yPand B. By the
addition rule

P=R+P +P, (5.2)

It is easiest to determing.FA male or female birth can be
considered independent from the births of the dbladies and by the
multiplication rule the probability of all six makérths is

P, = 0.51% ~ 0.018.

There are 6 ways for only one girl in the familgescan be the first,
the second, ..., the sixth child. Suppose that steth@fourth.
According to the multiplication rule the probabilibf this case is
equal to the product of six fractions, five of thequal to 0.515 and
one to 0.485. It thus equals 0.516485. All the other possible cases
have the same probability and by the addition rule
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P; = 60.515-0.485~ 0.105.

Now P.. We note at once that there are many possibifidiethe
birth of two girls (for example, both the secondl &ne fifth babies are
girls, the other babies are boys). The probabilftgach such case is
0.515-0.485 which should be multiplied by the number of the

possible cases. That numbeid$= 15 and

P, = 150.515"0.485 ~ 0.247.
Finally
P =R+ P, +P,~0.018 + 0.105 + 0.247 = 0.370.

Somewhat rarer than in four cases out of ten (pithability P~
0.37) the number of girls in such families will i@ more than 1/3 of
all the children (and not less than 2/3 of them laél boys).

5.2. The Bernoulli Formulas.In the previous sections we became
acquainted witliepetitions of trialswith a certain everA possibly
occurring in each. The wotdal has many various meanings. When
firing at a target, each shot is a trial; whenweking life of light
bulbs is ascertained, the test of each is a tmaén the structure of
many newborn babies is studied with respect toweight or height,
the examination of each is a trial. In generalwileunderstand a trial
as a realization of some conditions under whictudisd event can
happen.

Consider now one of the main patterns of probatifieory which
has many applications in various branches of seiand is very
important for that mathematical theory itself. Thattern consists in a
sequence of mutually independent trials, i. e.hghat the probability
of one or another result in any of them does npedd on the results
of previous or future trials. In addition, accomglito this pattern a
certain even# can occur or ndf?] in each trial with probabilitp
independent from the number of the trial. The pattame to be
called after Jakob Bernoulli, d&a most] eminent Swiss mathematician
of the end of the 7century.

We have already considered the Bernoulli patteiwuinexamples;
suffice it to recall those of the previous sectidow, however, we are
studying the following general problem whose paitic cases were
considered in all the examples of this chapter.

Problem Under some conditions the probability that eveotcurs
in each trial ig. Required is the probability that mmutually
independent trials it will appe&itimes and failif — K times.

The event whose probability is sought can be bral@mn into a
series of events. For obtaining one such eventugétao select
arbitrarily somek trials and assume that that evAnhdeed took place
in each of those trials and failed in the othrer () trials. Each such
event therefore requires the occurrence définite results, ok
occurrences anah (— K failures of the ever.

By the multiplication rule the probability of easbch event is
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P —p)"™

and the number of them is equal@y, to the number af elements
takenk at a time. Apply the addition rule and the knowmiula

« _ n(n=1)...(n- k+1)
G = k!

for determining the probability sought. It will be

n(n-1)...(n- k+ 1)
k!

Pu(K) = P )™~ (5.3)

It is often expedient to expre€ in a somewnhat different way.
Multiply its numerator and nominator by

(h=Rn-k-1)...21

Then
ck=__"
n kl(n k)l

where by definition 0! = 1. We have now

P9 = CP - P =t B DT (64)

Formulas (5.3) and (5.4) are usually named aften@sli*’. For
large values ofl andk the determination of &) is difficult since the
factorialsn!, k!, and @ — R! are very large and awkwardly calculable
numbers. They are therefore determined with thebgpecial tables
of factorials and some approximation formulas.

Example The probability that the expenditure of wateainertain
factory will be normal (will not exceed a definitelume) is 3/4.
Required is the probability that the expenditurt rgimain normal
during the next 1, 2, ..., 5, 6 days.

Denote by RK) the probability that during out of the 6 days the
expenditure will be normal and calculate it by foten(5.4) taking =
3/4:

Ps(6) = (3/4f; Ps(5) = 6(3/4§-1/4; Ry(4) = C (3/4)"(1/4Y;
Ps(3) = C2 (3/4)*(1/4)?; Ps(2) = CZ (3/4Y-(L/4)";
Ps(1) = 6(3/4)(1/4Y.

Finally, Rs(0) = (1/4f is the probability that the expenditure will be
excessive all the six days. The denominator c§ellen fractions is®4
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= 4096 which we will certainly bear in mind whendlly calculating
them. The result is

Ps(6) ~ 0.18, R(5) ~ 0.36, R(4) ~ 0.30, R(3) ~ 0.13,
Ps(2) = 0.03, R(1) = Ps(0) = 0.

The most probable excessive expenditure takes glaeg one or
two days in six whereas the probability of suchemditure during five
or six days [R(1) or RB(0)] is practically zero.

5.3. The Most Probable Number of the Occurrences @n Event.
The previous example shows that the probabilityg nbrmal
expenditure of water during exackydays increases with) takes its
maximal value and begins to decrease which isduest on a
diagramt?®. A still clearer picture is provided by a diagrahowing the
change of Rk) with k whenn becomes large.

It is sometimes necessary to knthve most probablaumber of the
occurrences of an event, to know the valuk fofr which R(k) is
maximal (certainly with givep andn). In all cases the Bernoulli
formulas allow us to solve simply this problem whis what we now
describe.

We begin by calculatingfk + 1)/P,(k). By formula (5.4)

— n! k+ n—k-
Pa(k +1) = m P —p)t (5.5)

and formulas (5.3) and (5.5) provide

P.k+D)_ nlk(n-R!' g2-p"™" _nmk p

PKk) ni(k+D(n-k-)!'g@a- p"* Kk11- p

The probability Rk + 1) will be higher, equal or lower thap(l®)
depending on which of the three expressions

Nk P .1 -1and<1 (5.6)
k+11-p

takes place. If, for example, we wish to know th&ies ofk which
satisfy the first inequality, we arrive at

np-(1-p >k, k<np—(1-p).

And, until the increasing becomes equal to that difference, we will
have R(k + 1) > Ry(k). Probability R(k) will heighten with the
increase ok. Thus, forp = 1/2 anch = 15,np— (1 —p) = 7 and, until
k<7, R(k + 1) > R(k). Just the same, by issuing from the two other
relations (5.6) we establish that

Pu(k + 1) = B(K) if k =np— (1 —p) and
Pa(k + 1) < B(K) if k>np— (1 —p).
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As soon as an increasikgversteps the boundanp — (1 —p), the
probability R(k) will begin to decrease until reaching(i®). This
conclusion first of all confirms that the behaviafithe magnitude
P(K) with an increasing as manifested in the example above is a
general law which takes place in all cases (at &) increases, then
decreases if only is not too near to 0 or 1).

In addition, this conclusion allows us to solve igdiately our
problem, the determination of the most probableealfk (which we
denote byko). For this value Rko + 1) < Py(ko) andko > np — (1 —p).
On the other hand,fko — 1) < Py(ko) so that, similar to the above,

ko—1<np—(1-p)orkg<np—(1-p)+1=np+np
The most probable valug of k thus ought to satisfy the inequalities
np—(1—p)<ko<np+p. (5.7)

A simple subtraction shows that the length of titerival
[np— (1 —p), np + p in which thatky should be contained is unity.
Therefore, if one end of that interval [for exampip— (1 —p)] is not
an integer, that interval will without fail includme and only one
integer and will be determined uniquely. We ought to consides t
case normal: singe< 1 andnp— (1 —p) is only an integer in
exceptional instances in which inequalities (5f0vjple two values of
ko, np— (1 —p) andnp + pdiffering from each other by a unity. These
values will indeed be most probable. Their probtdd coincide and
are higher than the probabilities of all other eslwfk.

Here is an example of such an exceptional casen £et5,p = 1/2,
thennp— (1 —p) = 7,np + p =8. The most probable values of the
numberk of the arrival of the studied event are 7 andi&ii
probabilities coincide and are approximately equaf6.

Example 1Observations of many years in a certain region
established that the probability of rain on 1 Jal¢/17. Required is
the most probable number of that event during the B0 years.

Here

n=50,p=4/17,np— (1 —p) = 504/17 — 3/17 = 11.

This is an integer, so are dealing with an excepiioaség. The most,
and equally probable numbers of rainy days willLlheand 12.

Example 2Particles of a certain type are observed in aichy
experiment. Under the same conditions 60 partmbgear in the mean
during a definite time interval and each with prioltity 0.7 has
velocities exceeding,. Under other conditions during the same time
interval only 50 particles were observed in the mieat the
probability of their velocities exceedingwas 0.8. Under which
conditions was the most probable numberapid particles?

First conditionsn=60,p=0.7,np— (1 —p) =41.7,k=42

Second conditions, respectively: 50, 0.8, 39.84Md



The most probable number @pid particles is somewhat larger in
the first case.

Numbern is often very large (in artillery firing, in magsoduction
of articles etc) andp will be very large as well (if only probabilify
is not exceedingly low). The second terms, (@) andp, of
magnitudesp— (1 —p) andnp + p, the end points of the interval
within which the most probable number of the ocences of the
studied event is situated, are less than unityh Batse magnitudes,
and consequently the most probable number of thertences of the
studied event as well, are nean

Thus, if the probability of connecting two peopletblephone less
than in 15secis 0.74, we may assume 10004 as the most probable
number of such connections out of a thousand adliging at a
telephone exchange. This conclusion can be forredilatore precisely:

Let k, be the most probable number of the occurrencéseof
studied event im mutually independent trials. Thégn is the relative
frequency of those occurrences. Inequalities (Br@Yyide:

p— (L —-p)/n<k/n<p+p/n

Suppose that with an invariable probability of deeurrence of that
event in a single trial we ever more increase timaber of trials (the
most probable numbdg of those occurrences will also increase). The
fractions (1 -p)/n andp/nin the inequalities above will become ever
smaller and they can therefore, whreis large, be neglected and both
p— (1 —p)/n andp + p/n (and consequentky/n) will then equab.

With a large number of mutually independent triftks most
probable relative frequency of the studied evefmt Becomes
practically equal to its probability in a separaieal .

If for a certain measurement the probability of mglkan error
contained betweetm andp is 0.84, then, given a large number of
measurements, we may expect that most probablyant84% of
cases the error will indeed be contained betweandp. This
certainty does not mean that, with a large numbebservations, the
probability of having exactly 84% of such errordlwe high. On the
contrary, thismaximal probabilityitself will then be very low. Above,
just before Example 1, even for= 15 the maximal probability was
only 0.196.

That probability is only maximal in the relativense: the
probability of having 84% errors of measurementaimed between
andp is higher than that of having 83 or 86% of sualorst On the
other hand, it is easy to understand that in chimng series of
independent measurements the probability of oremother number of
errors of a given magnitude cannot be really irsémg. For example,
with 200 measurements it is hardly expedient toudate the
probability that exactly 137 of them are measurét & given
precision. It is practically indifferent whetheatmumber is 137, 136
or 138 or even 140. On the contrary, it is undodilgtenteresting for
practical reasons to know the probability thatrnbenber of
measurements with errors contained within givemdauies is larger
than 100, or between 100 and 125, or less thacs0 e
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How to express such probabilities? Suppose we wisletermine
the probability that the number of measurementh wigiven
precisionk is contained between 100 and 120 (and includirty.12
More specifically, we wish to determine the proliapof inequalities

100 <k< 120

so thatk should be equal to one of the numbers 101, 102119, 120.
By the addition rule that probability is

P(100 <k < 120) = Bog(101) + Rog(102) + ... + Boo(120).

Given such large numbers, direct calculation of@@arate
probabilities of the kind k) according to formula (5.4) will be very
difficult and is never attempted. There exist caneet tables and
approximation formulas whose compilation/derivatiobased on
complicated methods of mathematical analysis whietwill not
discuss. However, simple reasoning about probggsildf the kind
P(100 <k < 120) can provide information which leads to exliags
solutions of problems at hand. We describe thigctiopthe next
chapter.
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Chapter 6. The Bernoulli Theorem

6.1. Its Content.A diagram in § 5.3 [not reproduced here] shows
probabilities Ps(k) as a function ok. It is seen that for intervals of the
same length, 2 k < 5 and K k < 10, the sums of the corresponding
probabilities essentially differ. In general, as kmew, the
probabilities R(K) increase witlk, pass their maximal values and
decrease. It is therefore clear that out of twdhsotervals of the same
length the sum of the probabilities will be higli@rthe interval
situated nearer to the most probable vé&iue

Here, however, much more can be stated nRdals the numbek
has ( + 1) possible values, 0k < n. Select the interval only
containing a small part (a hundredth, say) of athsvalues with
midpointko. It turns out that for very large valuesrothat interval
corresponds to an overwhelming probability wheadbthe other
values ofk taken together have an insignificantly low proligbi
Although the length of the selected interval iflitrj as compared
with n [recall: 0< k < n], the sum of the corresponding probabilities
will be considerably higher than the probabilityresponding to all
the other values &

All this practically means that

With a series of a large number n of mutually iretegent trials, we
may expect with probability near to unity that thember of the
occurrences of event A is very near to its mosbabte value and only
differs from it by a negligible part of n

This proposition known as the Bernoulli theofand discovered
at the end of the i’?century is one of the most important laws of
probability theory. Until the mid-T®century all its proofs required
complicated mathematical means, but then the gressian
mathematician P. L. Chebyshev justified it very@iyrand briefly.

We provide now his remarkable proof.

6.2. Its Proof.We already know that in case of a large nunmbefr
trials the most probable numberof the occurrences of evelstbarely
differs fromnp where, as alwayg, is the probability of the occurrence
of Ain a separate trial. It is therefore sufficienptove that in case of
a large number of mutually independent trials theberk of the
occurrences oA will with an overwhelming probability very little
differ from np, differ not more than by an arbitrarily small paft
numbem (for example, not more than by Or0dr 0.00h or, in
general, not more than lag with £ being an arbitrarily small definite
number). In other words, we ought to prove thatdse of a
sufficiently largen the probability

P(k - ngj >&n) 6.1)

will become arbitrarily low.

For ensuring this fact note that by the additidie the probability
(6.1) equals the sum of probabilitieg} for all those values of
which are contained in either direction more thampart fromnp.
Since the sum of all probabilities of a completstegn of events is
unity, the Bernoulli theorem means that the ovefmirgg part almost
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equal to unity of that sum corresponds to the v en, en] with
midpointnp, and only its insignificant part is left for thegions
beyond that interval. And so,

P(k—ng>en) = z P, k). (6.2)

|k —ngd > en

We turn now to Chebyshev’s reasoning. In each t#frthe sum
written just above

K — _ 2
ﬂ>1, and therefor{wj >
en en

so that the sum will only increase if eagl(idPis multiplied by the left
side of the latter inequality. Therefore

P(k— ng >en) <
| % (k"”pj Pn(k)=821n2 3 (k-np?PR (k)

en k —ng >en

The appeared sum will increase still more if we aed terms so
thatk will change not only from O top—en and fromnp + en to n, but
over the whole interval [@). Therefore, all the more

P(k—-ng>en) <

1 )
e 2 (KR (K. (6.3)

This sum favourably differs from all the previousrss in that it can
by precisely calculated. The Chebyshev method ihdeesists in
replacing the sum (6.2) which is difficult to cdlate by the sum (6.3).

Now the calculation itself. No matter how long jipears, the
difficulties will only be technical and everyonedwing algebra will
overcome them. At first we easily determine

n

> (k=P (=Y. KR (- 2nd" 18 (K B> B (K(6)

k=0

The last of the three terms on the right side éssihm of the
probabilities of a complete system of events angabsqunity. In each
of the other two terms the summands correspongdikgtO are zero,
and we may begin the summing fréee 1.

1. Express RKk) according to formula (5.4):

" & kn! gk
;kpn(k)—;—k!(n_k)!pk(l py .

Sincen! = n(n— 1)! andk! = k(k — 1)!, we get
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(n-1)! A D) - (k1)
ZkP k)= an(k DD - (k-D)] @ pf :

Setl = k — 1 withl changing from O te — 1 rather than from 1 to
ask did:

_ (n-1)! ) o
ZkP (k)= pZ“[( o PO P = R ()

On the right side the sum of the probabilities ebanplete system
of events (of all possible occurrences of eveint (n — 1) trials) is
obviously unity. Thus,

> kP, (k)= np. (6.5)
k=1

2. For calculating the first term of (6.4) we fidsrive
Zk(k—l)Pn k).

k=1

The summand correspondingke 1 is zero and we begin wikhe 2.
Note thatn! = n(n— 1) — 2)! andk! = k(k — 1)k — 2)!. We easily
determine, after setting similar to the above: k— 2:

S _& k(=D
;k(k DR, k) ;—k![(n—k)]! p(1-p)

_ (n-2)! k=21 _ (-2 (k-2) _
M e T T LA

n(n-1) p* Z(”—z)m, p (- p)T "=

n(n- 1)p22 L(m) = n(n—1)y% (B.6

The last equality appeared since the sum of timest&};_x(m) is the
sum of the probabilities of some complete systemvehts, of all the
possible numbers of the occurrences of eent(n — 2) trials.

Finally, formulas (6.5) and (6.6) lead to

Zn_:kan (k)=i k(k-1)P (k)FZi kP (kE n’p® +np(l —p). (6.7)
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And now we substitute the results (6.5) and (6)%) relation (6.4),
then insert the appearing extremely simple expoassito inequality
(6.3):

> (k=np?P, (k)= n%p? +np(1 —p) — pnp+ np? = np(1 —p),
k=0

(k- >en) < TP - POD) (6:8)
en en

This new inequality provides everything we neededeed, we
may select an arbitrarily smallbut then leave it fixed. On the other
hand, according to the meaning of our statemeathtimber of trials
can be as large as we wish so that the fragtfbr-p)/c’n becomes
arbitrarily small: with an increasingits denominator can become as
large as desired whereas its numerator does nogeha

Letp=0.75, then (1 ) = 0.25,p(1 —p) = 0.1875 < 0.2. Choose
¢ = 0.01, then inequality (6.8) provides

3 0.2 2000
P(k=>nj> )< = -
4 100 0.000n n

Forn = 200,000, Pk]— 150,000|) < 0.01. This actually means that,
for example, having a settled process ensuringnb@t of the
manufactured articles are in the mean of soromf.48,000 to
152,000 of them out of 200,000 will with probalyil@.99 (that is,
almost certainly) posses this property.

Two remarks are necessary héfiest, in practice, more precise
estimates are applied although their justificatomuch more
complicated.

Secondour rough estimate provided by inequality (6.8¢dmes
essentially more precise whpris very low, or, on the contrary, near
to unity. Thus, in the example just above suppbaethe probability
of an article being of sort | is

p=0.95, then (1 ) = 0.05,p(1 —p) < 0.05.
With € = 0.005 anah = 200,000,

p(- p) _ 0.0511000,000

g 0.01,
&n  25[200,000

just as previously. But hesm = 1000 rather than 2000 and, simge=
190,000, the number of articles having that propeiti be actually
contained between 189,000 and 191,000.

With p = 0.95 the inequality (6.8) thus practically gudess that
the interval for the expected number of articlegiingthe stated
property is twice shorter than for the case in Wigie 0.75:

P(k — 190,000| > 1000) < 0.01.
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Problem A quarter of workers in a certain branch of indgsave
secondary school education. Required is the mosigirie number of
such workers in a random sample of 200,000 andtimation of the
probability that their actual number in the sangéeiates from the
most probable number not more than by 1.6%.

We issue from the fact that the probability of mavthat education
is 1/4 for each worker in the sample; this is irtlee meaning of a
random sample. Then,= 200,000p = 1/4,k; = np=50,000p(1 —p)
= 3/16. We ought to calculate the probability that

lk — ng < 0.01ip = 800

wherek is the sought number of workers. Sekesb thatn = 800,
theng = 800h = 0.004. Formula (6.8) leads to

3

P(k—50,000| > 800) =0.0
16[D.000016&]1 200,000

P(k — 50,000k 800) > 0.94.

The most probable number of such workers is 50e0@Dthe
probability sought is higher than 0.94. Actuallyisimuch higher.

In concluding this chapter, we note that inequdity) can be
written as

P(in - >¢) < 2L P).

£°n

The fractionk/n is the relative frequency of the occurrence oinéve
Ain ntrials. It follows that for any arbitrarily smdut fixede the
probability that the relative frequency deviatesiirthe probability of
eventA more than by becomes arbitrarily low asincreases. This is
similar to the stability of the relative frequersidiscussed at the
beginning of Chapter 1.
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Part 2

Random Variables
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Chapter 7. Random Variable and the Law of Distribuion

7.1 Notion of Random Variable.Above, we have many times
encountered magnitudes whose values were not eorsiachanged
due to random influences. Thus, the number of looy®f a hundred
newborns will not be the same for all hundreds. [Ehgth of fibres of
a certain sort of cotton considerably varies ndy avith the region of
growth but even if taken from the same bush and bol

A few more exampled) When firing from the same gun at the
same target and setting the same distgaroe direction] the shells
nevertheless scatter. The distance between thamgithe point in
which the shell falls varies, takes differing nuioalvalues depending
on unaccountable circumstances.

2) The velocity of a gas molecule does not remairstaon, it
changes owing to the collisions of that moleculthwither molecules.
Each molecule can collide with any other moleculé the variation
of its velocity is purely random.

3) The yearly number of meteorites hitting the edrithnot constant
but experiences considerable variations dependinganyrandom
circumstances.

4) The weight of grains of wheat grown on a certaot g not
definite but changes from grain to grain. It is mapible to allow for
the influence o#ll the factors (quality of the plot, conditions of
sunlight, availability of water etc) determiningetgrowth of the grains
and their weightandomlychanges.

In spite of the heterogeneity of those examplesfathem illustrate
the same picture. In each of them we have a matggomehow
characterizing the result of an operation (the tiogrof the meteorites,
the measuring of the length of the fibres). Howewertry to uniform
the conditions of their realization, each of thosgnitudes can take
various values depending on random differencesaretuding
circumstances of these operations.

In the theory of probability each such magnitudeaked arandom
variable The examples above are already sufficient forizaing us
in that their study is so important for applying theory to most
various branches of knowledge and practice.

To know a random variable certainly does not meambw its
numerical valu#. Indeed, if, for example, a condenser had been
working 5324 hours before perforation, the timét®tininterrupted
work has thus taken a definite value and ceased torandom
variable. So what should we know about such a bhitr obtaining
all the possible information about it as aboutadom variabl@

First of all, obviously, we ought to know all itegsible numerical
values. Thus, suppose that, as found out by tbstsyorking life of
electronic tubes ranges from 2306 (minimal valoe)2,108 hours
(maximal value). That magnitude can therefore takevalue between
those boundaries. In our third example above, #aly number of
meteorites can be any non-negative integer 0, 1, 2,

However, the knowledge only of the list of possiédues of a
random variable is not yet sufficient for practigalecessary
estimations. Thus, if, in our second example, wesitter a gas under
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two differing temperatures, the possible numenedilies of the
velocity of its molecules will be the same and $beof these values
will not provide any possibility of a comparativstienation of the
temperature. At the same time, however, a differe@iche
temperatures indicates a very considerable diftarémthe state of the
gas.

If we wish to estimate the temperature of a giveroant of gas and
only know the set of the possible values of theeigy of its
molecules, we will naturally ask how often one pother velocity is
observed. In other words, we obviously try to fowd theprobabilities
of the different possible values of the studieddian variable.

7.2. Notion of the Law of Distribution. We begin with a quite
simple example, with firing at a target. When higtia circle in its
middle (region 1), the shot gets 3 points; forihitit elsewhere
(region I1), 2 points, and for missing (region JI1) point>,

Consider the number of these points as a randoiabley its
possible values are 1, 2, and 3. Denote their fitithes by p;, p, and
ps, so thafps, for example, corresponds to hitting region I. The
possible values of the random variable under cenatn are the
same for all shots but their probabilities can eSaly differ. Such
differences obviously determine the differencesveen the skills of
the shots. Thus, a very good shot possibly hasapititiesps = 0.8,p2
= 0.2 andp; = 0.0; for an average and a quite poor shot,®%3and
0.2 and 0.1, 0.3, 0.6 respectively.

If a shot fires 12 times, the possible numbersitspdints occurring
in eachregion are 0, 1, 2, ..., 11, 12. By itséli§ information does
not yet allow us to judge his skill. On the comtare can only form
an exhausting impression about it when findingiowddition the
probabilities of the mentioned numbers.

Such is the invariable situation: knowing the piulites of the
various possible values of a random variable wethiis know how
often to expect the occurrence of its more orfagsurable values.
This is apparently sufficient for judging the effincy or quality of the
pertinent operation. Practice shows that the kndgdeof the
probabilities of all the possible values of a stadiandom variable is
indeed sufficient for solving any problem concerméth estimating
its capacity as an indicator of the quality of #ppropriate operatiéh

We conclude that for completely characterizingralan variable
as such it is necessary and sufficient to knowigtef all its possible
values and the probabilities of each of them.

A random variable is thus expediently describea bgble with two
rows, values and probabilities. For the best séet gxample above),
the number of points considered as a random varizdn be
represented by a table

values: 1, 2, 3; probabilities: 0, 0.2, 0.8. (h

In general, for a random variable with possibleieak; and
probabilitiesp; the table will be

valuesxy, X, ..., Xn; probabilities:ps, pz, ..., Pn.



Such a table is callatie law of distributiorof the appropriate
random variable. The knowledge of this law allowgasolve all
problems connected with the variable at hand.

Problem The number of points gained by a shot after dtesrgot
has (1) as its law of distribution. Another shosteadifferent law of
distribution:

values: 1, 2, 3; probabilities: 0.2, 0.5, 0.3. (1

Required is the law of distribution of the sum ofris achieved
after a double shot. Such sums are clearly randmmahles, and we
are asked to compile a table for our example. Véelshtherefore
consider all possible results of a combined fifigur shots. In the
following table we entered the probabilities of leaesult calculated
by the multiplication rule for independent everitee numbers of
points gained by the shots are denoted, respegtivgE andn.

[The authors’ table lists the 9 possible resulthhe
corresponding, n, & +n and the probability of that sum.]

The table shows that the sm n takes values 3, 4, 5 and 6. Value
2 is impossible since its probability is z&tdNow, value 3 is achieved
in two ways and by the addition rule its probabilg O + 0.04. The
arrival of one of the following results [...] is nesary and sufficient
foré+n=4.[...]

We have thus compiled the table of the [law oftritisition for
& +n which completely solves the formulated problem:

values: 3, 4, 5, 6; probabilities: 0.04, 0.26, 0@a&4. (m

The sum of the probabilities is unity. Each lawdidtribution ought
to possess this property since we deal here wétlstim of the
probabilities of all possible values of a randomalale; that is, with
the sum of the probabilities of some complete grofugvents. It is
convenient to apply this property for checking taéculations made.
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Chapter 8. The Mean Value

8.1. Determination of the Mean Value of a Random Maable.
Those two shots whom we have discussed just nawachieve 3, 4, 5
or 6 points depending on random circumstancesetgective
probabilities were shown in table (l1l). Now, sugpowve ask: how
many points are achieved by two shots after fiobnge each? We are
unable to answer inasmuch as different attemptstiediffering
results. However, for estimating the skill of owirnpwe will certainly
look at themeanresult over a volley of firing rather than at one
attempt whose result can be randaro how many points in the
mean are achieved after one attempt? Such a quéstpite
reasonable and can be definitely answered.

We reason in the following way. If the pair of shiite a hundred
times, the table of their law of distribution wélhow that about 4 times
they achieve 3 points; about 26, 46 and 24 timeg #thieve 4, 5 and
6 points respectively. The sum of the points is

34 + 426 + 546 + 624 = 490.

Divide this number by 100 and get 4.9 points inrtiesan for an
attempt, and this is our answer.

Instead of this method of calculation we could hdiéded each
term by 100 even before summing them up. The sishplay of doing
it is by dividing by 100 each second multipliereafch term and thus to
return to the probabilities entered in table (IMhe mean number of
points achieved in each attempt made by the pahofs will then be

3:0.04 + 40.26 + 50.46 + 60.24 = 4.9.

The terms here are obtained by multiplying eachsiptes value of
our random variable by its probability. In generlppose that some
random variable is defined by the table

valuesxy, X, ..., X; probabilitiespy, p, ..., P«

To recall: ifp; is the probability of the valug of a random variable
&, then, aften operationsy; will be observed about; times, and
ny/n = p; so thatn; = npy. Just the same;, will appear aboum, times,
N2 =nNpy, ..., andx will appear abouty = np, times. And so, a series
of n operations will contain in the mean

N = np; such operations in which=x;,

Ny = np; such operations in which=x, ...,

Nk = npx such operations in which= x.

The sum of the values éfin all n operations will be about

XiNg + XoMp + ... + X = N(XgP1+ XoP2 + ... +XP)

and the mean valué of & corresponding to a single operation will be
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& =XaPr+ X2t ...+ XPk.

We have thus arrived at the following importanef(l

For obtaining the mean value of a random variatdeteof its
possible values should be multiplied by the comesiing probability
and the calculated products summed up

Of what benefit is the knowledge of the mean valiia random
variable? To be more convincing, we begin by offgra few
examples.

Example 1Return once more to the two shots. The pointg the
achieve are random variables whose laws of digtabwe have
derived in 8§ 7.2. An attentive look at those law/sufficient for
deciding that the first shot is more skilful. Indeéis probability of
the best result (3 points) is considerably highkergas the
probabilities of the other (of the worst) results higher for the
second. Such a comparison does not however satisfince it is
purely qualitative. Unlike the temperature, sayjchtdirectly
estimates the heat of a physical body, here tlseyetino measure, no
such number which would have directly estimatedstikk of those
shots. And therefore it can always happen thatextdconsideration
will not provide any answer or that the answer wélarguable. Thus,
instead of tables (1) and (II) having tables

values: 1, 2, 3; probabilities: 0.4, 0.1, 0.5 (]
values: 1, 2, 3; probabilities: 0.1, 0.6, 0.3 (]l

we would have been hard put to decide at a glaidehvghot is better
skilled. Indeed, the best result (3 points) is namabable for the first
shot, but so is the worst result (1 point). Ondbstrary, 2 shots are
more probable for the second shot.

And so, calculate now by the rule above the meanbeu of points
for both shots:

1.0.4+20.1+305=2.1;10.1+20.6 + 30.3 = 2.2.

In the mean, the second shot attained a bit maretthe first and it
certainly follows that the result of numerous fgiwill generally be
somewhat more favourable for the second shot. Wenow state for
sure that the second shot is better skilled. Themvalue of the
number of points provided a convenient measuredsily and
undoubtedly comparing the skills of the shots.

Example 2When assembling a device, the most precise aaiguntt
of its certain part can require 1, 2, 3, 4 or rapts depending on luck.
The number of attempt§, is a random variable with those possible
values. Suppose that their probabilities are ginehe table:

values: 1, 2, 3, 4, 5; probabilities: 0.07, 0.16500.21, 0.01.
If asked to supply as many parts as necessandfdegice&®, we

will be unable to apply this table for estimatihgt number since it
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only informs us that it varies from one case tothaen However, if we
determine the mean numbeérof attempts necessary for a device and

multiply it by 20, we will obviously arrive at su@n approximate
number. We have

£=10.07+ 20.16 + 30.55 + 40.21 + 50.01 = 2.93,
20& =58.6~59.

It is reasonable to have an additional small ressand prepare 60 — 65
parts.

In these examples, we needed some approximateagstior a
random variable. A glance at a table [of its lavdistribution] will not
provide such an estimate; it only informs us thatvariable can take
some values with some probabilities. However ntean valuef the
random variable calculated by that table is alrezapable of
furnishing such an estimate. It is indeed the véhag the random
variable will take in the mean in a more or lesgjlgeries of
operations. The mean value especially well charaetea random
variable when the operations are numerous or refenany times
over.

Problem 1 A series of trials is made with a constant praligp of
the occurrence of some evéfin each trial] and the results of
separate trials are independent from one anotleguiRed is the mean
frequency of the occurrence Afin n trials.

That frequency is a random variable with possilaeies 0, 1, 2, ...,
n, and the probability of some vallés, as we know (8 6.2),

P 0=y PO P

The mean value sought is therefore
> kP, (K)=np
k=0

as calculated in that section. We have also coedmurselves in that
for any largen the mosprobablenumber of these occurrences is close
to np.

In this case the most probable value of a randamalvia is near its
mean value, but we ought to beware of believingsbah closeness
takes place for any random variable: these valaade very far apart.
Thus, a random variable with the law of distribatio

values: 0, 5, 10; probabilities: 0.7, 0.1, 0.2

has 0 as its most probable value whereas its madae is 2.5.

Problem 2 Independent trials are made with probability & &e
occurrence of some evefdtin each of them. Not more than 4 trials are
carried out but, a second restriction, they oniytitme until the first
appearance k. Required is the mean number of those trials.
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The number of trials can be 1, 2, 3 or 4 and wehbt@gdetermine
their probabilities. In case of only one trial #nentA should occur at
once and the probability of this evenpis= 0.8. For the case of 2
trials it is necessary that the event only occtithk@second one after
failing at the first one. By the multiplication eufor independent
events

p2=(1-0.80.8 =0.16.
For the case of 3 trials similarly
ps = (1 —0.8§:0.8 = 0.032

and for the last case, the ev&mhould fail in the first three and either
occur or fail in the fourth:

ps = (1 —0.8f = 0.008.

The number of trials considered as a random varistdietermined
by its law of distribution

values: 1, 2, 3, 4; probabilities: 0.8, 0.16, 0,03P08.
The mean value of that number is
1.0.8 + 20.16 + 30.032 + 40.008 = 1.248.

Suppose that 100 such experiments should be camuiedVe may
then expect to carry out 1.2480~ 125 trials.

Such problems often occur in practice. For exampéetest the
strength of yarn. It is of top quality if it doestrtear even once under
a specified load during tests of not more than &pacimens of
standard length taken from the same skein or boll.

Problem 3 A side of a square plot as shown on an air supheyo
is measured with possible errot8, + 10, + 20, + 3tn having
probabilities 0.42, 0.16, 0.08, 0.05. Requiredhésmean area of the
plot as determined by these measurements.

The length of the side is a random variable with ¢d distribution

values: 320, 330, 340, 350, 360, 370, &80
probabilities: 0.05, 0.08, 0.16, 0.42, 0.16, 0@85. 0]

We can at once derive the mean value of that letgthin this case
it is not even necessary: the same errors in eiagttion are equally
probable and this symmetry leads to mean valuen830 more detail:
the mean value includes terms

3500.42;

(340 + 3609.16 = [(350 — 10) + (350 + 100}16 = 23500.16;
(330 + 37090.08 = 2350 0.08; (320 + 38@).05 = 23500.05
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and it therefore equals
350(0.42 + 20.16 + 20.08 + 20.05) = 350.

We may surmise that the mean value of the arelaegplot is 350=
122,500n7. This result would have been correct had the mehre of
the square of a random variable been equal togisars of its mean
value. However, this premise is false. In our exiamihe possible
values of the area of the square are

320, 33F, 34, 350, 36CF, 37, 38C.

Which is the true value? It depends on which ofsven cases
represented in table (I) will take place. The pioli@es of the seven
possible values are therefore the same as shotablm (1). It follows
that the law of distribution of the area is

values: as stated just above;
probabilities: 0.05, 0.08, 0.16, 0.42, 0.16, 0@85

The mean value of the area is

320%-0.05 + 336:0.08 + 3460.16 + 3560.42 +
36070.16 + 376-0.08 + 386:0.05.

Here also, symmetry, as it often occurs, simplifialeulation and it
is worthwhile to show how exactly this simplificatti is achieved. We
have

35(%0.42 + (346 + 36()-0.16 +
(3307 + 37()-0.08 + (326 + 380)-0.05.

Now,

34CF + 360 = (350 — 10§ + (350 + 103,
33(F + 370 = (350 —20) + (350 + 203,
320 + 38C = (350 — 303 + (350 + 303,

so that the sum above is

35(%[0.42 + 20.16 + 20.08 + 20.05] +
2-1070.16 + 220%0.08 + 23070.05 =
350° + 2(16 + 8 + 45) = 122,686n().

All this can be calculated mentalty]. The mean value of the area
of the square is somewhat (in this case, impeiggptiarger than the
square of the mean value of its side,85022,500 ). It is not
difficult to show that such is the general rulee mean value of a
square of any random variable is alw&&rger than the square of its
mean value
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Indeed, suppose we have a random vari&ltgh a perfectly
arbitrary law of distribution

valuesxy, X, ..., X; probabilitiespy, p, ..., P«

The law of distribution of its square will be

values: X2, X,..., X ; probabilities: the same as above.

Then

E=XPtX%ptat XR, EE=Xpt Xt f R
E2-(8)*=E%-2(€)*+(8)>

Since the sum of the probabilities is unity, thesehterms in the
right side of the last equality are

&2 =Z>¢n, 2(8)*=2(8)(&) = ZEZ:,K R =ZZ€>.< P,
@ =@ =2 .

Therefore

©-@= XX 28+ @19 = L (x- D p

All the terms of the last sum are non-negativeretoee

£2-(£)?20, QED.
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Chapter 9. Mean Values of Sums and Products

9.1. A Theorem on the Mean Value of Sum&/ery often it is
necessary to calculate the mean value of a sumwm(and not rarely
of a larger number of) random variables with knangan values.
Suppose for example that two factories manufatcheeame articles
and that their daily produce is, in the mean, 2@ B0 of them
respectively. Can we now establish the mean vdltieeir combined
daily produce? Or is the data insufficient and wghd to know in
addition something else (for example, the pertitans of
distribution)?

It is very important that the knowledge of the mgalues of the
summands is always sufficient for calculating theamvalue of their
sum. And that the latter is expressed throughdah@ér in the easiest
possible waythe mean value of a sum always equals the suneof th
mean values of the summandhus, if§ andn are perfectly arbitrary
random variables,

Em=E+7.

In the example above =120, =180, &+n =& +7 = 300.
To prove this rule in the general case, suppoddtlibdaws of
distribution of those random variables are

valuesxy, X, ..., X probabilitiespy, p, ..., Py ()
valuesy, Yo, ..., ¥i; probabilities:qs, o, ..., Q. (1))

The possible values @f+ n are all the sums of the kind xf+ y;,
1<i<k, 1<j<I. The probability of that sunm;, is unknown. It is the
probability of a joint event = x; andn =y;. Had these two events been
independent, then, obviously, by the multiplicatrate, we would
have had

Pij = Pid;, (9.1)

but we will not at all assume that condition.

And so, equality (9.1) will not generally take ptaand we ought to
take into account that the knowledge of the lawdistribution (I) and
(1) does not in general allow us to conclude amghabout the
probability p;j. According to the general rule, the mean valuthef
sumé + 1 equals the sum of the products of all its possiblees by
their probabilities:

k |

E=22 (6 +Y) R =X M2 pI+2 MY (9.2)

i=1 j=1 i= i=t

Consider attentively the fist sum pf. It is the sum of the
probabilities of all possible everis= x; andn =y; with i being the
same in all the terms of that sum anmenging over all of its possible
values from 1 td inclusive. Since the events=y; with differingj are
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obviously incompatible, that sum is by the additiate the probability
of oneout of thel eventsg = x andn =y; wherej =1 or 2 or ... ot.

However, to say that one such event had occurrédetisame as
saying tha€ = x;.. Indeed, if one such event did occur, then, cjednle
eventé =x had also appeared. Inversely, if evértx had occurred,
than, since) ought to take one of its valugs y,, ..., yi, one of the
eventst =x andn =y; (j=1or 2 or ... of) also happenéd

The sum ofy; with a constant, being the probability of the
occurrence of one of the events just mentionesiniply equal to the
probability of¢ = x;; that is, to that very sum, . Just the same, we
certainly convince ourselves in that the other sidim; (with constant
j) equalsg;. Setting these two expressions into the equai)( we
find that

&M= xp+Y yq=E+7, QED.
i=1 =1

We have proved this theorem for two summands,thsit i
immediately extended to three or more summandg sinc

Emrg=En+g =E+1+T efc.

Example In a certain factory a manufactured article iscted from
each of then lathes. Determine the mean number of substandard
articles if the probabilities of their productioreaespectivelyy,

P2, ..., Pn- The number of rejects per one article is a randariable

with only two possible values, 1 and 0 whose prdhegs arep; and

(1 —p1), p2 and (1 ) etc. The mean number of substandard articles
selected from the first lathe is

1p; + 0(1 —p1) = p1.

The same magnitudes for the other lathepare., p, and the mean
value of the total number of substandard articdgs # p2 + ... +pn.

In particular, if these probabilities coincide, tth@ean number will be
pn.

We have already determined this result (6.5), bigtinteresting to
compare the awkward previous calculations with $imsplest
reasoning which did not require any calculationsrédver, in
addition to simplicity, we have gained generalRyeviously, we
assumed that the results of the separate trials mwetually
independenand our conclusion was only valid under this ctadi
Now, however, we manage without it since the additule for mean
values takes place for any random variables withoytrestrictions.
And if p is constant, be there any dependence betweeatttesland
the articles, the mean number of the rejects wilhgis remain without
changenp.

9.2. A Theorem on the Mean Value of ProductsThe problem
considered in § 9.1 often has to be also studiethioproducts of
random variables. Suppose thatndn have, as previously, laws of
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distribution (I) and (I1). The produéh is a random variable with
possible valuegy;, 1<i <kand 1<j <I, and probabilitieg;. The
problem consists now in formulating a rule allowirgto express the
mean valuetn of &n through the mean values déndn. A general
solution of this problem is however impossible sitite mean value
sought is not uniquely determined by the mean afuandy :

various values otn are possible for the same valuesiaindq and a
general formula expressing the former through étied is impossible.
Nevertheless, there exists an important exceptiol) moreover, the
derived connection is then extremely simple. Wé edll the random
variablest andn independenif for anyi andj the eventg§ = x and
n =Y; are independent, if some definite value takenr®y af the
random variables does not influence the law ofithistion of the other
variable.
And so, if§ andn are independent in the defined sense, then, by the
multiplication rule for independent events,

Pij :piqj',i =1, 2, ,k,j =1, 2, ,|
Therefore

| k |

=X XY R T XY PAT XA Y G =60

i=1 j=1 i=1j=1 i

The mean value of the produdgt of independent random variables
& andn equals the product of the mean values of its factd€ andn.

Just like it was in the previous case of addittbis rule derived for
the product of two random variables immediatelyeaxs to the
product of any number of factors. It is only neeegdor those factors
to be mutually independent so that the knowledgae@ihite values of
some of those variables does not influence the tdwisstribution of
the other variables.

In case of dependent variableandn the mean value of their
productén can be unequal to the product of the mean valbiégndn.
Suppose for example that the law of distributiod &

values: — 1, 1; probabilities: 0.5, 0.5

and that the distribution of another random vasap# & is the same;
the mean values of both these variables are zatdnbe & always

equals 1, thereforén = 1. If, howevery = —¢, its distribution
remains as it was previously, but the prodincalways equals — 1 and

&n =-1.

Example An electric current whose strendtbdepends on random
circumstances flows along a conductor whose resisR also
depends on randomness. The mean value of thearasisis 2®hms
and the mean value of the current’s strengthdm@ Required is the
mean value of the drop of the voltage



According to the Ohm lavE equals the produ®l. We haveR =

25,1 = 6. Assuming that these magnitudes are indepénderfind
that

E = RI = 256 = 150 volts.
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Chapter 10. Scatter and Mean Deviations

10.1. The Mean Value Is Insufficient for Characterzing a
Random Variable. Time and time again we have seen that the mean
value of a random variable provides a rough guidénagining it
which is sufficient in many practical instancesughfor comparing
the skill of two competing shots suffice it to kndwe mean values of
their gained points. For comparing the efficienEyweo differing
systems of counting cosmic particles it is quitdisient to know the
number of those possibly skipped by each systemiretach such
case we considerably benefit by describing a randaniable by a
single number, by its mean value, rather than defiit by a
complicated law of distribution. It appears thertasugh we are
dealing with a positively known magnitude with arquetely definite
value.

Much oftener, however, we encounter a situatiowhich the mean
value of a random variable does not determine dstrpractically
important features. A more detailed acquaintandk itg law of
distribution is then required.

A typical case in point is the study of the digtitibn of the errors of
measurement. Létbe the magnitude of an error, of a deviation ef th
obtained value of the measured magnitude from @amvalue. If
systematic errors are absent, the mean value @frtbg, &, is zero.
How then are the errors scattered? How often widre of some
magnitude occur? Only knowing thgt= 0, we have no answer to any
of these questions. Often it is only known thahhoositive and
negative errors are possible and that their prditiabiapproximately
coincide. We do not know, however, the most impurteature: are
most results of measurement located near the aiuwe of the
measured magnitud&sso that we may reckon that each result is
highly reliable, or are they mostly scattered daeege intervals in each
direction from that value. Both possibilities areeuntered in practice.

Two observers measuring a certain magnitude wihsime mean
error & can produce results of differing degrees of prenist can
occur that the measurements of one of them sysiatiatscatter
more extensively which means that the absoluteegatid the errors of
his measurements can be larger in the mean andithasults will
deviate farther from the measured magnitude thamesbults of the
other observer.

Another example. Two sorts of wheat are testedifop capacity.
Depending on random circumstances (quantity ofa#jrdistribution
of fertilizers, solar radiation etc) the yield @gjuare meter is subject
to considerable fluctuations and is a random véigiuppose that
under the same conditions the mean yield is theesarboth cases,
240g/nt. Can we judge the quality of the sorts only by thiean yield?
Apparently not since most practically useful isttbart whose vyield is
less exposed to random influences of meteorologicdlother factors,
whose yield scatters less. And so, the possibétiufation of the yield
is not less important than its mean value.
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10.2. Various Methods of Measuring the Scatter of Random
Variable. The examples above as well[psssible] similar
illustrations convincingly indicate that in manysea the knowledge of
the mean values of random variables is just insefiit for describing
their most interesting features. Those featuregaireninknown, and
we ought therefore to have their entire tablesistfidution before our
eyes which is almost always complicated and incoierg. We can
also try to describe the random variables by onvorsimilar
additional numbers so that the joined small s¢tvad or three]
numbers will provide a practically sufficient cheteristic of their
most essential features. Let us see how we caizedhkt latter
possibility.

The described examples show that in many casepiractically
most important to know the possible deviatiS the actual values
of a given random variable from its mean valuertow the degree of
its scattering. Are those values for the most gately grouped
around the mean value (and therefore tightly grdupemselves) or,
on the contrary, do most of them very markedly divfrom that
value (with some of them necessarily considerabifgrihg from each
other)?

The rough pattern below helps to imagine cleardydtiference just
described. Consider two random variables with lafwdistribution
respectively

values: — 0.01, 0.01; probabilities: 0.5, 0.5 ()
values: — 100, 100; probabilities: 0.5, 0.5 ()

Both have zero mean values; however, the first yvakes values
very near to zero (and to each other) whereasatensl can only take
values sharply differing from zero (and from eateo). For the
former, the knowledge of its mean value also presitbugh
information about its actual possible values. Hogvethe mean value
of the latter is very considerably apart from spolsible values and
furnishes no idea about them. Those possible vateemuch more
scatteredhan in the first case.

Our problem thus consists of finding a number whichuld give us
a reasonablmeasure of scatteringf a random variable and at least
roughly indicate to us how large the expected dmra are from its
mean value. The deviation of random variabfeom its mean value

&, & &, is itself a random variable as well §s-|€ | which
characterizes that deviation regardless of its. $\gnal we wish to have
a number which will roughly characterize that ramdgeviationt — &

and tell us how large, approximately, can it besTjuestion can be
solved in many ways; most common are the follovthnge.
10.2.1.The mean deviatiort is most natural to adopt the mean

value of § — &| as a rough value of that very random variablés Th

mean value is called thmean deviationf &. If £ has the law of
distribution

valuesxy, X, ..., X, probabilities:p, pz, ..., Pk
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the law for§ — & | will be

valuesh — &|, k2— &|, ..., ke — & |; probabilitiesps, pa, ..., Pk

Here, & =xqpy + XoP2 + ... + Xk We thus obtain the mean
deviationM; of &

k p—
M:=>'|x-&ln
i=1

with & as written just above.

For variables with laws of distribution (I) and)(ie haveé =0
andM; = 0.01 and 100 respectively. However, these exesrmle
trivial since the pertinent absolute deviations caly take one value
and thus in both cases the essence of a randoable&is forfeited.

Calculate now the mean deviation for the randonatbées with
laws of distribution (1) and (II) in § 8.1. Wewahere that the mean
values of those variables were 2.1 and 2.2, veay tteeach other. The
mean deviations for those variables are

0.4]1-2.1|+0.1]2-2.1| + 0.5[3 - 2.1| = 0.9
0.1]1-2.2| + 0.6]2 - 2.2| + 0.3]3 — 2.2| = 0.48

For the second variable the mean deviation is altmose less.
Actually this obviously means that, although in thean the shots
gained approximately the same number of points,imatitis sense can
be thought equally skilled, the hit-points of tleeend shot are
uniformto a much greater extent, are much less scatt€hexfirst
shot, while achieving the same number of pointssfirregularly, and
his results are often both much better and muctsevtitan his mean
results.

10.2.2.The mean square deviatiolh is indeed natural but also very
inconvenient to measure the rough magnitude ovaatien by its
mean value since calculations and estimationsféea oomplicated
and sometimes simply impossible. Usually anothesisuee of

deviations is introduced. Just as the deviatien of the random
variablet from its mean valug , the squaref(— & )? of this deviation

is a random variable. In our previous notationlats of distribution is
values: & — €)% (x2— E)?, ..., 0 — &) probabilitiespy, pa, ..., P

and the mean value of this square is

2 (x =€)’ .
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It provides an idea of the approximate value ofdtpeareof the

deviationé — & . Extracting a square root of this sum

Qé:,/Z(X -€)°n

we obtain a measure which is capable of charadtgrthe
approximate magnitude of the deviation itself, thean square

deviationof random variablé. Its squareQ§ [also displayed above]

is thevarianceof that variabl&. This new measure of the deviation is
certainly somewhat more artificial than the meaviatéon introduced
above. Here, we follow a roundabout path: first,deduce an
approximate value of threquare and only after that, by extracting the
square root, return to the deviation itself. Ondtieer hand, as shown
in the next section, the application of the mearasg deviatiorQ:
considerably simplifies calculations. It is thisccimstance that
compels statisticians to apply mainly this measure.

Example For the random variables defined by their laws of
distribution (1) and (II") of § 8.1 we have respieely

Q =04(1-21H+0.12-2.D+05@3 - 2.5)=0.89
Q =0.1(1-2.2)+0.6(2-2.2+0.3(3-2.2)=0.36

The square roots of these magnitudes, i. e., tlersguare
deviations, are ca. 0.94 and 0.6. For the sameorangriables we
have derived the mean deviations 0.9 and 0.48. Beidsures are
considerably larger for the first random variabtel &n each case we
conclude that that variable is more scattered tharsecond.

Again, in each case the mean square deviationgershan the
mean deviation and it is easy to understand tleaséime should

happen for any random variable. Indeed, the vaei@fcbeing the

mean value of the square &f & | cannot be less than the square of
the mean valudl: of | — €|, see end of § 8.1, a@ > M; follows
from Q> M?.

10.2.3.Probable deviationAnother method of characterizing
scattering is often applied, especially in militaerations. We
describe it in terms of an example.

Suppose that an artillery gun fires in a certameation with shots
ranging over distancg Now, this is a random variable whose mean
value indicateshe centre of hit-pointwith shells falling around .
The deviatiort — & of the studied random variable (of the range) from
its mean value is at the same time the deviatianldf-point from the
centre of such points. Any estimate & |& | therefore measures the

scatter of shells as well and is the most impoiitagitation of the
quality of firing.

From the centre of hit-points mark a very smallnsegta in both
directions along the line of firing. Only a smakétion of shells will
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fall within the interval [0, o]. In other words, for small values of
the probability of§ — &| <a is very low. Lengthen now that interval
by increasing the arbitraryand the probability of a shell falling
within it will heighten. Ifa is very large, practically all the shells will
fall within the thus lengthened interval. Therefdiee probability of
the inequalityd — & | <a heightens from 0 to 1. At first, the
probability of § — &| >0, of the shell falling beyond the interval, will
be higher, then, with a larger valueogfit will become lower. So there
ought to exist some valug of a for which the probabilities of a shell
falling either within, or beyond the correspondinterval will
coincide. Both inequalities

le—&|<mand§—&|>ao

are then equally probable and their common protbpisl therefore
1/2. Here, we neglect the insignificantly low prbbigy of the exact
equality|¢ — €| = ag.

This ag is unique. Its magnitude depends on the qualithef
artillery guns. It is easily seen that the valuegfust as the mean or
the mean square deviation, can serve as a meddhescattering of
the shells. Indeed, ify is very small, a half of the shells fall within a
very small interval which testifies to a comparalywinsignificant
scatter. On the contrary, a largeshows that a half of the shells still
falls beyond the correspondifigng] interval. This obviously
indicates that the scatter of the shells is comalie.

That numbergy, is usually calledhe probable deviatioof &. The
absolute deviatiorf |- & | can with the same probability be either
larger or smaller than it. That deviation denotgdebis not more
convenient for calculations than the mean deviatigrand much less
convenient than the mean square deviafgbut nevertheless it is
indeed adopted in artillery for estimating all dgions. Below, we
show why this practice usually does not lead todifficulties.

10.3. Theorems on the Mean Square Deviatiohet us show that
those deviations indeed possess special propedmpelling us to
prefer them to any other pertinent characterisfit following
problem has basic importance for applications.

Suppose that independent random variable, ..., &, have mean
square deviationg,, O, ..., 0n. Denote

E+&t . +65 =5

and ask ourselves how to determine the mean sgearationQ of S..
In accordance with the addition rule for mean value

S =g+&+..+E,
so that

S __31 = (EA_E:L)-'-(E.)Z_EZ) .ot (én _En)l
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(8- %)=
(-8 = 26 -8)°+ 22 (& &) &), i #k (10.1)

i=1 k=1

Note that m. \(S, - §)?= Q4 m.v.(§, -&)*=¢?, i=1,2,...n
where m. v. is our [O. S.] notation forean value of
By the addition rule for mean values we havgk]

n n

F=Yq+Y Y mvlE -E)E -E )l (10.2)

i=1 i=1 k=1

However, we assumed thatandg, again fori #k, are independent
and by the multiplication rule for independent miagges we have

m.v. [(& = E)(E —E) = Mv.(& —&)mv.(&, —E,).

Both factors on the right side disappear sincegf@mmple, the first
equalsg, - & and (10.2) becomes

QZ :iqiz-

The variance of the sum of independent random basaequals the sum
of their variancesOne more very important rule for variances of
independent random variables is thus added todti#éi@n rule for mean
values.

For the mean square deviations we immediately obtai

Q = square root of the right side of the previousriaa. (10.3)

This possibility of simply expressing the mean squdeviation of a sum
through the mean square deviations of its termeiged these are
independent is indeed one of the most importanarigiges of the mean
square deviation over mean, probable and otheslahdeviations.

Example 1Suppose that in a certain factory each manufedtarticle can
be substandard with probabilityindependently from the other articles. The
mean number of rejects outmanufactured articles igp (Problem 1 in §
8.1). For roughly estimating how largely the actuainber of substandard
articles can deviate from this mean value we willl the mean square
deviation of the number of those rejected frmmThe easiest way to
calculate it is by applying formula (10.3).

Indeed, we can consider the number of substandtectea as the sum of
the numbers of such articles appearing out of e@tufactured. We have
acted in this way when discussing a similar exariipg9.1. And since we
assume that these numbers are independent randiables, we may apply
the addition rule for variances and calculate tleamnsquare deviatidp of
the total number of rejects by formula (10.3). Tiegnitudesy, gz, ..., On
will then denote the mean square deviations ohtiraber of substandard
articles per each article.

The number of rejects appearing when manufacturing articie
determined by table
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value: 1, 0; probabilitiep, 1 —p,

S0 we hava?3i =pand

g’ =m.v. € -§)*= (L-p’p+p(L-p =p(l -p),

Q= ,/iqf = {np(- p).

The problem is solved.

Comparing the mean number of substandard artiglegth this
magnitude we see that for large values tfe latter is much smaller than the
former and only constitutes its small fraction. $hifin = 60,000p = 0.04,

np= 2400,Q = /60,000000.0410.96 4

The actual number of rejects will deviate fromntean value by
approximately 5%2%] .

Example 2A mechanism consists ofarticles joined successively along
an axis. The lengths of each can somewhat deviate $tandard and they
are therefore random variables supposed indeperibleaimean lengths of
the articles and their mean square deviations are

lengths:ay, &, ..., a,; deviationsqy, ¢y, ..., On.
These magnitudes for the entire chain of the agieke
a=a +a +...+a, q=Qfrom (10.3)

sothat,in=9,a;=a,=... =a=10cm ¢, =g, = ... =gy = 0.2cm, we will

havea = 90cmandq = v9[0.2 = 0.6cm

The length of each article deviated from its mealue by ca. 2%, but the
length of the chain only deviated from its mearueaby ca. 2/3%. This
decrease of the relative error which occurs irstima of random variables
plays an essential role when precise mechanismasasmbled. Without
such mutual compensation the assembling would béiga been
unsuccessful: the total length of the articles \@ddve been either shorter or
longer than necessary. Shortening the tolerated erthe lengths of the
articles is inexpedient since a comparatively sinallease in the precision
of these lengths leads to an essential increabe inost of the articléd

Example 3A magnitude is measuredimes under invariable conditions.
The results of the measurements will generallyediffue taoandom errors
depending on the state of the instrument and obsand variations in the
state of the surrounding air.

Denote the results of measurement§hy,, ..., &, assumed as usually

independent and their common mean valuéb}{ is natural to suppose that

the mean square deviations also coincide (and egughe arithmetic mean
of the results of measuremenis a random variable. By the addition rule

ﬁ=%m-V- @1+a2+...+én>=%<EI+EZ+...+EH) =%,
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In essence, it was obvious from the beginningttiatmean value
coincides with that for each measurement. Nowhleyatddition rule for
variances (10.3) the mean square deviation ofuhedf theg; is

Q=+/nd =a/n

and the mean square deviatiomdfvhich is equal t&/n) is g/Vn.

We have arrived at a very important conclusion: &tigtnmetic
mean of independent and identically distributedioan variables has

1) mean value: equal to that of each summand.

2) mean square deviatiorin times smaller than that of each
summand

Suppose that the mean value of the measured dista200m and
the mean square deviation of the measurementsisTe arithmetic
meann of 100 measuremeritswill naturally have as its mean value

the same distance 2@00but its mean square deviation will RE00 =
10 times smaller than that of a separate measutet®&m. We thus
have grounds for expecting that the arithmetic n&et00
measurements will be considerably nearer to thennalue 200m
than the result of some measurement.

The scattering of the arithmetic mean of a largenber of
independent magnitudes is many times less tharfat ieach of those
magnitudes

63



Chapter 11. The Law of Large Numbers

11.1. The[Bienaymé—] Chebyshev Inequality We have
repeatedly stated that the knowledge of some mewiatibn of a
random variable (for example, its mean square tiemjpallows us to
form an approximate idea about the expected ladgsations of that
variable from its mean value. This remark doesyebttontain any
guantitative estimates, does not ensure even awxdpate
calculation of the probabilities of large deviaton

The following simple consideration due to Chebysimakes all this
possible. We issue from the variance of a randonabiz ¢ (§ 10.2.2)

Q=205-9%p.

Let a be any positive number. Neglecting all terms af gum in
which k — &| < a we can only decrease it:

Q=a® Y (x-8°p.

=&l >a

The sum will decrease still more if we replage~€ )? in each of
its terms by a smaller magnitud@

Q> > p.

X =€l >a

In the right side we have now the sum of the prdbisls of those
valuesx; of & which deviate fromé by more tham in either direction.
According to the addition rule it is the probalyilthaté will take one
of those values. In other words, it is the probgbR(E — & | >a) that
the actual deviation will be larger thanWe thus have

@

PE-&l>a) <= (111
a

This is thglBienaymé —]Chebyshev] inequality. It estimates the
probability of deviations larger than any arbitrarif only the mean
square deviatioQ: is known. True, the estimate is often very rotigh
but sometimes it can be nevertheless applied, \akeéte theoretical
importance is extremely essential.

At the end of § 10.3 we considered the followingraple. The
mean value of measurements is 2§@he mean square deviation of a
measurement is®. The probability of a deviation larger tham3vas
very noticeable, perhaps higher than 1/2, butiésevalue can
certainly only be calculated when the law of dimition of the results
of measurements is completely known.



We saw, however, that the mean square deviatitimecdirithmetic
meany, of 100 measurements was only h5The inequality (11.1)
will provide

2
<O'§ =1 <003
3 36

P(h - 200| > 3)

And so, this probability is very low; actually,ig still much lower
and can be practically ignored.

In Example 1 of § 10.3 we estimated the numbeubsgndard
articles (2400 with mean square deviation 48) 6 @0p000. The
[Bienaymé —]Chebyshev inequality provides the probabilityhaf t
number of rejectan contained, say, in the interval [2300, 2500] or
|[m— 2400k 100:

P(m - 2400k 100) = 1 — Pth— 2400| > 100) > 1 — 4800° ~ 0.77.

The actual probability is much higher.

11.2. The Law of Large Numbers Suppose we haveindependent
variablesty, &, ..., &, with the same mean valae= 100m and the
same mean square deviatipa 5m. The mean value of their
arithmetic meam is a, and its mean square deviatiomisn (§ 10.3,
Example 3). For any positivethe[Bienaymé —]Chebyshev
inequality then leads to

P(h —a] >a) <qa’n, (11.2)
Then
P(h — 200] >u) < 256°n.
We may choose a very smallfor exampleg. = 0.5m. Then
P(h — 200| > 0.5) < 106/

For a very large the right side is arbitrarily small; for= 10,000 it
equals 0.01 and

P(h — 200| > 0.5) < 0.01.

If the probability of such unlikely events is negfled, we may state
that the arithmetic mean of 10,000 measurementsinilost certainly
deviate from 200n not more than by 56min either direction. When
desiring to shorten that deviation to d, we will have to choose =
0.1m. Then

P(h - 200] > 0.1) <22 = 2500
00n  n

andn should now be 250,000 rather than 10,000.

65



Generally, however small i the right side of inequality (11.2) can
be made arbitrary small, it is only necessary teetesufficiently
largen. And so, we may then arbitrarily decrease thet iige of the
inequality (10.2) and consider the inequality ofitary sensey|—al <
a to be satisfied as near to certainty as desired.

If random variable<,, &, ..., &, are independent and have the same
mean value a and the same mean square deviatiein afithmetic
mean will be arbitrarily near to a with probabiliggrbitrarily near to
unity (practically certainly so nedr

This is the simplest case of the so-calkad of large numberof
one of the most important fundamental theoremgabaility theory.
It was the great Russian mathematician Chebyshevdigtovered
this case in the mid-i'gcentury as a generalization of the Bernoulli
theorem (§ 6.7.

An isolated random variable can (as we know) ofédee values far
apart from its mean value (can often consideratéyter) but the
arithmetic mean of a large number of random vagisbkehaves quite
differently. Its scatter is not significant and lwa dominant
probability it only takes values very near to itean value. This
certainly occurs since the random deviations frbat tnean in either
direction cancel each other and in most casesuttmensiry deviation is
small. And this is indeed the profound essencéatflaw of large
numbers.

The just proved Chebyshev theorem is often utilioegudging the
quality of a homogeneous material by its compaeitigmall sample.
Thus, the quality of cotton in a boll is judgeddfew of its wisps
taken randomly from different parts of the bollm8arly judged are
large quantities of whe&t Such judgements are highly precise. Indeed,
the sample of wheat is small as compared with thelevamount of it,
but it contains a large number of grains and, atingrto the law of
large numbers, allows us to judge sufficiently gely the mean
weight of a grain and therefore the quality of wWiele amount of
wheat. And a boll of cotton weighing about 3&fis judged by a few
hundred fibres only weighing about a tenth of amgra

11.3. The Proof of the Law of Large NumbersUntil now, we
only considered the case in which all the variable&,, ..., had the
same mean value and the same mean square devidbiaever, the
law of large numbers is applicable under more gdrassumptions.

We will now study the case in which their mean ealgan be
arbitrary (and denote them by, a,, ...), in general differing from
each other. Then the mean value of the arithmesiamy of & will be

A=(1h)(ap+ax+ ... +ay)
and by the inequality (11.1) for any positive

P(h—Al>a) < Qo (11.3)

All is thus reduced to estimatir(gfwhich is almost as simple as in
the previous particular case. This magnitude isslveance ofy equal
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to the sum oh mutually independent variables (this is still our
assumption) divided by. By the addition rule for variances we have

1
szﬁ(q2+0§+---+ F)

whereqs, O, ... are the mean square deviation§,0&,, ...

Now we suppose that in general these deviatiomsdaffer from
each other provided however that, taking as marierh as we wish
(so thatn can be arbitrarily large), all of them are stifialer than
some positive numbdx. Actually, this requirement is invariably met
since we have to add magnitudes of similar, innrssemagnitudes and
the extents of their scatter do not differ too much

And so, letgi <b,i =1, 2, ... Then the equality above leads to

By the inequality (11.3) we have

2

P(h—A|>q) < b—z.
no

However small isi, a sufficiently large number of the random varésbl
will ensure that the right side of this inequalign be made as small as
desired which obviously proves the law of large bers in the
present generaktting.

If, therefore, a sufficiently large number n of dam variable<;,
&, ... are independent and their mean square deviatiomsane
smaller than some positive number, the absolutea®d deviations of
the arithmetic mean of the variables from the amigiic mean of their
mean values can be as small as desired

This is indeed the law of large numbers in Cheby'shgeneral
formulation. It is important to note an importaircamstance. When
repeating measurements of some magnitudeder invariable
conditions the observer gets not quite the samesnous results;,
&, ..., & and assumes that the approximate valueisftheir
arithmetic mean. Can we expect to obtain an arbitrarecise value
of a after carrying out a sufficiently large numberobservations?

Yes. We can if only there are no systematic ettpifs

&=ak=1,2,..n

and if the obtained valuég are not indefinite; that is, if we correctly
read the results on our instrument. If, howeves,{gbssible precision
of reading is only, then, obviously, we cannot expect to obtain tesul
more precise than &and the arithmetic mean of the results will be
certainly corrupted by the same uncertainty

This remark means that, if the instrument patesithe results of
observation to within some indefinide the attempts to obtain the
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value ofa more precisely by applying the law of large nunsheill be
deceptive and the pertinent calculations becomeritirmetical
childish occupation.
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Chapter 12. The Normal Laws

12.1. Formulation of the Problem.We have seen that some
random variables essentially influence a considenabmber of
natural phenomena and technological processesperdtmns. It
often occurs that until the end of a phenomenoo;gss or operation
we can onhyf?] know the laws of distribution of these variabieg.,
the lists of their values and corresponding proliiads.

If a variable can take infinitely many differentlwes (the range of a
fired shell, the error of measurement) it is praffée to indicate the
probability of some intervals of those values rathan the values
themselves. For example, it is advantageous tohsdthat error is
contained within interval [- 1, 1] or [0.1, 0.25]liimetres.

Had we wished to find out the laws of distributmithe
encountered random variablgwithout taking into account general
considerations or guesstimates, had we withoupaglyminary
assumptions attempted to discover all the featirésose laws by
approaching each random variable purely experinigntaur problem
would have been too laborious and hardly feastdablishing at
least the most important features of a new, unkniawnof
distribution would have required a large numbetriafs. Long since
scientists have therefore attempted to discovdr geaeral types of
laws which could have been easily foreseen, exgestespected to
describe at least a wide class of practically entared random
variables. Long ago such types have been thedigtestablished and
their existence experimentally confirmed.

It is obvious how advantageous is the possibilitiopoeseeing, by
issuing from theoretical considerations and th@eprevious
experience, the type of the laws of distributiorickimecessarily
describe an encountered random variable. If suelssing is
confirmed, a very few trials or observations areally sufficient for
determining all the necessary features of the solaghof distribution.

Theoretical studies have shown that in a large rarrabcases we
may with sufficient grounds expect laws of disttibn of a certain
type. These laws are calladrmal Owing to the complexity involved,
we briefly describe them here omitting all the gsoand exact
formulations.

Among practically occurring random variables vergny are
random errorsor at least are easily treated as such. Takexample
the distancé travelled by a fired shell. We naturally assurred there
exists some typical mean distarigeset as the required range. The
differencet — & is theerror of the distance, and the study of the
random variablé is completely and immediately reduced to studying
thatrandom error

Such errors, however, change their magnitude froeshot to
another. As a rule, they depend on many causemdotiependently
from each other: random fluctuations of the gure{@, an
unavoidable (although small) scattering of the Wweand form of the
shell, random changes in atmospheric conditiomsjaw®n errors of
aiming, — all these and still many other causesapable of leading to
error in the distanéé All the particular errors are mutually
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independent random variables, such thateffect of each only
constitutes a very small fraction of their jointiao.

The final errorg — &y which we desire to study will simply be the
summary effect of all the separate mutually indeleeh random errors.
A similar situation clearly exists for most praetily encountered
random errors. Theoretical considerations showttteataw of
distribution of a random variable which is the sofa very large
number of mutually independent random variablestdithever
essencdf only [the action of] each of them is small as compared with
[that of] the whole sumought to be near to the law of a completely
determined type, the type of normal 14ws

We are thus able to assume that a very considepabi®f
practically encountered random variables (in palic all those
caused by a large number of mutually independent®rare
distributed approximately according to normal laW& ought
therefore to acquaint ourselves with their mairiuiess.

12.2. Notion of Curves of Distribution.Laws of distribution can be
advantageously shown on diagrams. They allow se¢oat a glance,
without studying any tables, the most importantuess of those laws.
The possible values of a given random varidtdee marked by points
on a horizontal line beginning from some point 6§, positive
values to the right and negative, to the left. Prababilities of each
such value are marked upwards along perpendicetacsed at the
points corresponding to those values. The scalbstimdirections are
chosen in a manner that ensures a convenient ailg @aible picture.

By the addition rule, the probability thatakes a value contained
within some intervald, B) equals the sum of the probabilities of all
such possible values. If, as it often happensntimber of these
values is very large, the top points of the corasiing perpendiculars
seem merged into a single continuous curvegtimee of distribution
of the studied random variable. The probabilitytaf inequalities <
& <P is represented by the sum of the lengths of tinegoeliculars
located within the intervabg ).

Suppose that the distance between two adjacenibposalues of
the random variable is always unity if, for exampl®se values are
expressed by successive integers. This we can slaciyally attain
by selecting an appropriate scale for our diagreime. length of each
perpendicular will then be numerically equal to #inea of a rectangle
whose height is that very length and the basedisittit distance
between adjacent possible values of the randoraleri

It is easy to understand that the probability ef tequalities
a <& < can be represented by the sum of such rectangleses!
above segment(| B]. Practically, however, if those possible values a
very densely disposed, that sum will not diffemfrthe area of a
curvilinear figure bordered by the segmantfi] from below, by that
figure from above and, from the sides, by the pedpmilars erected
from a andp. The probability of the studied random variabldatbin
any interval is simply and conveniently given bg tirea above that
interval and below the curve of distribution.

As a rule, when a random variable takes very masgiple values
the probabilities of separate values are neglidiptactically zero) and
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uninteresting. Thus, when measuring the distantedssn two
settlements, it is utterly uninteresting to knouwtths error is exactly
473cm On the contrary, of essential interest is thévphbdlity of a
deviation contained between 3 anch. The same is true in all
similar cases: when a random variable takes verymalues, it is
important to know the probability of intervals difse values rather
than of separate values.

12.3. Properties of the Curves of Normal Distributbns. A
normally distributed variable always takes infihjtenany possible
values. In spite of all the differences betweemmadrcurves they have
common pronounced features:

1) All those curves have a single peak and incessdrip on its
both sides. When removing an interval of possilalei@s of a random
variable in either direction from the perpendicuwéthat peak the
probability that that variable takes a value witthia interval will
continuously lower.

2) All those curves are symmetric with regard topkependicular
passing through that peak. The areas situated amgreents of equal
areas and equally removed from that perpendicuéatteerefore
obviously equal.

3) All those curves are bell-shaped. In the vicimityhe peak they
are convex upward, then, at some distance frorpea& they inflect
and become convex downward. That distance (antdetgit of the
peak as well) differ for different curv€s

So how do the various normal curves differ fromheather? When
answering this question, we ought to recall fifsalbthat the complete
area between any curve of distribut{mot only normal] and the
chosen horizontal line is unity since it equalspgh&bability that the
given random variable takes any of its values, atxjthe probability
of a certain event.

The difference between curves of distribution adpsists in the
difference in which that summary area, the samelf@f them, is
distributed along that horizontal line. For norroatves the main
guestion is, how much of that summary area is cunated above
intervals adjacent to the perpendicular of the pgakhow much
above more remote intervals. If almost all this sary area is
concentrated in the vicinity of the peak, the randa@riable will with
overwhelming probability (and therefore in an ovieelming number
of cases) take values near it. Such variablestdeedcattered and
their variances are small. Owing to the symmetrthefnormal curve
the most probable value of the random variable wveaincides with
its mean value.

If, on the contrary, only a small part of all tsismmary area is
concentrated in the vicinity of the peak, the randariable will likely
take values notably deviating from its most probaldlue. Such
variables are much scattered and their varianeekege.

For acquainting ourselves most rapidly with all thility of the
normal laws and learning how to apply them it ipeddient to issue
from their main properties.

Main Property 1. If & is distributed according to a normal law, then
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for any constant > 0 andd the variable & +d is also distributed
according to some normal law; and, conversely aiay normal law
there exists such @niqué pair of numbers ¢ 0andd thatcg +d is
distributed according to that very law

And so, if random variablé has a normal distribution, all the laws
of distribution ofcg +d for anyc > 0 andd are also normal.

Main property 2. If two random variables are independent and
distributed according to normal laws, their sunalso distributed
according to some normal law

We can now rigorously justify sonjether] properties especially
important for applications.

1) For any two numbers andq > Othere exists a unique normal
law with mean value and mean square deviatian

Indeed, let be a normally distributed random variable with mea
value £ and mean square deviati@Qa. By Main Property 1 this
statement will be proved if we show that there ®xésich a unique
pair of numberg > 0 andd thatcg +d has mean valua and mean
square deviation. Suppose thai takes a finite number of values.
Then we may reason in the following way. Let the &f distribution
of & be

valuesxy, X, ..., Xn; probabilities:ps, pz, ..., Pn.

The variablecg +d (wherec > 0 andd are yet any constants) will
have the following law of distribution:

values:cx +d, % +d, ..., X, +d; probabilitiesps, pa, ..., pn.

Obviously®,

2%P=E D (%8 p=qQ.
k k

We ought to prove that

> (ex+tdpe=a, Y (e +d-a’p=d.

k k

The first equality leads to

czk:xkpk+dzk: p=a €+ d= ¢ (12.1)
and the second provides

Zk](%+ d-&-d° p= GZk]( x=8)" p= €Q= §

Therefore, since > 0,

c=0/Q: (12.2)
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and, by (12.1)

d= a—cEza—qQ—E. (12.3)

Formulas (12.2) and (12.3) also persist for ranganables taking
infinitely many values.

And so, givera andg, numbers andd can always be uniquely
determined by those formulas acig+ d obeys the normal law with
mean valua and mean square deviatignQED.

If we consider every possible laws of distributrather than normal
laws, the knowledge of the mean value and variéoiceean square
deviation) of a random variable will yet offer vdityle information
about its law of distribution. There exists a lolafis of distribution
(and for that matter essentially differing from lkeather) having the
same mean values and the same variances. In geherkhowledge
of those magnitudes only briefly characterizesradadistribution.

The situation is different if we restrict our atiemntto normal laws.
On the one hand, as we saw just above, any assamgiibut the
mean value and variance of a given random varigldempatible
with its obeying a normal law. On the other hand this is the main
point, if we have grounds for assuming beforehéwad & variable
obeys some normal law, that law is uniquely deteeiiby the
knowledge of these mentioned parameters, andsenes as a random
variable is completely established. In particuleg,can calculate the
probability that its value belongs to some arbityashosen interval.

2) The ratio of the probable to the mean square d®nas the
same for all normal laws

Suppose that we are given two arbitrary normal laitis & obeying
the first of them. By Main Property 1 there existls constants
¢ > 0 andd thatcg + d obeys the second of these laws. Denote the
mean square deviation and the probable deviatidp:tandE:
respectively for the first variable and g§ynde for the second. By
definition of the probable deviation

P(IEE +d) —m. v. € + d)| <) = 1/2 or P¢Jg — &| <g) = 1/2 or
P(E - €| <elc) = 1/2.

And again by that definitiog/c is the probable deviation é&f
elc = E: ande/E; = c. Therefore (12.2) leads to

¢/E: = g/Q; ande/q = E+/Q:.

The chosen normal laws were arbitrary which meaasttte
formulated proposition is proved. The ratiq is an absolute constant
[not depending on the choice of the normal lawldenote it byh. It is

known that\ = +/2/r =0.674 which means that for any normal law

€ =q+2/m.
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Because of this extremely simple connection betveesardq for
normally distributed variables the choice of on@oother for
characterizing scatter is actually indifferentwtis stated above (even
without restricting our study to normal laws) thiatike other
characteristics the mean square deviation has sierple properties
which in most cases compels both theoreticiangpaactitioners to
choose those very deviations as a measure of scatte

We have also remarked that artillery men nevertiseddmost
always apply probable deviations but we see now thisytradition is
harmless. Random variables, with which the thead/@ractice of
artillery firing are dealing, are almost always maily distributed. For
such variables, because of the proportionality ivea, the choice of
any of those two characteristics is practicallyifiedent.

3) Suppose that andn are independent normally distributed
random variables and=¢& +n. Then

whereE,, E: andE, are the probable deviations of the corresponding
variables

We (8 10.3) know that a similar formula takes plmmemean
square deviations whichever are the laws of digtidim of§ andn. For
normally distributed andn the variable is also normally distributed
(Main Property 2) and by propergy,

E: =AQ¢, En =2Qy, Ec =2Q,,

Ec=1Q7+Q*=,/(1Q)*+(1Q)* = E*+ B2

For normal laws, one of the most important propsrtif mean
square deviations thus directly extends to probdélgations.

12.4. Problems and ExamplesWe will call a normal distribution
standard normalf its mean value is 0 and its variance, 1. Fersbke
of brevity a random variablgobeying this law is written as

P(E| <a) =®(a),a> 0.

®(a) is thus the probability that the absolute valfié © less tham.
Very precise tables ab(a), irreplaceable for those who calculate
probabilities, have been compiled and are appetaledch book
devoted to probability, — to this book as well [n@produced here].
All calculations with any normal variable can beigaand very
precisely carried out by means of such tables. héavsnow how this
is done.

Problem 1 Random variablé is normally distributed with mean

value £ and mean square deviatiQa. Required is the probability that
the absolute deviatiof } £ | is less thaa [a > 0].

Let ¢ be a random variable distributed according tostaedard
normal distribution. By Main Property 1 there exdgth numbers
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¢ > 0 andd thatcg + d has mean valué and mean square deviation

Q:. In other words, that it has the same law of iitigtion as.
Therefore

P(E— &l <a) =P(ls + d) - (€S +d)| <a) = PEk - < <a).

However, by formula (12.2) = Q/Q. = Q: sinceQ. = 1 because of
the standard normal distribution @fTherefore

P(E—E|<a) =PQic— | <a) = P(t| < )= (D). (124
(E-&l<a)=PQ:—7<|<a) (t|<Qé) (Q;) (12.4)

The problem is solved sineg(a/Q:) can be directly found in a table.
For variables obeying any normal distribution cablé thus allows us
to calculate easily by formula (12.4) the probaypitif any boundary of
the deviations of a variable obeying any normal fiexan its mean
value.

Example 1A certain article is manufactured on a latheldtgythé
is a normally distributed random variable with meafue 20cmand
variance 0.Zm Required is the probability that that length veii
contained within 19.7 and 20cBn, — that its deviation in either
direction will be less than 0&8n

By formula (12.4) and our table

P(E — 20| < 0.3) =(0.3/0.2) =d(1.5) = 0.866.

The lengths of about 87% of the articles will batained between
19.7 and 20.8m The length of the other articles will deviate mor
than by 0.mfrom the mean value.

Example 2Keeping to the conditions of Example 1, find the
precision of the length of an article that can bargnteed with
probability 95%.

We obviously have to find such a positive numdéor which

P(E — 20| <a) > 0.95.

We saw just above that the value 0.3 is too small since the left side
of the new inequality will then be less than 0.8¢cording to formula
(12.4)

P(E - 20| <a) = ®(a/0.2) =®(5a).

Therefore, we ought to determine first of[&]] such a value of&b
for which®(5a) > 0.95. Our table providea5 1.97 anda > 0.394~
0.4 cm).

Example 31In practice, it is sometimes assumed that a niyma
distributed random variabledoes not deviatgrom its empirical (!)
mean] more than by three mean square deviations. Whangs do
we have for that assumption?

Formula (12.4) and our table show that
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P(g-&l <X.)=®(3)> 0.997P ¢-&| >3Q)<0.003

This actually means that larger deviations wilthe mean occur
rarer than 3 times in a thousand. May we negléstabssibility or
should it be necessarily taken into account? Tlsgvancertainly
depends on the essence of the problem at handaandtde provided
once and for all. Note also that the relation

P(E—&| <) =D(3)

is a particular case of the formula

P(E - &| <aQ) = D(a) (12.5)

which follows from (12.4) and takes place for amymally distributed
random variablé.

Example 4The mean weight of a certain article is Bg4lt is found
that absolute deviations larger thangs@ccur in the mean 3 times out
of a hundred. Assume that the weight is normakyritiuted and
determine its probable deviation.

Given,

P(E - 8.4] > 0.05) = 0.03
whereg is the weight of a randomly chosen article. Thenmref

0.97 = P — 8.4| > 0.05) =(0.05RQ;).

The table shows thab(a) = 0.97 ata~ 2.12. Therefore

0.05Q:~ 2.12,Q: = 0.05/2.12.

The probable deviation is, see § 12.3,

E: = 0.674): ~ 0.0155kg = 15.5¢.

Example 5Deviations of a shell fired from an artillery grasult
from three mutually independent causes: erroretdrdhining the
location of the target; of aiming; from causes @iag from one shot
to another (the weight of the shell, atmospheritditions etci’.
Assuming that all these errors are normally disted with mean
values 24, 8 and 12 respectively, determine the probability that the

summary deviation from the target will not exce@dr
By property3) the probable deviation of the summary ef s

N2# + & +12 = 2¢(m)

so that the mean square deviation of that err@848.647[0.674]~
41.5,
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P(E| < 40) =B(40/41.5)= (0.964) = 0.665.

Deviations not larger than 40 thus occur in approximately 2/3 of
cases.
Problem 2 Random variablé is normally distributed with mean

value & and mean square deviatiQa. Required is the probability that

the absolute deviatiof | & | is contained within intervab] 4.
By the addition rule

P(E-El<b) = P(E-E| <) + Pa< - £| <b),
Pa< &l <b)=P(t—E|<b)-PE-E|<a)=
PHIQ) - D(Q). (12.6)

The problem is thus solved.

In an overwhelming majority of practical requirertethe table of
d(a) which we have used all the time is however aressively
awkward tool. Usually it is only needed to calcaltte probability of
the deviatiort — & contained within more or less long intervals. It is
therefore desirable to have, along with oampleteable, an
abbreviated table. Such tables are easy to cormnpitea complete
table by means of formula (12.6). Here is an exatpk abbreviated
table is much less precise than the table appemeied but it still is
quite sufficient for many cases.

Separate the entire range of magnitidde § | into five parts

from 0 to 0.38); from 0.32): to 0.69;; from 0.69: to 1.18);;
from 1.18); to 2.58);; and beyond that.

By formula (12.4) we have
P(E- €| < 0.32)) = ®(0.32)= 0.25.

Similar calculations provide the other probabitid@hey are
approximately equal to 0.25; 0.25; 0.24; and OT0 entire infinite
axis can be separated into 10 intervals, five efittpositivein the
positive semi-axisjand five negative. We will then immediately
imagine the main features of the distribution & ¢reviations of the
random variable with both arbitrary parameters.

Finally, we consider the calculation of probakégiof a normally
distributed random variable to be contained witninarbitrary interval.

Problem 3 Random variablé is normally distributed with mean
value & and mean square deviati@a. It is required to calculate by
means of a table the probability of inequaliges& <b, a <b. Both
these numbers are arbitrary.

We have to study three cases depending on thegamant ofa and
b with respect tct. Note that for any normally distributed random

variable and any numberthe probability of the equality=c is zero.

7



First case & <a<b. By the addition rule
P(E <g¢<b)=P( <t<a) +P@a<g<b),

P@<&<b)=P( <&¢<b)-PE <t<a)=
PO<¢—E <b-E&)-P(O<t-E <a—¢&).

However, because of the symmetry of the normal |&ovaany
a>0

PO<¢—E <a)=P(a<&é—& <0)=1P(—a<&—E <a) =
U2P(E - &| <a) = 1720(a/Qy). 12(7)

Therefore P{ <& <b) = E[ (b é) —a( an)]

Second casa < & <b. By the addition rule

P@<g¢<b)=Pla<&<g)+P@E <g<b)=
Pa-¢§ <&~ §<0)+P(0<§—5 <b-§)=

&-a b-¢
—[‘D( )+ ®(—)],
Q. Q

see formula (12.7).
Third casea<b < &. By the addition rule

P@<&<g)=Pa<g<b)+Pp<g<i),

P@<g<b)=Pa<f<f)-Pp<i<i)=
P& <¢-E<0)-Pp-E <t-E<0)=

—[da(‘g ) ¢<‘3 Y]

The problem is completely solved. We see that f@nalom
variable distributed according to any normal law t@le allows us to
calculate the probability of this variable to betaoned within any
interval and thus to characterize exhaustivellaits of distribution.
The following example shows how to achieve this.

Example 6Shells are fired from point O along straight IDX. The
mean distance travelled by the sheéllss 1200m. Suppose that that
distance is normally distributed with mean squareiation 40m.
Determine the per cent of overshots contained wiidi — 80m.

We are determining the probability of 1264 1280. Applying
the final formula of Example 3 we find
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P(1260 <H < 1280) =%[¢(—128(:01209——;¢‘(—12620 129]O=

1

E[CD(Z) -d(1.5)].

The table provide®(2) ~ 0.955,0(1.5)~ 0.866,
P(1260 <H < 1280)= 0.044.

A little more than 4%a little less than 4.5%]of the shells will
overshoot the target by 60 — 80
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Part 3

Stochastic Processes
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Chapter 13. Introduction to the Theory of Stochastt Processes

13.1. General Idea of Stochastic Process&¥hen studying natural
phenomena and processes occurring in technologgpetcs and
transportation we often have to describe them hglom variables
changing in time. A few examples.

Diffusion is known to consist in molecules of a stance
penetrating into another substance and intermiggiiith its
molecules. Let us trace the motion of a moleculpp®se that at
initial momentty = 0 it was in positionx, Yo, Z)) and the components
of its velocity were\fy, Voy, Voz). It collides with other molecules at
random moments and changes its position as weklasity and
direction of motion. It is impossible to foreseaetty this change
since we do not know either the moments of thasiofis or their
number during any interval of time or the veloatjer directions] of
those other molecules.

The position of a molecule at momeinis determined by three
componentx(t), y(t), andz(t) which are thus random functions of time.
The components of velocity(t), w(t), andv,(t) are random variables
changing in time as w

Consider now a complicated device consisting @frgd numbers of
elements (capacitors, resistances, diodes, mechgaids etc). Owing
to some causes each element can loose its workipggies and quit
functioning. We will call such a stateailure. Observations of
various technical devices over long periods of tareeshowing that
the period of work from beginning to failure canbetprecisely
indicated beforehand since it is a random variable.

Suppose now that as soon as some element falsgpiaced by a
new element and that the work of the studied destcginues. How
many elements should be replaced during time iat¢6yt]? Denote
this number by(t) which depends ohand is random. This is a new
example of a random variable changing in timesftscial feature is
that it cannot decrease and randomly changes egers (by the
number of the elements which have to be changeth &andom
functions are considerably interesting in theory of reliability[cf. §
13.5] an important engineering science which widelyliegghe
methods of probability theory.

Modern industry needs electricity. How much enexgibe
consumed by a factory or shop during a given iratleo¥ time? How
large can the consumed power be at each given ni@riienw to
calculate the parameters of electrical cables wlahuld not be too
low of capacity and should not burn out during equeof normal
work either? And the sections of these cables shoot be too large,
otherwise an excessive expenditure of metal becomesssary and
considerable capital is withdrawn from circulation.

Answers to these questions naturally require eotingit study of the
consumption of electricity by separate lathes, raatdms, various
devices and contrivances as well as by all fee@arsh investigations
had been carried out at many enterprises of diffdseanches of
industry. We provide a picture typical for the ntetarking branch,
but the final conclusions will be the same for ottypes of enterprises
as well.
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The periods of the work of a turning lathe alteenatith periods of
its idleness and, accordingly, the consumed posserially differs.
From almost zero during the dead time it shargggibut does not
remain constant. It rather undergoes considerdtdages since the
local heterogeneity of the treated material chatigespeed of the
work and the exerted effort.

In addition, the periods of work and idleness cleavngry irregularly.
On closer and more thorough examination their chgrgves to be
random and once more we have to deal with a rarfdantion of time.
The sharp fluctuations of the power consumed latreelare smoothed
when considering a group of 10 or 20 of them.

The summary consumption of power remains randoinb&écomes
smoother. This is essentially explained by the lagies with which
we became acquainted when studying the law of langebers. The
levelling is connected with the scatter of the mpeakconsumption: for
a certain lathe the peak often occurs during peraidess or even
minimal consumption by the other lathes.

At present, the study of the electrical load ofusiial plants and
towns is being ever more based on the indicatadres And the
ideas, methods and mathematical machinery of pitityednd the
theory of stationary processes (of the theory nflaan functions of an
independent variable) are indeed widely appliedstdving them.

13.2. Notion of Stochastic Processes and Their Vatis Types.
We have come now to the definition of a stochgsticess. Imagine
that some random variabiét) depends on a continuously changing
parametet usually called time. Actually, it can mean someghélse
as well but in an overwhelming number of cases ihdeed time.

For defining a stochastic process we ought to deestine possible
values which it takes at each moment, their expledtanges, the
probabilities of those possible changes in timetheddegree of
dependence of the development of the process pnet$ous history.
Without finding out all that we cannot at all stétat we know a
stochastic process. According to the general metfiodathematically
describing a stochastic process the functions

F(ty, to, ..oy thy X, Xop +ony %) = PE(t2) <X, &(t2) <Xg, ..., E(tn) < Xn]

areconsidered given for any integer positive numband any
momentg,, b, ..., t,.

This method of describing a stochastic method igangal; in
principle, it allows us to ascertain all the featiof the behaviour of
the process in time. However, it is very unwieldytisat for obtaining
more profound results we have to isolate particiylaes of stochastic
processes and look for pertinent analytical toatseradapted to
calculations and to constructions of mathematicadiets of the
studied phenomena.

At present, several classes of stochastic procesedsolated in
connection with various real processes and thedysis sufficiently
advanced. The pertinent information is, howeveyphd the reach of
elementary mathematical knowledge. Markov processksd after
the outstanding Russian mathematician Markov oktitbof the 19
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and the beginning of the 'Q@:entury gained special importance. He
began considering, and was the first to study syatieally the
properties of the so-callezhain dependences which became the
prototype for constructing the notions and thedrthe Markov
stochastic processes.

Suppose that proce&f) has the following property. For any
momentg, andt, to <t, the probability ofits] passing from state at
momentt, to statex (or to one of the states belonging to someAsett
momentt only depends oty, Xo, t andx (or A). Additional knowledge
of the states of the process during previous psrilms not change
that probability. All the development of such preses as though
concentrates in the statgachieved at momety and only influences
its further historyis only influenced] through thak,. Such processes
are indeed called after Markov.

At a glance, it may seem that such a serious sdiieatian of
phenomena has little in common with real requireisiemce the after-
effect of the previous development usually continfog a rather long
time. However, mathematics and its applicationsiatogy,
technology, physics and other branches of knowlé@dgkaccumulated
experience that shows that many phenomena sudffsah or the
management of the automatic control of manufacgupierfectly
conform to the pattern of Markov processes.

Moreover, it occurred that by changing the notibstateany
stochastic process can be converted into a Markoeegs. This is a
very serious argument favouring a wide developroéitteir theory.
Markov processes are therefore extensively apjplistudies of many
practical problems since they allow the applicatiba well developed
and comparatively simple analytical means of calioih.

Consider in addition that any application of mathéoal means for
studying some natural phenomena or technologicah@mic or
mental processes requires their preliminary schieatain, an
isolation of some peculiarities which sufficientigscribe their course.
True, it is now usual to discuss simulation rathan schematization.
The model of phenomena which we created possess®s m
peculiarities. First, it is simpler than the stutlghenomenon itself.
Second, its initial propositions and connectiorescearly formulated,
a feature lacking in real processes, and espedaliy economic and
biological phenomena. After studying a comparagiwiénple model
of a phenomenon and comparing the formulated ceimis with
observations of the phenomenon itself, we can juldgeuality of our
model and specify it if necessary.

When constructing a mathematical model, it is kaeissumed that
mathematical analysis is only applicable to stugyhre process of the
changes of some system if each of its possiblestatd its evolution
is exhaustively described by some chosen matheahédial. We
should apparently consider the Newtonian mechasame of the
most remarkable mathematical models of the surriagrezhenomena
of a certain kind.

A simple pattern of the course of a process anddheected
mathematical arsenal of the differential and iraégalculus have by
now been perfectly describing numerous processesdoarter of a
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millennium. The advances of mechanical engineeaimdjthe flights of
the first spaceships not only in the Earth’s viwiriut to other planets
as well are essentially based on a wide applicatfdhe classical
Newtonian mechanics. It assumes that the moti@system of mass
points is completely described by the position agldcity of each of
them. In other words, by indicating these datariomentt allows us
to calculate the unique state of our system forathgr moment. For
achieving this aim mechanics offers equations diiano

Note that the state of a system of points only wstded as their
positions at momeritis insufficient for uniquely determining
subsequent states of the system. For the Newtoméhanics, the
[mentioned] notion of state ought to be extended by adding &hees
of the velocities at a given moment.

All that which is situated beyond classical mechanihat is, all
modern physics, has to deal with a considerablyersomplicated
situation in which the knowledge of the state sfyatem at a given
moment cannot anymore uniquely determine its fusteiees. For
Markov processes uniquely determined are only thbability of
passing into some state during a certain perigdre. We may
consider Markov processes as a wide extensionoakgses studied by
classical mechanics

13.3. Simplest Flows of Eventdn many practically important
situations or those interesting from cognition vesédnto ascertain the
regularities in the occurrence of certain eventskips arriving at a
seaport, failures of complicated devices, chanfiésimed out bulbs,
moments of the decay of the atoms of a radioastilestance etc).
Calculations pertaining to the work of consumevises (hairdressers,
shops, public transportation, number of beds irpttals, capacities of
locks, crossings, bridges ettire closely linked with studying such
flows. In the 1930s the moments of arrival of arms at large airports,
of cargo boats at seaports, the calls to firststations and telephone
exchanges etc had been thoroughly studied. It cedthat in all those
cases the occurrences of the mentioned eventssuffigently well
described by the following regularity.

Suppose that&) is the probability of the occurrenceloévents of
a flow during time interval. Then, fork =0, 1, 2, ... the equalities

P(t) = %e’“ (13.1)

are satisfied with a high precision. Hexas a positive constant
describing thentensityof the occurrence of the events of the flow. In
particular, the probability that no event arrivesidg timet is

Po(t) =€™. (13.2)

Molecular physics studies the probability that dgra given period
of timet a given molecule will not collide with any otheplacule.
Books devoted to such problems indicate that tratigbility indeed
equalse™. If the flow of events is here understood as tioenents of



collisions of the given molecule with other molezsiive will indeed
determine the probability that no event will ocduring timet.

It is natural to suppose that there exists a géoarese leading to
the occurrence of the same regularity of thoseifferidg phenomena.
And it was indeed discovered that under very winled@tions there
exist various and profound causes leading to thiedescribed
regularity. Already at the beginning of the"2@entury Einstein and
Smoluchowski who studied the Brownian motion disred the first
group of such conditions. Suppose that a flow @ty has the
following three properties:

1. Stationarity: For any finite number of non-intersecting intervals
of time the probability of the occurrencelafks,, ..., k, events only
depends on those numbers and on the duration dintleeintervals. In
particular, the probability of the occurrence oflkmands in interval
(T, t + T) does not depend dnand is only a function dfandt.

2. Lack of after-effect: The probability of the arrival df events of
a flow during time interva(T, T + t) does not depend on the number
of the previously arrived events or on how did taeywe. This
requirement means that the studied flow is a Magkoeess.

3. Ordinariness: The occurrence of two or more events during a
very short period of time is practically impossible

A flow of events satisfying these three conditiea simplest flow
It can be proved that equation (13.1) completebratterizes a
simplest flow which can also be defined otherwisis a flow of
randomly distanced moments of time with formula.2) 3ndicating
the probability that the distance between adjac@rents is longer
thant. This definition is also frequently used when sajvmany
applied and theoretical problems.

A direct check of the fulfilment of the three memted conditions
(stationarity, lack of after-effect and ordinariggs often difficult and
it is therefore very important to derive other cibiodis for deciding on
other grounds whether a flow is simplest or nedding it. A number
of researchers have found such a condition, aralihe.

Suppose that the studied flow is a sum of a vagelaumber of
stationary flows each only little influencing thens. Add a restriction
of an arithmetical nature which ensures the ordiess of the
summary flow, and it becomegar-simplestThis theorem, which
Khinchin, one of the creators of modern theory miability, proved
in a general form, is fundamentally important fppbcations. Indeed,
it very often ensures formulation of serious cosidas by issuing
from the general structure of a flow.

Thus, a flow of calls arriving at a telephone exa®can be
considered as a sum of many independent flows iea@nificantly
influencing that sum. It follows that that summé#ow ought to be
near-simplest. Just the same, a flow of cargo leraitsng at a given
seaport consists of a large number of flows depgftiom various
other seaports and should therefore be near-sitnples so it really is.
Other examples are also possihle

13.4. A Problem in the Queuing TheoryThe following problem
is typical for many practically important cases. Wié first describe it
in its applied aspect, as it frequently appeadetgigners of plants,
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department stores, storehouses, and telephonergaeha

There are various businesses and establishmergatfefying some
requirements of the population: hairdressers’ ptebme exchanges,
hospitals, dental out-patients’ clinics. Demandssfrvice arrive at
random moments and the duration of services isralstom. How to
meet these demands if there argervers/servicing facilities?

It is easy to see that the described picture saffity reflects the
real situation. We are unable to indicate just wivéhthe customers
arrive at a hairdressers’ or dental clinic and wewk well enough that
it is often necessary to wait for service but g@netimes we are
serviced immediately. Just the same, the time reduor completing
an apparently the same operation seems to be otnstd actually
considerably differs from one case to another.eatinent of a tooth
can only consist in its cleaning or, alternativehyfilling it.

Both customers and managers are first of all nbyurderested in
such characteristics of service as the length etigs, average waiting
time, traffic intensity provided that the averagées of the arrival of
demands and servicing are known. We assume that

1) The flow of demands for service is simplest.

2) The duration of servicing is random and the phility of its
being not less thanequalss™" with a constant positive

3) Each demand is served by one server/serviciilitfaEach
server/servicing facility services one demand tana.

4) If a queue has formed, as soon as the serwersshis customer,
he begins to serve the next one.

Denote byPy(t) the probability that at momenhthere ar&k demands.
Under the stipulated conditions these probabilitis be defined for
anyk=0, 1, 2, ... However, the precise formulas arevearkl and
other, preferable formulas are derived from thenmafoestablished
pattern of work. They are incomparably simpler:

k k

p
n "

Po, k=N (13.3, 13.4)

n k n+l
1. P P o —
=1 +—F—] p<npo=0,p=>n. 135
[kzz(; k! ni( n-p)] P P (135)

In these formulag = A/v. By formulas (13.3) and (13.4) it occurs that
atk> 1pc=0 as well.

This means that i > n and the process of serving is established,
any finite number of demands can only exist wittozgrobability;
infinite many demands and an infinitely long queuk exist with
probability 1. Ifp > n, the queue will unboundedly grow with time.

Our conclusion is very important. Since the nundder
servers/servicing facilities (runways in airpolisrths in seaports,
beds in hospitals, cash desks in shops etc) ia ofileulated under a
false assumption of ddeal capacity of a system equal to the product
of the number of servers/servicing facilities bg tturation of their
work in a given period divided by the average dorabf servicing
one demand [ideal traffic intensity]. Owing to ihegular arrival of
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demands such calculations lead to queues and ohertef waste of
time and loss of money and potential customers.

The methods of the theory of queuing certainly emsie
possibility of ascertaining the damage inflicteddwerloading a
system as well as the losses incurred by havingssiee
servers/service facilities. Many examples can lo@iged for showing
that that theory had been necessary when devisieghone
exchanges, establishing teams of repairmen inri@stgplanning the
capacity of large airports or tunnels for highwayth heavy traffic.
Nowadays, the theory of queues is becoming evee ingportant for
designing computers, search machines, in nuclegig biology etc.

13.5. On a Problem in the Theory of Reliability During the last
quarter of the 2‘bcentury serious worldwide attention has been fuaid
a new scientific discipline christenéakory of reliability It aims at
developing general rules for designing, manufangyraccepting,
transporting, storing, and applying industrial@es for ensuring
maximal efficiency of their usage.

In addition, the theory of reliability naturally wes out methods for
calculating the reliability of complicated articlaed technical systems
by issuing from the characteristics of the relidgypibf their
components. The importance of those aims is uniquedtie since our
entire life is directly and obliquely connectediwihe application of
various technical devices and systems. We go tdrandwork by
buses and trams, in our apartments we switch ghé dind turn taps on
and off. Hospitals apply various pieces of equiptienaiding vital
functions of patients. For example, after an op@nadn kidneys and
during the period of their restoration artificiatikeys are functioning
instead. Millions of passengers are yearly tranglicross the world
by air. And in each case we are extremely intedest@n absolutely
proper work of the applied technical means. Violatdf this
requirement can lead to fatal consequences: alaa@gan crash, an
artificial kidney can fail etc.

Such problems seem to have nothing in common \vétttieory of
probability and ought to be solved by designerstaedengineering
staff of factories. Actually, however, this opini@nwrong. A large
part of the problem connected with the study ofrijtiative
calculations, elaboration of expedient plans dirigghe quality of
manufactured articles and formulation of the perirnconclusions,
determination of best schedules for preventiveenpns and repairs,
is incumbent on mathematicians. And it occurs #flahe necessary
main characteristics of the articles are of a sietib nature. Thus, for
mass articles manufactured by the same factory the same raw
materials and under the same conditions the duarafievork until
failure is considerably scattered. We may quiténitefy imagine this
fact when recalling how sharply the working livésetectric bulbs are
fluctuating. Sometimes they work faultlessly fdiea years, but
sometimes they have to be replaced after only atdays.

Observations over long periods and numerous spexeriments
convincingly showed that we are unable to determneeisely the
working life of an article and can only estimate firobability that it
will not be shorter than a given numhefhe theory of probability
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thus confidently enters all the problems of theotlgeof reliability and
provides the main methods for solving them.

Let us now consider a simple problem and only patthe
necessary calculations. We do not therefore cowrjgliour account
but at the same time describe our problem clearbyugh. It is well
known that by no means there exist any absoludighile elements or
articles. Each element, however perfect are itpgntees, loses them
with time. For enhancing the reliability of artisleve ought to follow
various paths: weaken the conditions of their wtoik for better
materials, new structures or layouts of connectjjn®©ne of the most
usual methods for achieving this aim is the intiaiun of
redundancies. In essence, this means that redueldanents, their
sets or even whole units are included in the systedhbegin working
just as the main elements (sets, units) fail.

For ensuring uninterrupted transportation redundagel and
electric locomotives are kept at railway junctioAl.large power
stations have additional current generators, eafheainportant power
lines have auxiliary lines in parallel only parfinctioning during
normal conditions, and cars have spare wheels.

Suppose there aredevices which ought to function simultaneously
for timet. They fail independently from each other, the eydt] fails
if at least one device fails, and the common prdipakhat one of
them will not fail during that time is. By the Bernoulli formula the
probability of an uninterrupted work of the systam".

How will this probability change if the system hasedundant
working devices and fails if less tharout of f + m) of them are
performing? By the addition rule the probabilityugbt is

m

2 Crinp™ (@= P

i=1

Here is a simple example. Let= 4,m =1 andp = 0.9. It is not
difficult to find out that the probability of an umerrupted work of the
system was previously 0.6561 but that with onlyngle redundant
device it becomes 0.9185, 1.5 times higher and4d.98th two
redundant devices. This is why a single redundameat generator
almost completely excludes failures of power stetiorhe reliability
of systems increases many times over by introdug&dgndancy with
restoration Each failed component is then immediately rejpbined
returned in reserve.

We have only considered a simplified problem ofttreory of
reservation by redundant elements. Much more caagld
mathematics and primarily the theory of stochgstaresses are
necessary for studying the same problem undecozalitions.
Nowadays many important problems of the theoryeb#bility are
already solved, but a large number of them arkfatifrom being
satisfactorily and fully dealt with. Systematic \wawill allow their
solution under somewhat weakened conditions and tigeway for
studying them under more real assumptions.
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Conclusions

During the latest decades the theory of probakilitgame one of
the most rapidly developing mathematical scienisesv theoretical
results reveal other possibilities for applyingnitethods in natural
sciences and practice. At the same time, subtktnzore detailed
studies of natural phenomena, technological, ecamanmd other
processes prompt the theory of probability to deéwcnew methods
and discover new regularities generated by randemrigis theory is
one of those mathematical sciences which do nahemselves off
from life or the requirements of other scienceg,dre rather keeping
abreast of the general development of natural segand technology.

The reader should not however wrongly think thatttreory of
probability has now only become an auxiliary meiansolving
applied problems. Not at all! During the latestat#es it became a
harmonious mathematical science with its own prokland methods
of research. And it also occurred that the mosbirigmt and natural
problems of the theory of probability considerechasathematical
science are helping to achieve urgent aims in egields.

The theory of probability originated in the mid™@entury in
connection with the works of Fermat (1601 — 166%)scal (1623 —
1662) and Huygens (1625629]— 1695). Embryos of the notions of
probability of a random event and expectation tfradom variable
have appeared in their work. Their starting poiasuwhe study of
problems connected with games of chance, but tlesylg saw the
importance of the new concepts for studying nattoe.example,
Huygens stated:

The reader will soon understand that | have thrammbthe elements
of a new theory, both deep and interesting

Among scholars who had essentially influenced #hestbpment of
the theory of probability it is necessary to indéicdakob Bernoulli
(1654 — 1705) already mentioned above, De Moiv6&Tl— 1754),
Bayes [ca. 1701 -]1763), Laplace (1749 — 1827), Gauss (1777 —
1855) and Poisson (1781 — 1840).

A powerful development of the theory of probabilitgd been
closely linked with the traditions and advancefasésian science. In
the 19" century, in Europe, this theory came to a deadvdmeteas the
Russian mathematician P. L. Chebyshev (1821 — 1894an of
genius, discovered a new direction of its furthevelopment, a
thorough study of sequences of independent randorables®.

He himself and his students, A. L. [A. A.] Markadl866 — 1922)
and A. M. Liapunov (1857 — 1918), by following hiarrived at
fundamental results (the law of large numbersLibpunov theorem).
Readers are already acquainted with the law oélatgnbers and our
next aim is to provide a notion of another mostant@nt proposition
of the theory of probability which became knowrtlees Liapunov
theorem (or the central limit theorem).

It is important since a considerable number of phegna whose
outcomes depend on chance largely obey the follpywatitern: the
studied phenomenon is influenced by great manypieddently acting
random factors each of which only insignificantffeats its general
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course. The action of each such factor is exprelsgedndom
variablesty, &, ..., &, and their summary influente by their sum,

S=6+&6+ .+

It is practically impossible to take account of e&in other words,
to indicate their laws of distribution) or eveneloumerate them.

Clearly, therefore, the development of methodsadtig the study
of their summary action independently from the pssef each
separate summand is of utmost importance. Usudladstof research
are here helpless and ought to be replaced by thoséhich the large
number of acting factors will be not an obstacld, bn the contrary, a
relief. Such methods should compensate the inserftiknowledge of
each isolated factor by their large number.

The central limit theorem largely established beRyshev,

Markov and Liapunov, states that, if the actingses,, &, ..., &, are
mutually independent, their number very large draaction of each
as compared with their summary influence unimpdartéue law of

distribution of their sun® can only slightly differ from a normal law.

Here are pertinent examples. When firing shells,uhavoidable
deviations of the hit-points from the target angresented by the well
known phenomenon of scattering. It is the resuthefinfluence of a
great number of independently acting causes (itaegnilling of some
parts of a shell, irregular density of its materiasignificant variations
in the standard amount of the explosive, unnotieeatyors in aiming
the artillery gun, insignificant variations in tetate of the atmosphere
and many others) each of which only insignificamtifjuences the
shell’s (the shells’) path(s). The theory of firitakes this fact into
account and reflects it in manuals.

When measuring some physical magnitude, a greay faators
unavoidably influence the obtained results. Takeitdelf, each such
factor cannot be accounted for, but they lead torgiof measurements.
Among them are the changes in the state of theumsint whose
indications can somewhat vary under the influerfoeadous
atmospheric, thermal, mechanical and other cai$ese also are the
errors of the observer caused by the peculianitiéss eyesight or
hearing which also change with his mental or pralsiondition. The
actual error of observation is thus the resultrebg many insignificant,
mutually independent, so to say elementary errepedding on
chance. By the Liapunov theorem we may again expatthe errors
of observation obey a normal &

Any number of such examples can be provided: tis&ipas and
velocities of gas molecules determined by a largalver of collisions
with other molecules; the amount of a diffused sase; deviations
of the sizes of machine parts from the standardass manufacturing;
the distribution of the heights of anim{td the same speciegjr of
the sizes of their organs, etc.

For the theory of probability the advances of pbgkstatistics and
of a number of branches of technology raised alatgnber of
absolutely new problems which did not fit into tanfines of
classical patterns. Physics and technology weeségsted in studying
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processes. e., phenomena proceeding in time whereashbery of
probability had no general methods, no developetigb@atterns for
solving problems caused by the study of such phenam

There appeared an urgent need to develop a geheoal of
stochastic processéef random variabledepending on one or more
changing paramete)¥. The beginnings of such a general theory were
due to the fundamental work of Soviet mathematiian N.
Kolmogorov and L. Ya. [A. Ya.] Khinchin. In a cemasense this
theory has been developing the notions connectddsgguences of
dependent random variables introduced by Markdténfirst decade
of the 2¢" century (Markov chains). He only considered hitly as a
mathematical discipline, but in the 1920s physscistnverted it to
become an effective tool for investigating nature.

Later, many scientists (S. N. Bernstein, V. |. Romasky,
Kolmogorov, Hadamard, Fréchet, Doeblin, Doob, Felled others)
essentially contributed to the theory of MarkoviokaAlso in the
1920s, Kolmogorov, E. E. Slutsky, Khinchin and L&igcovered a
close connection between the theory of probakilitgt the
mathematical disciplines studying sets and the rgénetion of
functions (set theory and the theory of functioha ceal variable).
Somewhat earlier Borel arrived at the same concépisr discovery
proved extremely fruitful and it was in this direct that the final
solution of the classical problems formulated byBshev was
found®,

Lastly, we ought to indicate the work of Bernstéiojmogorov and
Mises devoted to the construction of a logicallynhanious theory of
probability’® capable to cover various pertinent problems foateal
by natural sciences, technology and other branchlesowledge.
However, in spite of considerable advances in tmesiuction of a
logical foundation of the theory of probability a&hed by those
authors, research in that direction is continuirtgrisively enough.

One of the reasons of this fact is the desire ttetstand the nature
itself of randomness, to establish the connectimt&een randomness
of phenomena and their determinativeness. Nowadegssuring
approaches to this great and important problenepéral
philosophical interest are discovered (if not tsnplete solution).

The further development of the theory of probagiliist as each
growing field of knowledge, requires an unintereginflux of fresh
forces. It opens up a wide field for displaying thkents of young
researchers, for their creative work. A deep irgkeire all sides of the
theory of probability is needed for such talentsame into
blossoming, an interest in the problems of itsdagunderpinning, in
its connections with other mathematical disciplineslisclosing new
problems appearing in natural sciences (in phybiosogy, chemistry
etc), engineering, managerial work, economics dhdrareas of
theoretical and practical activities.
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Notes

1. The publishers listed the editions of this boaiclliding those which had
appeared in foreign languages). The seventh edifid®70 was preceded by the
sixth edition of 1964, the first to appear afterifdhin’s death.

2, 8 1.1.In the second example we should have rather mesdisnsuccessful
results. However, successful in the theory of pbilitg are the results which lead to
the occurrence of the studied event. G&K.

3, § 1.1.This means that the particles are in an indiffeeguilibrium. G&K.

4,8 1.1In 1913, Markov (Petruszewycz 1983) studied theration of vowels
and consonants in the Russian language. Knaueb)t@5Scribed early applications
of statistics to linguistics.

5, 8 1.3.Chebyshev (1845/1951, p. 29) and Boole (1851/195251; 1854/2003,
p. 246) defined the aim of the theory of probapidis determining the probability of
an event (of a proposition, as Boole suggesteilsa}t by issuing from the given
probabilities of other events. This definition sesstm have persisted.

6, § 2.3.This is the principle ofmangelden GrundefKries 1886, p. 6) which
Keynes (1921/1973, p. 44) renanmrihciple of indifferenceLaplace (1814/1995, p.
116) recommended to adopt hypotheses but recgiypthcessantly by new
observations

7, § 2.3 Verification was necessary by studying all thendrgs, but then only
(any) one of them became sufficient.

8, 8 3.1.A bulb is standard if it can burn for 1200 howtherwise, it is
substandard. G&K.

9, § 3.1.This is easy to calculate. Of each 100 bulbs #(be mean are
manufactured by the first factory; and of eachhefse 100 bulbs 83 are standard.
Consequently, of the 700 bulb$883 = 581 will be standard on the average. The other
189 standard bulbs are manufactured by the seemtory. G&K.

10, § 3.3This means that out of 100 specimens selected therfirst skein 84 in
the mean endure such a load and 16 do not. G&K.

11, 8§ 3.3lInstead of a timely explanation of the pertinermgiple, four
significant digits are chosen instead of two! Samistake in Example 1 below and
in § 13.5.

12, § 4.3Why should a location of destroyedarget be corrected? Same
unimaginable attitude described in Example 1 below.

13, § 4.3We somehovknow the prior probabilities ... This is the onlywark
(an obligue hint at that) about the serious shoniog of the Bayes theorem.

14, 8 4.3 A strangest idea. No one (at least until the atlwéthe computer) ever
corrected or could have corrected artillery guniiyehe Bayes (or any other)
theorem. For that matter, how many artillery meeréheard about Bayes?

15, § 4.3 Positive answer of a test is actually explainéevalines below.

16, § 5.1In Example 1 of § 1.1 the figureell known in demographyas 516.
Below, the calculation is doubtful since differéamilies apparently have differing
inclinations to bear male (say) babies. In 1904y&mnb (although certainly not a
demographer) introduced three such classes ofiEn{bheynin 2002, pp. 153 —
154).

17, 8 5.2t is much more usual to say that those formutscdbe the binomial
distribution. The statement just below that{K is a large number is not generally
true.

18, § 5.3.0wing to obvious difficulties, | omitted all théadjrams.

19, § 5.3Actually, 197/17= 11.6.

20, 8 6.1Bernoulli discovered his theorem about 20 yeafsrieéhis deatlin
1705]but it was only published in 1713. G&K.

The Bernoulli theorem is described unsatisfactoBlgrnoulli proved an
extremely important existence theorem (and it wategproper to say something
about them) and studied the rapidity of the appnazdche statistical probability to
its theoretical counterpart. He did not yet knoe (Be Moivre -) Stirling formula
and this study was therefore not satisfactory. hiaier 4 of pt. 4 of hidrs
ConjectandiBernoulli formulated the inverse problem so thattheorem did not
conform to his aim, but he alleged that he hadesbloth the direct and the inverse
theorems. Only Bayes (Sheynin 2010) indicatedtti@tnverse problem was less
precise.
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Contrary to the authors’ statement, Bernoulli pbhés existence theorem in an
elementary way. They also failed to mention Poisson

21, 8 7.1By definition, a meteorite is a small celestiatipghatreached the
Earth.

22, § 7.1This sentence is unfortunate.

23, 8 7.2]t can be argued that no points should be awafateaiissing the target.
However, if a point means the right to shoot, exeniss provides a point. G&K.

24, § 7.2The knowledge of the law of distribution of a randvariable is indeed
sufficient but it is also the most possible knowledge.

25, § 7.2We may also consider 2 as a possible valug+ofy having probability
zero just like we did in table (1): for the sakegenerality we stated that value 1 was
possible. G&K.

And like stating that a probability equals 0 + 0.04

26, § 8.1The mean result is also random.

27, 8 8.1Beginning with De Moivre (1756, p. 3; possiblytive earlier editions
of this book as well) expectation is simply defirrather than derived and the
authors should have mentioned this fact. It is oppe to remark that Laplace
(1812/1886, p. 189) had proposed the tarathematical expectatidn distinguish it
from the then topicahoral expectationHis term is still being unnecessarily applied
at least in French and Russian literat@tisticalprobability (§ 1.1) is introduced
as though it is the theoretical probability.

28, § 8.1 We assume that a part rejected when assembliegieedis not used
anymore. G&K.

An unsuccessful attempt therefore means that aplast, but the authors had
not mentioned this circumstance.

29, 8§ 8.1An error of, say, + 1@hmeans that both 10 and - dthave
probability 0.16. G&K.

30, 8§ 8.1Alwaysis never stated in scientific definitions or staénts, but the
authors repeatedly (e. g., in § 9.1) apply thialas other unnecessary and possibly
confusing wordsgurely randomin the beginning of § 7.1).

31, 8§ 9.1]t would have been in order to say a few wordsual@ect and inverse
statements in general. Such statements are alsiomeshin Note 20 and § 12.3.

32, § 10.10n the mathematical meaningtafe valuesee Sheynin (2007).

33, 8 10.21s this a hint (repeated below) at empirical dées?

34, § 10.2.2The authors did not introduséandard deviation

35, § 10.2.3Shells fall around.. This is the only statement (and only an oblique
hint) that the scatter of shells is two-dimensional

36, 8§ 10.3Technologists decided that the creation of a thebtolerances based
on considerations and conclusions of probabiligotly was needed. G&K.

37, § 10.3A strange example: a distance of 20@neasured so roughly! In §
11.2 the same distance is supposed to be measiy@@Dlimes!

38, 8 11.1The authors should have explained why the estifidt®) isvery
rough

39, § 11.2Poisson is forgotten once more (cf. Note 20). Il 8 Chebyshev is
justly credited with a more general statement.

40, 8§ 11.2 A few specimens each containing, say, 100 —@8f® selected,
whereas the entire amount of wheat measures tehgeahaps hundreds of tons of
grain. G&K.

A few words about sampling in general would haverbia order.

41, § 11.3A wrong statement. Systematic errors are unavéedaid there
always exists some dependence between observdtioves understood long ago
that an excessive number of observations is usedegsSheynin (1996, pp. 97 — 98).

42, 8§ 11.4Fechner (Sheynin 2004, pp. 60 — 61) discussedripm of the errors
of reading and their influence, but hardly satisfeity. Geodesists never considered
the errors of reading separately from all otheorstrCournot (1843, § 139),
certainly not a practitioner, thought otherwise &iglconsiderations are properly
forgotten and | doubt that the authors could haetifjed their statement.

Moreover, contrary to their statement, the errareafding is not constant and the
error of the arithmetic mean of readings (of twdloee at most) is not the same as
the error of one reading.

Mathematicians are generally ignorant of the thexdrgrrors. In the beginning
and mid-18' century French scientists including Poisson hashtemraged by
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Legendre’s alleged mistreatment at the hands o§and to their own
disadvantage did not read that great scholar. cagtaew better than that but he
kept to his own almost useless theory of errorernbeless venerated for many
decades. And even Chebyshev (who included theyteda@rrors in his lectures) did
not study Gauss. See Sheynin (1996).

43, § 12.1A few lines above the law of distribution was assd known.

44, 8§ 12.1The scatter of shells is also discussed in Exafbpie§ 12.4 and in the
Conclusionsand each time somewhat differently. Factors imftileg crop capacity
are somewhat differently mentioned in 88§ 7.1 and .10

45, § 12.1Cf. also theConclusionsG&K.

46, § 12.2How a deviation (or an error) of a few metres barimportant when
measuring a distance between settlements?

47, 8§ 12.3For readers acquainted with elements of highehemaatics we note
that the equation of the curve representing a nblamais

1 (x= a)2
y= expl-———1I
ov2n 262 ]
Here, expX) =€ e= ... is the base of natural logarithmss ... is ... anda and

o are the mean value and variance of the randorablariThe knowledge of the
analytical form of the normal law can consideratipplify the acquaintance with
the following text, which is however easily under to readers unacquainted with
higher mathematics as well. G&K.

Why the notion of curves of distribution (§ 12.2)not similarly explained?

n

48, 8 12.38ymbol% should be understood 23 . G&K.

=1

The authors had not explained the latter symbbbalgh on p. 25 did explain the
meaning of three dots (omitted here). This is alsocurrence: authors of popular
writings begin explaining everything but soon h&wvabandon this intention.

49, § 12.41n addition to Note 44 | remark that the erromohing an artillery gun
certainly changes from shot to shot.

50, § 13.1This notation is at variance with the previousationv(t) etc.

51, § 13.2A few words should have been added about chaaitiom

52, 8§ 13.3Capacities of locks etc are mentioned under corservices!

53, 8§ 13.3The problem is at least heuristically connecteth wie central limit
theorem which is only mentioned in t@@nclusions

54, ConclusionsTranslated by David (1962, p. 115).

55. The theory of probability came to a dead end beedaplace forcefully
transferred it from pure mathematics to an appigdnce. For many decades the
splendid work of Chebyshev and his students haelyparterested mathematicians
because of that very circumstance, witness Markapsrt of 1921 (Sheynin 20086,
p. 152):The theory of probability was usually consideredaasapplied science in
which mathematical rigour was unnecessariie renewal of the situation began
with Lévy.

56. In general, the acting factors should be exprebgetiffering random
variables.

57.We may indeed expect normality, but not at alleglsv

58. At the end of § 13.1 and the beginning of § 131B one parameter was
mentioned.

59.1 doubt that such problems existed.

60. Kolmogorov published several pertinent contribngi@f which we mention
the lesser known note (1983). Bernstein (1917) sderhave been largely ignored;
Khinchin (1961) published an essay on the MisesrthdJspensky et al (1990, §
1.3.4) stated about that theokyntil now, it proved impossible to embody Mises’
intention in a definition of randomness that wasssactory from any point of view
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