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Introduction by Compiler 
    I am presenting translations of some contributions special in that 

they were devoted to the practical aspect of applied statistics. In any 

case, an acquaintance with them compels the reader to think about 

unexpected circumstances. I never met Yuri Ivanovich Alimov, but 

some decades ago I had attended a short course of lectures at Moscow 

University delivered by Valery Nikolaevich Tutubalin. I regret that he 

had no desire to have a look at his previous work. He allowed me to 

include here (see below in translation) his letter to me explaining his 

reluctance. 

    Tutubalin himself [v, beginning of] indicated what prompted him to 

compile his booklets [i – iii] and, as he reasonably supposed, also 

served as a catalyst for Alimov [iv]: the amount of falsehoods arrived 

at by applying the theory of probability is too great to be tolerated. He 

cited Grekova (1976) who had quoted scientific lore which stated that 

pure mathematics achieves the probable by proper methods and 

applied mathematics achieves the necessary by possible means. The 

problem therefore reduces to verifying those possible means, to 

ascertaining the conditions for those means to remain possible. 

    Tutubalin intended his booklets for a rather broad circle of readers 

even though he was discussing most serious subjects [ii]. But then, in 

the first place in [iii], his text included hardly comprehensible 

statements and an unusual pronouncement on Bernoulli’s law of large 

numbers which should be read together with Alimov’s works.  

    Two of Tutubalin’s statements in the same booklet (see my Notes 

17 and 18) were no doubt watered down to pass censorship; nowadays, 

they should have been drastically altered. 

    Two points ought to be indicated. First, concerning the application 

of probability to administration of justice see my Note 4 to booklet [i]. 

Second, Tutubalin [i] overestimated Laplace’s influence with respect 

both to theory and general thinking. I think that Fourier (1829, pp. 375 

– 376) correctly described Laplace as a theoretician: 

 

    We cannot affirm that it was his destiny to create a science entirely 

new [...]; to give to mathematical doctrines principles original and of 

immense extent [...]; or, like Newton, [...] to extend to all the universe 

the terrestrial dynamics of Galileo; but Laplace was born to perfect 

everything, to exhaust everything and to drive back every limit in order 

to solve what might have appeared incapable of solution. 

 

    Neither Boltzmann (who cited many scholars and philosophers), nor 

Poincaré (who regrettably knew only Bertrand) referred to Laplace 

even once, and Maxwell only mentioned him twice in a very general 

way.  

    As to general thinking, Quetelet regrettably overshadowed 

Laplace’s Essai by his spectacular but poorly justified announcements 

and proposals later rejected by German statisticians along with the 

theory of probability. 

    Alimov’s booklet [iv] is written in bad general style. Witness his 

original first sentence (altered in translation): ... mathematicians and 
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those who applies it ... The booklet is intended for a much better 

qualified readership. He indicates the weak points of the attempts to 

apply probability theory, but his positive recommendations are not 

sufficiently isolated from the context and the exposition is not at all 

conducive for easy reading. I only translated parts of his booklet and 

described much in my own words. 

    Alimov’s criticism of the usual practical aspect of applied 

mathematical statistics is much more radical than Tutubalin’s, suffice 

it to mention the title of his contribution [iv], and he also over-

enthusiastically rejected many chapters of that discipline.  

    A special comment is warranted by the authors’ separation of two 

understanding of randomness, its narrow mathematical meaning and 

its more general scientific understanding. This latter is still important; 

its beginning can be traced to Poincaré (1896/1912, p. 4) who 

indicated that a very small cause can have a considerable effect which 

was his main explanation of randomness. His idea (effectively 

pronounced earlier by several scholars including Maxwell and even by 

Aristotle) was greatly generalized in the studies of chaotic phenomena 

which began several decades ago. I provide an example illustrating a 

mistake made by imagining mathematical randomness instead of 

randomness in the general sense (or even simply indefiniteness). 

    William Herschel (1817/1912, p. 579) formulated a statement about 

the size of the stars. Not knowing anything about it or about the 

existence of different spectral classes, he presumed that a star 

randomly chosen from more than 14 thousand stars of the first seven 

magnitudes, is not likely to differ much from a certain mean size of 

them all. Actually, the size of the stars differ enormously and a mean 

size is only a purely abstract notion. 

    Here now is Tutubalin’s explanation of February 2011. 

 

    Philosophers of science had successfully proved that neither theory 

nor experiment were of any consequence in science and were not 

suited for anything. The only possible explanation is that scientific 

cognition, just like religious cognition, is a miracle and revelation. I 

provided a hint of theology of science in my paper in Uspekhi 

Fizicheskikh Nauk vol. 163, No. 7, 1993, pp. 93 – 109. 

    If you will not colour theologically your investigations, they will not 

give rise to such interest as they really deserve. 

 

    Perhaps most extraordinary events do happen (with an extremely 

low probability). But suppose that a mathematician had somehow 

divined the yet unknown Pythagorean proposition. Even then he still 

has to justify it. At first, he can draw a right triangle, measure its sides 

etc, then rigorously consider his task. 

    After reading Tutubalin’s paper mentioned above, I am still unable 

to say anything else on this subject, but I saw a significant statement 

on p. 98: for two hundred years no progress was made about the 

fundamental problem: when does statistical stability emerge? 

 
    I have now found a highly relevant statement by Kolmogorov in the 

Russian translation of 1986 of his Logical foundations of probability 
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(Lect. Notes Math., No. 1021, 1983, pp. 1 – 5): Randomness in the 

wide sense indicates phenomena which do not exhibit regularities, do 

not necessarily obey any stochastic laws. It should be distinguished 

from stochastic randomness, a subject of the theory of probability. 
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I 

 
V. N. Tutubalin 

 

Theory of Probability in Natural Science 
 

Teoria Veroiatnostei v Estestvoznanii. Moscow, 1972 

 

Introduction 
    Even from the time of Laplace, Gauss and Poisson the theory of 

probability is using a complicated mathematical arsenal. At present, it 

is applying practically the entire mathematical analysis including the 

theory of partial differential equations and in addition, beginning with 

Kolmogorov’s classic (1933), measure theory and functional analysis. 

Nevertheless, books on the theory of probability for a wide circle of 

readers usually begin by stating that the fundamental problems of 

applying it are quite simple for a layman to understand. That was 

Cournot’s (1843) opinion, and we wish to repeat his statement right 

here. 

    However, it could have been also stated that those problems are 

difficult even for specialists since scientifically they are still not quite 

clear. More precisely, when discussing fundamental stochastic 

problems, a specialist fully mastering its mathematical tools has no 

advantage over a layman since they do not help here. In this case, 

important is an experience of concrete applications which for a 

mathematician is not easier (if not more difficult) to acquire than for 

an engineer or researcher engaged in direct applications. 

    At present, ideas about the scope of the theory of probability took 

shape a bit more perfectly than in the time of Laplace and Cournot. We 

begin by describing them. 

 

1. Does Each Event Have Probability? 

    1.1. The concept of statistical stability (of a statistical ensemble). 
Textbooks on the theory of probability, especially old ones, usually 

state that each random event has probability whereas a random event is 

such that can either occur or not. Several examples are offered, such as 

the occurrence of heads in a coin toss or of rain this evening or a 

successful passing of an examination by a student etc. As a result, the 

reader gets an impression that, if we do not know whether a given 

event happens or not, we may discuss its probability, and the theory of 

probability thus becomes a science of sciences, or at least an 

absolutely special science in which some substantial inferences may be 

reached out of complete ignorance.  

    Modern science naturally vigorously rejects that understanding of 

the concept of probability. In general, science prefers experiments 

whose results are stable, i. e. such that the studied event invariably 

occurs or not. However, such complete stability of results is not 

always achievable. Thus, according to the views nowadays accepted in 

physics, it is impossible for experiments pertaining to quantum 

mechanics. On the contrary, it can be considered established 



 7 

sufficiently securely that a careful and honest experimentalist can in 

many cases achieve statistical, if not complete stability of his results.  

    As it is now thought, events, connected with such experiments, are 

indeed comprising the scope of the theory of probability. And so, the 

possibility of applying the theory of probability is not, generally 

speaking, presented for free, it is a prize for extensive and painstaking 

technical and theoretic work on stabilizing the conditions, and 

therefore the results, of an experiment. But what exactly is meant by 

statistical stability for which, as just stated, we ought to strive? How to 

determine whether we have already achieved that desired situation, or 

should we still perfect something? 

    It should be recognized that nowadays we do not have an exhaustive 

answer. Mises (1928/1930) had formulated some pertinent demands. 

Let µA be the number of occurrences of event A in n experiments, then 

µA/n is called the frequency of A. The first demand consisted in that the 

frequency ought to become near to some number P(A) which is called 

the probability of the event A and Mises wrote it down as 

 

    lim µA/n = P (A), n → ∞. 

 

In such a form that demand can not be experimentally checked since it 

is practically impossible to compel n to tend to infinity. 

    The second demand consisted in that, if we had agreed beforehand 

that not all, but only a part of the trials will be considered (for 

example, trials of even numbers), the frequency of A, calculated 

accordingly, should be close to the same number P (A); it is certainly 

presumed that the number of trials is sufficiently large.  

    Let us begin with the merit of the Mises formulation. Properly 

speaking, it consists in that some cases in which the application of the 

theory of probability would have been mistaken, are excluded, and 

here the second demand is especially typical; the first one is apparently 

well realized by all those applying the theory of probability and no 

mistakes are occurring here.  

    Consider, for example, is it possible to discuss the probability of an 

article manufactured by a certain shop being defective
1
. One of the 

causes of defects can be the not quite satisfactory condition of a part of 

workers, especially after a festive occasion. According to the second 

Mises demand, we ought to compare the frequency of defective 

articles manufactured during Mondays and the other days of the week, 

and the same applies to the end of a quarter, or year due to the rush 

work. If these frequencies are noticeably different, it is useless to 

discuss the probability of defective articles. Finally, defective articles 

can appear because of possible low quality of raw materials, deviation 

from accepted technology, etc.  

    Thus, knowing next to nothing about the theory of probability, and 

only making use of the Mises rules, we see that for applying the theory 

for analyzing the quality of manufactured articles it is necessary to 

create beforehand sufficiently adjusted conditions. The theory of 

probability is something like butter for the porridge: first, you ought to 

prepare the porridge. However, it should be noted at once that the 

theory of probability is often most advantageous not when it can be 
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applied, but when, after attempting to make use of it, a lack of 

statistical homogeneity (which is the same as stability) is revealed.  

    If the articles manufactured by a certain shop may be considered as 

a statistically homogeneous totality, the serious question still is, 

whether the quality of those articles can be improved without 

fundamentally perfecting technology. If, however, the quality is 

fluctuating (which should be stochastically established), then the 

pertinent cause can undoubtedly be revealed and the quality improved.  

    The main shortcoming of the Mises formulation is its indefiniteness. 

It is not stated how large should the number of experiments n be for 

ensuring the given beforehand closeness of µA/n to P (A). A quite 

satisfactory answer can only be given (see below) after additionally 

presuming an independence of the results of individual trials. An 

experimental check of independence is partially possible, but difficult 

and always, without exception!, incomplete.  

    But the situation with the Mises second demand is much worse. As 

formulated above, it is simply contradictory since, indicating 

beforehand some part of the n trials, we could have accidentally 

chosen those in which the event A had occurred (or not) and its 

frequency will be very different from the frequency calculated for all 

the trials. Mises certainly thought not about selecting any part of the 

trials, but rather of formulating a reasonable rule for achieving that. 

    Such a rule should depend on our ideas about the possible ways of 

corrupting statistical homogeneity. Thus, fearing the consequences of a 

Sunday drinking bout, we ought to isolate the part of the production 

manufactured on Mondays; wishing to check the independence of 

event A from another event B, we form two parts of the trials, one in 

which B occurred, the other one, when it failed. These reasonable 

considerations are difficult to apply in the general case, i. e., they can 

hardly be formulated in the boundaries of a mathematical theory. 

    We see that there does not exist any mathematically rigorous 

general method for deciding whether a given event has probability or 

not. This certainly does not mean that in a particular case we can not 

be completely sure that stochastic methods may be applied. For 

example, there can not be even a slightest doubt in that the Brownian 

motion can be stochastically described. Brownian motion is a 

disorderly motion of small particles suspended in a liquid and is 

caused by the shocks of its moving molecules. Here, our certainty is 

justified rather by general ideas about the kinetic molecular theory 

than by experimental checks of statistical stability.  

    In other cases, such as coin tossing, we base our knowledge on the 

experience of a countless number of gamblers playing heads or tails. 

Note, however, that many eminent scientists did not think that the 

equal probability of either outcome was evident. Mises, for example, 

declared that before experimenting we did not know about it at all; 

anyway, there is no unique method for deciding about the existence of 

statistical stability, or, as the physicists say, of a statistical ensemble.  

    The stochastic approach is therefore never mathematically rigorous 

(provided that a statistical ensemble does exist) but, anyway, it is not 

less rigorous than the application of any other mathematical method in 

natural science. For being convinced, it is sufficient to read § 1 (What 
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is energy?) from chapter 4 of Feynman (1963). In an excellent style 

but, regrettably in a passage too long for being quoted, it is stated there 

that the law of conservation of energy can be corroborated in each 

concrete case by finding out where did energy go, but that modern 

physics has no general concept of energy. This does not prevent us 

from being so sure in that law that we make a laughing-stock of 

anyone telling us that in a certain case the efficiency was greater than 

100%. Many conclusions derived by applying stochastic methods to 

some statistical ensembles are not less certain than the law of 

conservation of energy.  

    The circumstances are quite different for applying the theory of 

probability when there certainly exists no statistical ensemble or its 

existence is doubtful. In such cases modern science generally denies 

the possibility of those applications, but temptation is often strong... 

Let us first consider the reason why. 

    1.2. The restrictiveness of the concept of statistical ensemble 
(statistical homogeneity). The reason is that that concept is rather 

restrictive. Consider the examples cited above: coin tossing, passing an 

examination, rainfall. The existence of an ensemble is only doubtless 

in the first of those. The business is much worse in the other two 

examples. We may discuss the probability of a successful passing of 

an examination by a randomly chosen student (better, by that student 

in a randomly chosen institute and discipline and examined by a 

randomly chosen instructor). Randomly chosen means chosen in an 

experiment from a statistical ensemble of experiments. Here, however, 

that ensemble consists of exactly one non-reproducible experiment and 

we can not consider that probability.  

    It is possible to discuss the probability of rainfall during a given 

day, 11 May, say, of a randomly chosen year, but not of its happening 

in the evening today. In such a case, when considering that probability 

in the same morning, we ought to allow for all the weather 

circumstances, and we certainly will not find any other day with them 

being exactly the same, for example, with the same synoptic chart, at 

least during the period when meteorological observations have been 

made.  

    Many contributions on applying the concept of stochastic process 

have appeared recently. It should describe ensembles of such 

experiments whose outcome is not an event, or even a measurement 

(that is, not a single number), but a function, for example a path of a 

Brownian motion. We will not discuss the scope of that concept even 

if the existence of a statistical ensemble is certain but consider the 

opposite case. Or, we will cite two concrete problems. 

    The first one concerns manufacturing. We observe the value of 

some economic indicator, labour productivity, say, during a number of 

years (months, days) and wish to forecast its values. It is tempting to 

apply the theory of forecasting stochastic processes. However, our 

experiment only provides the observed values and is not in principle 

reproducible, and there is no statistical ensemble.  

    The other problem is geological. We measured the content of a 

useful component in some test points of a deposit and wish to 

determine its mean content, and thus the reserves if the configuration 
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of the deposit is known. It is tempting to apply here the theory of 

estimating the mean of a stochastic process, but here also it is unclear 

what should constitute the ensemble of realizations. If a new 

realization is understood as similar values at points chosen along 

another line, it is unclear whether they will possess the same statistical 

properties, and still less clear if data pertaining to other deposits are 

chosen. 

    These examples are sufficiently important for understanding the 

wish to create such stochastic methods which will not need ensembles. 

However, modern probability theory has no such methods but only 

particular means for saving the concept of statistical homogeneity and 

even they are not at all universally applicable. So how should we 

regard the application of the theory of probability in such cases? 

    1.3. Relations between medicine and magic. The problem stated 

above resembles that of the relations between medicine and magic 

whose idea I have borrowed from Feynman (1963) but am considering 

it in more detail. Suppose we discuss the treatment of malaria, and the 

shaman knows that the Peruvian bark will help whereas shaking a 

snake above the patient’s face is of no use. So he prescribes in essence 

the same treatment as a physician will. True, the doctor will give 

quinine instead of the bark, but this is not very important, and, which 

is the main point, he knows the life cycle of the plasmodium and will 

correctly prescribe the duration of the treatment.  

    The physician has therefore more chances of success, but the main 

difference between medicine and magic consists in the attitudes of the 

doctor and the shaman in case of failure. The shaman will explain it by 

the devil’s meddling and do nothing more; the doctor, however, will 

look for the real cause of failure and hope that such knowledge will at 

least help other patients if not the first one who could have died. The 

history of science is a history of ever more precise cognition of reality 

which is indeed restricting the arbitrary intervention of the devil in 

whose face the shaman feels himself hopeless. 

    However, we do not succeed in really banishing the devil. Even in 

mathematics he is able to interfere which is manifested for example in 

contradictions; most troublesome are those pertaining to the set theory. 

A grand attempt to expel the devil from mathematics connected with 

the names of Bertrand Russell, Hilbert, Gödel, and other first-rate 

mathematicians had been attempted in the first half of the 20
th

 century, 

and what did emerge?  

    It occurred that along with the devil it would have been necessary to 

banish some notions which we do not at all wish to be deprived of, for 

example the idea of a number continuum. It is impossible, say (without 

offering the devil a finger instead of which he will snap off your hand), 

to state that a function continuous on an interval reaches its maximum 

value. Such excessively radical exorcism (constructive mathematical 

analysis) was naturally not recognized; we have to tolerate the devil. 

    True, for the mathematical theory of probability that devil is 

actually only an imp who inflicts no special harm. However, I recall 

that once, desiring to apply transfinite induction (a mathematical trick 

involving something devilish) for proving a theorem, I discovered 

much to my relief that the process of induction did not actually 
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demand to apply transfinite numbers but was rather reduced to usual 

mathematical induction. 

    In the applied theory of probability the harmless imp turns out a 

sharp horned devil who favours to corrupt meanly statistical 

homogeneity. So far as we keep to the concept of ensemble and check 

that homogeneity by available methods, we are able at least to reveal 

in time the devilish dirty trick whereas, abandoning it, we wholly 

surrender ourselves to the devil’s rule and ought to be prepared for 

surprises. Thus, from the point of view of modern probability theory, 

the boundary between science and magic is defined by the notion of 

statistical ensemble. It follows that inferences, derived by applying 

that theory when a statistical ensemble of experiments is lacking, has 

no scientific certainty.  

    Unlike the arsenal of magic, the tools of science must be entirely 

justified. However, when concluding that, for example, the error of a 

result obtained from a single realization of a stochastic process is 

situated in the given interval with probability 0.95, we do not know to 

what does that probability correspond, − to an ensemble of realizations 

which we ought to conjuncture by issuing from the single observed 

realization so as to apply the notion of stochastic process?  

    But all those other realizations are irrelevant and it is very easy to 

provide examples of faulty inferences made when applying the theory 

of probability in manufacturing, geology, etc where it is senseless to 

discuss statistical ensembles. Historically, science emerged from 

magic but treats it disdainfully and would wish to ignore it. However, 

we should not wholly yield to that temptation either.  

    A representative of the constructive direction in mathematics 

considers the usual mathematical analysis a magic. We should rather 

distinguish between white and black magic the latter connected with 

being subjectively unconscionable. At present, we can not ignore 

honest attempts to apply probability theory when statistical ensembles 

are lacking. I venture to forecast that something being magic today 

will become science tomorrow. It would have been unreasonable to 

keep too strongly to the established concept of statistical homogeneity. 

However, here I will entirely hold on to that concept since nowadays 

any other method of obtaining really plausible results is lacking. 

    1.4. Summary. Thus, while perfection of experimenting is going on 

in one or another branch of science or technology, a special situation 

often arises when statistical stability is present but complete stability 

of the results is impossible to achieve. The former is characterized by 

stability of the frequencies of the occurrences of the various events 

connected with the experiment’s outcome.  

    An exhausting check of such stability (statistical homogeneity, 

statistical ensemble) is impossible, but in many cases the presence of a 

statistical ensemble is sufficiently certain. According to modern ideas, 

these cases indeed comprise the field of scientific applications of the 

probability theory.  

    And still there exists a readily understood wish to apply it also in 

other cases in which the results of the experiments are not definite, but 

the existence of a statistically homogeneous ensemble is impossible. 

For the time being, such applications belong to magic rather than 
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science, but, provided subjective honesty, they can not be ignored. In 

future it will perhaps be possible to make them scientific. As testified 

by the entire history of science, its origin had occurred by issuing from 

factual material collected while practising magic. 

 

2. The Foundations of the Mathematical Arsenal  

of the Theory of Probability 
    Modern probability is sharply divided into mathematical and applied 

parts. Mathematical statistics adjoins the former whereas the latter is 

closely connected with the so-called applied statistics. An attempt to 

define those sciences would have led us into such scholastic jungle, 

that, terror-stricken, we abandon this thought. Here, we wish to adopt 

some intermediate stand, and we begin with the mathematical theory 

of probability.  

    It busies itself with studying the conclusions of the Kolmogorov 

axiomatics (1933) and has essentially advanced in developing purely 

mathematical methods. However, it wholly leaves aside the question 

of which phenomena of the real world does the axiomatic model 

correspond to well enough, or somewhat worse, or not at all, 

respectively. It is possible to adduce really far-fetched examples of 

mistakes made by mathematicians lacking sufficient experience and 

practical intuition when attempting to work in applications. 

    However, the axiomatic model is suitable for developing the 

mathematical arsenal. There, the generally known stochastic concepts 

and theorems simply become particular cases of the corresponding 

concepts and theorems of mathematical analysis. In this chapter, we 

will indeed describe the pertinent subject. The following chapters are 

devoted to the substantial stochastic theorems. 

    The reader ought to bear in mind that this booklet is not a textbook, 

and that here the theory of probability is therefore dealt with briefly 

and sometimes summarily. Its knowledge is not formally required, and 

all the concepts necessary for understanding the following chapters are 

defined, but examples are not sufficiently numerous. Without them, it 

is impossible to learn how to apply the axiomatic model, and it would 

be better if the reader is, or intends to be acquainted with the theory of 

probability by means of any textbook even if it does not keep to the 

axiomatic approach. From modern textbooks, we especially advise pt 1 

[vol. 1] of Feller (1950). 

    2.1. Discrete space of elementary events. In the simplest case quite 

sufficient for solving many problems the entire theory of probability 

consists of one notion, one axiom and one definition. Here they are.  

    The concept of stochastic space. A stochastic space Ω is any finite 

or countable set corresponding to whose elements ω1, ω2, ..., ωn, ...  

non-negative numbers P(ωi) ≥ 0 called their probabilities are attached. 

Set means here the same as totality, that is, something consisting of 

separate elements. A set is called countable if its elements can be 

numbered 1, 2, ..., n, ...  

    We will introduce the notation 

 

    Ω = {ω1, ω2, ..., ωn, ...}, or Ω = {ωi:i = 1, 2, ..., n, ...} 
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for stating that Ω consists of elements ω1, ω2, ..., ωn, ... Elements ωi are 

also called elementary events or outcomes. 

    Axiom. The sum of the probabilities of all the elementary events is 

1: 

 

    P(ω1) + ... + P(ωn) + ... = 
1 ω   

(ω ) (ω ) 1.
i

i i

i

P P
∞

= ⊆ Ω

= =∑ ∑  

 

    Definition. An event is any subset (part of set) of the set of 

elementary events; the probability of an event is the sum of 

probabilities of its elementary events. That set A is a subset of set Ω (i. 

e., that A consists of some elements included in Ω) is written as 

 .A ⊆ Ω  The probability of event A is denoted by P(A) and the 

definition is written down as 

 

    P(A) = 
ω

(ω ).
i

i

A

P
⊆

∑  

 

The explanation below the symbol of summing means that those and 

only those P(ωi) are summed which are included in A. 

    The described mathematical model can be applied for very many 

stochastic problems. However, all of them are initially formulated not 

in the terminology of the space of elementary events, i. e., not in the 

axiomatic language but in ordinary terms. This [?] is unavoidable 

because only by considering problems any student of probability 

becomes acquainted with those concrete situations in which it is 

applicable. It is impossible to describe such situations in the axiomatic 

language and it is therefore necessary to learn how to translate the 

conditions of problems into the language of elementary events.  

    The situation here is quite similar to that which school students 

encounter when solving problems in compiling systems of equations: 

there, a translation from one language into another one is also needed.  

Such translations can be either very easy or difficult or ambiguous 

with differing systems of equations appearing in the same problem. In 

this last-mentioned case, one such system can be difficult to compile 

but easy to solve with the alternative system being opposite in that 

sense (easy and difficult respectively).  

    We stress therefore that, introducing a space of elementary events 

corresponding to a given problem, is not a purely mathematical 

operation as a proof of a theorem, but indeed a translation from one 

language into another one, and it is senseless to strive for such a rigour 

as adopted in mathematics. Clear-cut mathematical formulations are 

now concluded here and we are turning to the rules of translation. 

    Stochastic problems usually have to do with some experiments, with 

the set Ω consisting of all its possible outcomes. Thus, in coin tossing 

Ω consists of two elementary outcomes 

 

    Ω = {heads; tails} 

 

and in throwing a die there are six such outcomes 
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    Ω = {1, 2, 3, 4, 5, 6}. 

 

    For the case of two dice Ω consists of all pairs (m, n), showing the 

numbers of points on them: 

 

    Ω = [(m, n): m = 1, ..., 6; n = 1, ..., 6]. 

 

An event A can here be, say, an even sum of the points: 

 

    A = [(m, n): m = 1, ..., 6; n = 1, ..., 6; m + n is even}. 

 

    In general, descriptions of the set of elementary outcomes are 

usually easily made, but the situation is quite different when 

determining the probabilities P(ωi) of separate elementary events given 

the conditions of a problem. According to the frequentist concept of 

probability it will be necessary to make a large number of experiments 

and assume the frequencies of the occurrence of the elementary 

outcomes ωi as the approximate values of P (ωi). This, however, is not 

always possible; actually, such determinations of probabilities are 

complicated so that a large part is played by cases in which 

probabilities can be determined by some speculations without 

experimenting.  

    For example, the set Ω rather often consists of a finite number N of 

elements whose probabilities appear undoubtedly equal to one another.  

According to the axiom, the probability of each elementary event will 

then be 1/N, and if A consists of M elementary events, 

 

    
ω

( ) (ω )  .
i

i

A

M
P A P

N⊆

= =∑                                                            (2.1) 

 

    In words: the probability of an event is equal to the ratio of the 

number of favourable outcomes (outcomes included in the event) to 

the number of all possible outcomes. When formula (2.1) is applicable, 

we are discussing a problem in classical probability. 

    According to modern interpretation, formula (2.1) is not a definition 

of probability, it is only applicable when all the elementary events are 

equally probable. And when does this happen? is a rather subtle 

question. For example, long experiments with dice indicate that their 

various faces are not generally equally probable; it is difficult to 

manufacture a perfectly symmetric dice. On the other hand, special 

measures undertaken when drawing lottery tickets by chance ensure 

equal probability of winning for each. 

    To illustrate the possibilities of the mathematical model we will 

consider the casting of lots assuming that such measures were 

sufficient for ensuring the application of the concept of classical 

probability. When distributing apartments in a house being built by a 

cooperative, the casting of lots is sometimes achieved in two stages. At 

first, lot only decides the order of drawing lots by the members at the 

second stage, when the actual distribution by chance follows. Is such 

procedure consisting of two stages necessary? Or, who has more 
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chances to draw a more suitable apartment, the first or the last in the 

order of the final drawings?  

    Suppose there are N apartments, numbers 1, 2, .., n of them worse, 

and the rest numbers, n + 1, ..., N, better. Determine the probability 

that the member of the cooperative k-th in the order of drawing will 

draw a worse apartment. The experiment, or drawing the N tickets has 

outcomes  

 

    i1, i2, ..., iN, all ik are different. 

 

    Here, i1 is the number of the apartment drawn by the first person, i2, 

same by the second person, etc. The total number of all the 

possibilities is 

 

    ( 1)...2 1 !.N N N− ⋅ =  

 

If the tickets are thoroughly shuffled, all the elementary events should 

be equally probable and we will have a problem in classical 

probability. Let Ak be the event of the k-th member of the cooperative 

to draw a worse apartment. In other words, Ak consists of such 

elementary events i1, i2, ..., iN, that ik takes one of the values 1, 2, ..., n 

with i1, ..., ik−1, ik+1, ..., iN being arbitrary. Let us count the number of 

those elementary events.  

    For ik there are n possibilities; 

    for i1, i2, ..., ik−1, there are N – 1, N – 2, ..., N – k + 1 possibilities; 

    for ik+1, ..., iN, there are (N – k), ..., N − (N – 1) = 1 possibilities. 

    Multiplying all the possibilities we see that event Ak consists of  

(N – 1)!n = (N!/N)n elementary events so that 

 

    
( !/ )

( )
!

k

N N n n
P A

N N
= =  

 

and does not depend on k. 

    In other words, the probability of choosing a worse apartment can 

not depend on the order of drawing, so that the first drawings are 

superfluous. However, we assumed that the tickets were thoroughly 

shuffled; otherwise the chances of the members of the cooperative are 

not identical and the first drawings will essentially equalize the 

chances. It is regrettably unknown how exactly should the tickets be 

shuffled for ensuring equal chances whereas the method of shuffling 

adopted for drawing lottery tickets is too tiresome. It follows that 

drawings of lots in two stages can not be held absolutely superfluous
2
. 

    2.2. Conditional probability. The reader acquainted with urn 

stochastic models had undoubtedly noted that the model of the space 

of elementary events is quite isomorphic to the model of extracting 

balls from an urn and only differs in that different elementary events 

can now have differing probabilities and the number of these events 

can be infinite. Indeed, the real part played by the Kolmogorov 

axiomatics only becomes clear when considering uncountable spaces 

of elementary events, but even in the simplest case (finite or countable 
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number of events) the advantage of the axiomatic approach is that it 

distinctly separates the solution of stochastic problems into two parts: 

    1. Choice of the mathematical model of the phenomenon or 

experiment. 

    2. Calculation within its limits. 

    We are thus following Descartes’ advice: separate each problem 

into so many parts that they become solvable. The first part, that is, the 

choice of the mathematical model, is undoubtedly more difficult, and 

the difficulty, as stated above, lies in determining the probabilities of 

the elementary events. A formulation of more or less general rules for 

overcoming this difficulty demands an introduction of some new 

concepts. We have considered the concept of classical probability; 

another useful concept is that of conditional probability, but it is 

expedient to begin by considering usual operations on events. In the 

set-theoretic context now adopted these operations coincide with those 

in the set theory. 

    A sum (unification) of events. A sum A B∪  of events A and B is an 

event consisting of those elementary events that enter into A or B (or 

both). 

    A product (intersection) of events. A product AB of events A and B 

is an event consisting of those elementary events that enter both A and 

B.  

    A complementary (contrary) event A of event A is an event 

composed of those elements that do not enter event A. 

    If an experiment concludes by one of those elementary outcomes 

which enter some event C, we say that event C had occurred. Thus, the 

sum of events A and B occurs if at least one of those events has 

occurred. The product AB occurs if both events A and B has occurred. 

Complement A  of event A occurs if A has not occurred. 

    Mathematically, conditional probability P(A/B) that A occurs if B 

has occurred is determined by the equality 

 

    
( )

( / ) = ,  ( )  0.
( )

P AB
P A B P B

P B
≠  

 

It follows that P(AB) = P(B) P(A/B). 

    The part played by the concept of conditional probability is revealed 

by its frequentist interpretation. Consider n experiments with events A 

and B occurring or not in each and let µA, µB, and µAB be the number of 

occurrences of events A, B, and AB. It is evident that µAB is also the 

number of occurrences of event A in those experiments, and the ratio 

µAB/µB −the conditional frequency of event A if event B has occurred. 

Then 

 

    
µ µ / ( )

( / )
µ µ / ( )

AB AB

B B

n P AB
P A B

n P B
= ≈ =  

 

and the conditional probability is interpreted as the conditional 

frequency. 
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    Let the space of elementary events Ω be separated into parts B1, B2, 

..., Bn, so that Ω = 1 2 ...
n

B B B∪ ∪ ∪  and no two sets Bi and Bj have 

common elements. Then, for any A ⊆ Ω  we will have 

 

    1 2 ... 
n

A AB AB AB= ∪ ∪ ∪  

 

which means that the elementary events included in A are separated 

into those entering B1, B2, ..., Bn and obviously 

 

    P(A) = P(AB1) + P(AB2) + ... + P(ABn). 

 

This follows from the definition of P(A), see § 2.1. 

    By definition of conditional probability  

 

    
1 1

( ) ( ) ( ) ( )
n n

i i i

i i

P A P AB P B P AB
= =

= =∑ ∑                                     (2.2) 

 

which is the formula of complete probability. 

    There is another, the so-called Bayes formula 

 

    

1

( ) ( ) ( / )
( / ) .

( )
( ) ( / )

i i i
i n

i i

i

P AB P B P A B
P B A

P A
P B P A B

=

= =

∑
                             (2.3) 

 

    We have derived formulas (2.2) and (2.3) by issuing from the 

definition of conditional probability and applying really trivial 

transformations. They can not therefore be called substantial 

mathematical theorems, but they nevertheless play an important part. 

    Let us first consider the application of formula (2.2). Suppose, for 

the sake of definiteness, that event A means that some article is 

defective and assume also that that event is not by itself statistically 

stable; more definitely, that there are mutually exclusive conditions of 

manufacturing B1, B2, ..., Bn such that given Bi, it is possible to 

consider P(A/Bi) so that statistical stability is present.  

    Suppose now that all the products manufactured under those 

conditions are stored without being sorted out but that their share 

corresponding to condition Bi is given and equal to P(Bi). Consider 

now an experiment in which one article is chosen at random and 

checked. Two outcomes are possible: A (defective) and A  (quality 

sufficient). Its random extraction means that such an experiment is 

statistically stable, P(A) is expressed by formula (2.2) and 

 

    ( ) 1 ( ).P A P A= −  

 

    Unjustified hope had been previously connected with the Bayes 

formula (2.3) since subjective interpretation of probability was not 

ruled out. For example, when having hypotheses B1, B2, ..., Bn trusted 

with probabilities P(B1), P(B2), ..., P(Bn), it was thought that an 

experiment was desirable for indicating the proper hypothesis. 
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Suppose that event A will occur in that experiment with probability 

P(A/Bi) if hypothesis Bi is indeed correct. After calculating P(Bi/A) 

according to that formula, we will obtain new estimates of the 

likelihood of the various hypotheses.  

    Modern probability theory considers subjective probability as a 

concept of magic
3
 and only the terminology is preserved according to 

which probabilities P(B1), P(B2), ..., P(Bn) are called prior, and 

P(B1/A), P(B2/A), ..., P(Bn/A), posterior. But magic should be treated 

carefully: there exists an important scientific domain where the 

mentioned magical consideration is revived in an undoubtedly 

scientific manner, the domain of machine diagnostics.  

    Suppose that a certain hospital admits patients suffering from 

diseases B1, B2, ..., Bn. The prior probabilities P(B1), P(B2), ..., P(Bn) 

are interpreted as frequencies of the corresponding diseases. Event A 

should be understood here as the totality of the results of a diagnostic 

examination of a patient. Posterior probabilities P(B1/A), P(B2/A), ..., 

P(Bn/A) offer some objective method of summing the information 

contained in those examinations; objective does not necessarily mean 

good enough, but, anyway, not to be neglected beforehand.  

    The problem is only to find the probabilities P(A/Bi) needed for 

calculating those posterior probabilities. It seems that for statistically 

deriving it, it suffices to look at its frequency as given in the case 

histories of those suffering from Bi, but here we encounter a very 

unpleasant surprise: A is the result of a large number of examinations, 

a totality, so to say, of all the indications revealable in a given patient 

and essential for diagnosing him/her. Even the simplest examination 

includes nowadays a number of analyses and investigations and partial 

investigations by many physicians of various specialities. It will not be 

an exaggeration at all to say that the amount of information is such that  

50 binary digits will be needed to write it down; actually, that  number 

will perhaps only suffice after thoroughly selecting the indications 

essential for the diagnosis.  

    When adopting these 50, we will have 2
50

 ≈ 10
15

 various possible 

values of A. Suppose that previous statistics collected data on 10
4
 

patients, then, in the mean, 10
−11

 observations will be available for 

each possible value of A. Practically this means that an overwhelming 

majority of these values are not covered by any observations, almost 

each new patient will provide a previously unknown result of 

examination and it will be absolutely impossible to determine directly 

the probability P(A/Bi).  

    Generally speaking, in practical statistical investigations, when 

desiring to consider at once many factors and connections between 

them, we usually find ourselves in a blind alley. Classifying statistical 

material according to several indices very soon provides groups of one 

observation, and it is not known what to do with them. Then, the 

Bayes theorem being mathematically trivial naturally can not by itself 

provide any practical result. Nevertheless, consideration of many 

factors in medicine is possible. There are contributions whose results 

are difficult to doubt, but it is premature to describe them for the 

general reader. One of the possibilities here is connected with applying 

the concept of independence whose formulation we will now provide. 
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    2.3. Independence. When desiring to consider the complete 

stochastic characteristic of events A1, A2, ..., An, we will need to know 

the probabilities of every possible set 

 

    P(C1, C2, ..., Cn) 

 

where each Ci can take two values, Ai and .
i

A  It is not difficult to 

calculate that 2
n
 probabilities are needed. This number increases very 

rapidly with n and the pertinent possibilities of any experiment become 

insufficient. We expect such stochastic models to be applicable only if 

that difficulty is somehow overcome and the main part is played here 

by the concept of independence. 

    Definition. Two events, A and B, are independent if the conditional 

P(A/B) and unconditional probabilities coincide: 

 

    
( )

( / ) = ( ) or ( ) ( ) ( ).
( )

P AB
P A B P A P AB P A P B

P B
= =  

 

For n events A1, A2, ..., An independence is defined by equality 

 

    P(C1 C2, ..., Cn) = P(C1) P(C2) ... P(Cn)                            (2.4) 

 

where each Ci can take values Ai and .
i

A  Since P(
i

A ) = 1 – P(Ai), the 

probabilities for independent events can be given by only n values 

P(A1), P(A2), ..., P(An). 

    Independent events do exist; they are realized in experiments carried 

out independently one from another (in the usual physical meaning). A 

textbook on the theory of probability should show the reader how the 

corresponding space of elementary events is constructed here, but this 

booklet is not a textbook. I have provided a sufficiently detailed 

exposition of the most essential notions of that theory so as to show 

how it is done, briefly and conveniently (one concept, one axiom, one 

definition) in the set-theoretic language. The further development is 

also offered briefly and conveniently, but from the textbook style I am 

turning to the style of a summary. 

    2.4. Random variables. Definition. A random variable is a function 

defined on a set of elementary events. They are usually denoted by 

Greek letters ξ, η, ζ etc. When desiring to include the argument 

ω ,⊂ Ω  we write ξ(ω), η(ω), ζ(ω) etc. 

    A set of possible values a1, a2, ..., an, ... of events, all of them 

different,  

 

    {ω: ω ,⊂ Ω  ξ(ω) = ai} = {ξ= ai } 

 

is connected with each random variable ξ = ξ(ω), as well as 

probabilities  

 

    {ξ } (ω) ,  ω:ξ(ω) .i i iP a P p a= = = =∑  
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    The table 

 

    a1    a2    ... an ... 

    p1    p2    ... pn ... 

 

is called the distribution of the variable ξ. 
    It should be clearly imagined that, practically speaking, almost 

always we have to deal not with random variables themselves but only 

with their distributions. In a word, the reason is that the random 

variables, being functions of elementary events, are usually 

unobservable. As a result of an experiment whose outcome is one of 

the elementary events ω, we usually determine a value of a random 

variable ξ(ω), but we will not find out ω.  

    Let us consider a throw of a die although introducing the set of 

elementary events in a complicated way understanding ω as the set of 

values of the coordinates and velocities of the die at the moment when 

we let it go. More precisely, ω will be the set of those numbers written 

down precisely enough for uniquely determining the outcome ξ(ω). 

Such a determination is not now possible for the microcosm but in our 

case we do not doubt it although no one ever checked that possibility. 

In any case, it is extremely difficult to observe ω so precisely, and 

practically although not in principle even impossible but the 

observation of ξ(ω) is easy, and that is what the gamblers are only 

doing. The space of elementary events Ω is extremely convenient as a 

concept, as we have seen and will see in the sequel, but as a rule it is 

not actually observable. It is easier to observe events of the kind {ξ = 

ai}. 

    And still, such events are too numerous and it is preferable to 

characterize the distribution of a random variable by several 

parameters, i. e. by functions of the values ai and probabilities pi. 

Considered are not arbitrary distributions, but such as are uniquely 

determined by a small number of parameters. Fine, if one or two 

parameters is (are) needed, endurable if three or four. However, 

determine experimentally more than four parameters, and your results 

will be questioned. The point is, that, as empirically noted, when 

selecting too many parameters any experimental results can be fitted to 

any law of distribution.  

    Expectation is the most important parameter of distribution. We will 

define it not in its usual form; the generally accepted definition will 

appear as a very simple theorem.  

    Definition. An expectation of a random variable ξ = ξ(ω) is number 

Eξ determined by the formula  

 

    Eξ = ξ(ω) (ω),ω .P ∈Ω∑  

 

It is assumed here that the series absolutely converges; otherwise, the 

random variable is said to have no expectation. 

    It is not difficult to convince ourselves that our definition actually  

coincides with the accepted formula [...] 
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    Eξ .i ia p=∑  

 

Our form of definition is however more convenient for proving the 

theorems on the properties of the expectation. Let us prove, for 

example, [the theorem about the expectation of a sum of variables]. 

[...] In many textbooks that statement is proved defectively. [...] 

    The second most important parameter of the distribution of a 

random variable is variance. 

    Definition. [...] 

    For random variables as also for events, the concept of 

independence is most important. We define independence (in totality) 

for three random variables, and the definition is similar for any number 

of them. 

    Definition. [...]  

    We will prove that for independent random variables 

 

    E(ξ η ς) Eξ Eη Eς.⋅ ⋅ = ⋅ ⋅  

 

    Proof. [...] 

    It easily follows that the variance of a sum of independent random 

variables is equal to the sum of the variances of its terms.  

    We have concluded the exposition of the main stochastic concepts 

for the discrete case, when the experiment has [only] a finite or a 

countable number of elementary outcomes. Now, we have to consider 

what happens when it is more natural to describe the experiment by a 

more complicated space. 

    2.5. Transition to the general space of elementary events. If an 

experiment results in some measurement, it is possible to state that, 

since the precision of all measurements is only finite, the set of 

elementary outcomes will at most be countable. However, the history 

of the development of science indicates that physical theories are much 

simplified by considering continuous models for which experimental 

results can be any number. Differential equations can only be applied 

in such models.  

    Readers, familiar with difference equations will easily imagine how 

more elegant and simple are the differential equations. Thus, although 

modern physics has some vague ideas about the possible discreteness 

of space, it certainly is not at all easy to abandon the notion of 

continuum. And, allowing that notion, what kind of probability theory 

should we have? The answer to this question is given by  the 

celebrated Kolmogorov axiomatics (Kolmogorov 1933; Feller 1950 

and 1966). Its foundation is the notion of the space of elementary 

outcomes Ω which can now be arbitrary. Some (but not all!) of its 

subspaces are held to be so to say observable as an experimental result 

and called events. If A is an event, we are able to say whether it 

occurred in an experiment or not and in this sense it is observable. We 

may thus discuss the frequency of its occurrence and consequently the 

probability P(A).  

    The main demand of the Kolmogorov axiomatics containing as 

though in embryo the merits and shortcomings of the entire theory is 

that, given a countable set of events A1, A2, ..., An, ..., their sum and 
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intersection are also events; in addition, it is also assumed that Ω is an 

event with P(Ω) = 1 and that the complement of any event is also an 

event.  

    Concerning probabilities, the following fundamental property is 

assumed. If the events A1, A2, ..., An, ... do not intersect in pairs (have 

no common events) 

 

    
11

[ ] ( ),i i

ii

P A P A
∞ ∞

==

=∑U                                                                    (2.5) 

 

where the symbol U means a sum. For the discrete case, this statement 

can be declared a theorem derived by issuing from the mentioned 

definition of § 3.1. In the general case, it is an axiom whereas that 

definition is useless. 

    We will consider what does the application of the Kolmogorov 

axiomatics demand by discussing a concrete example, experimental 

random throws of a point on interval [0, 1]. Here, the space of 

elementary outcomes Ω should apparently consist of all points of that 

interval. If 0 ≤ a < b ≤ 1, it would have been extremely annoying to be 

forbidden to discuss the probability of a random point ω occurring 

within interval [a, b]. And so, we desire to call events sets of the kind 

 

    {ω:a ≤ ω ≤ b}  

 

and we will assume that 

 

    P{ω:a ≤ ω ≤ b} = b – a, 

 

or, that the probability of a random point to fall on an interval is equal 

to the interval’s length. So far, everything is natural.  

    Now, however, we must assume that events are not only intervals, 

but anything obtainable from them by summing and intersecting their 

countable number as also by including complements. Selecting point c, 

0 ≤ c ≤ 1, and a sequence of intervals [c – 1/n, c + 1/n], we see that the 

intersection of their countable number consists of a single point c, so 

that any point is an event. The set of rational points is obtained by 

summing a countable number of points and is therefore an event. The 

set of irrational points is its complement and therefore also an event. 

    We thus consider observable whether a point thrown on an interval 

is rational or irrational although physically this is impossible, and we 

see that it is necessary to apply carefully the Kolmogorov model, 

otherwise it can lead to physically absurd corollaries.  

    Particularly complicated versions of such models are applied in the 

theory of stochastic processes. There, the researcher ought to be 

especially careful, ought to possess a certain taste for natural science. 

Otherwise it is easy to derive such results by issuing from the accepted 

mathematical model which at best can not be physically interpreted, 

and at worst offer an occasion for a wrong interpretation. As an 

example, I cite a mathematical theorem according to which the 

coefficient of diffusion of the Brownian motion can be determined 
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absolutely precisely if the pertinent path during any however short 

interval of time is known.  

    You can encounter a viewpoint stating that a practical estimate of 

the coefficient of diffusion does not therefore present any difficulties. 

This opinion has been established to some extent in the literature on 

the statistics of stationary processes, but it is completely wrong. Two 

circumstances prevent its application to real Brownian motion. First, 

the mathematical Brownian motion, i. e., the Wiener process, does not 

describe the real process over short intervals of time whereas exactly 

the change of the position of the particle during infinitely short 

intervals enters the estimation of the coefficient of diffusion. Second, 

the idea of knowing exactly the path of some stochastic process during 

some interval of time is absolutely unrealistic; we do not at all know 

how to define precisely a non-regularly changing function which is not 

describable by an analytic expression. I am unable to dwell here in 

more detail on the theory of stochastic processes and am returning to 

probability P. For intervals, it coincides with their length.  

    However, it is possible to construct very complicated sets of 

intervals and mathematical correctness demands that it be possible to 

define additionally that probability for all such sets while retaining the 

main property of countable additivity (2.5). The French mathematician 

Lebesgue provided a construction (the Lebesgue measure) allowing to 

ascertain the possibility of such an additional definition. It is 

complicated and we will not discuss it here. However, it can be applied 

for spaces Ω of a very general kind, consisting for example of 

functions which is important for the theory of stochastic processes.  

    Until now, we have discussed the complications necessarily 

demanded by the Kolmogorov axiomatics; on the other hand, it is 

however connected with most important simplifications. The 

introduction of a measure having the property of countable additivity 

allows to apply the concept of Lebesgue integral; as a concept, it is 

incomparably simpler and more general than the Riemann integral. In 

the general case, all the main notions of the theory of random variables 

occur not more complicated than those described above for the discrete 

case. Thus, a remarkable simplicity, generality and order is originated 

in the main notions of the theory of probability. However, the 

Lebesgue integral is not more than a concept. No one calculates 

integrals by applying the Lebesgue extension of measure, the Riemann 

integral is preferred.  

    It is necessary to mention here a certain difficulty that takes place 

when teaching mathematical analysis, both at home and abroad. In 

general, nothing negative can be said about its part dealing with 

functions of one variable, although it is somewhat tedious; the horror 

begins with the transition to functions of several variables. The 

treatment of the differential, and especially integral calculus is here 

nowadays absolutely unsatisfactory. Take for example the set of the 

Green, Stokes and Ostrogradsky formulas introduced without any 

connection between them. Indeed, there exists now a united viewpoint 

about all of them and it even includes the Newton – Leibniz formula. It 

is not treated in textbooks, but can be read in Arnold’s lectures (1968) 

on theoretical mechanics.  
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    The exposition of the theory of probability also suffers from that 

circumstance although less than theoretical mechanics. We are 

therefore unable to apply either the notion of the Lebesgue integral or 

a number of useful properties of the ordinary multiple integral and are 

restricting the description to a necessary minimum. Just as in the 

discrete case, we pass on from random variables themselves to their 

distributions, but our deliberations ought to be suitable for several 

variables at once rather than for one only. In other words, we will 

consider vector ξ = ξ(ξ1, ξ2, ..., ξn). Our main principle is to introduce 

such characteristics that admit an easy transition from one coordinate 

system to another one although a so-called joint distribution function 

 

    
1 2ξ ,ξ ,...,ξn

F (x1, x2, ..., xn) = P(ξ1< x1, ξ2< x2, ..., ξn< xn) 

 

has been applied instead. The transition from coordinates x1, x2, ..., xn 

to other coordinates y1, y2, ..., yn becomes not only difficult, it is even 

impossible to describe that procedure by a formula without actually 

introducing a stochastic measure 

 

    
1 2ξ ξ ,ξ ,...,ξ 1 2µ ( ) µ ( ) {ξ = (ξ ,ξ ,...,ξ ) }.

n nA A P A= = ∈  

 

    Here, the vector ξ = ξ(ξ1, ξ2, ..., ξn) is an event, an element of the set 

A. The joint distribution function is thus practically useless. Actually, 

we have to apply density 

 

    
1 2ξ ξ ,ξ ,...,ξ 1( ) ( ,..., ).

n np x p x x=  

 

It is defined by demanding that for any (not too complicated) set A in a 

many-dimensional space 

 

    
1 2ξ ,ξ ,...,ξ 1 2 1 2{ξ } ... ( , ,..., ) ... .

n n n
P A p x x x dx dx dx∈ = ∫ ∫  

 

The integration is over set A. Density plays here the same part as 

distribution of a random variable in the discrete case. In particular,  

 

    
11 1 ξ ,...,ξ 1 1E (ξ ,...,ξ ) ... ( ,..., ) ( ,..., ) ... .

nn n n n
f f x x p x x dx dx

∞ ∞

−∞ −∞

= ∫ ∫  

 

    Most important is the formula connecting the densities of a random 

vector in various systems of coordinates, a particular case of the 

formula for the change of the variables in multiple integrals, and I do 

not introduce it. Note that usual courses in mathematical analysis even 

lack the necessary notation. 

    The densities of distribution of the sum, the product, ratio and other 

operations on random variables can be immediately derived by issuing 

from it. On the contrary, for one-dimensional variables the notion of 

distribution function is very useful. Here is its definition: 

 

    Fξ(x) = P(ξ < x) 
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where x is any real number. If density of distribution pξ(x) exists, then 

 

    ξ ξ( ) ( ) .

x

F x p x dx
−∞

= ∫  

 

    I also introduce the formulas for expectation and variance in this 

case: 

 

    ξ ξEξ ( ) ,  E (ξ) ( ) ( ) ,xp x dx f f x p x dx

∞ ∞

−∞ −∞

= =∫ ∫  

 

    2 2

ξvar ξ E(ξ Eξ) ( Eξ) ( ) .x p x dx

∞

−∞

= − = −∫  

 

3. Bernoulli Trials. The Poisson Jurors 
    3.1. Bernoulli trials. And so, it is incomparably simpler to 

introduce probabilities of independent, rather than dependent events. 

Therefore, stochastic models with independent events have much more 

chances to be practically applied. The most simple and thus the most 

widely applicable is the model in which we imagine a certain number 

n of independent trials, each of them resulting in one of the two 

possible outcomes called success and failure. The probability of 

success is supposed to be the same throughout and is denoted by p so 

that failure will be q = 1 – p. Denote also success and failure by 1 and 

0, then the result of n trials will be a sequence of these numbers having 

length n. 

    The set of elementary events ω, Ω = {ω}, thus consists of all such 

sequences of length n and therefore has 2
n
 elements. Taking 

independence of individual trials into account, we ought to provide a 

definition according to which the probability p(ω) of each elementary 

event ω will be calculated by changing each 1 by number p, and each 

failure by changing each 0 by number q and multiply the obtained 

numbers. We will then have 

 

    P(ω) = p
µ(ω)

q
n−µ(ω)

 

 

where µ(ω) is the number of unities in the sequence of the ω’s. 

    Experiments described by this stochastic models are called 

Bernoulli trials, and the random variable µ = µ(ω) is the number of 

successes in n such trials. Let us determine the distribution of that 

random variable. Its possible values are evidently numbers 0, 1, ..., n 

so that  

 

    
µ(ω) µ(ω){µ } (ω) n

P m P p q
−= = = =∑ ∑  

    (number of such ω that µ(ω) ).m n m m n m
p q p q m

− −= ⋅ =∑  
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    The summations are over ω: µ(ω)= m. However, the number of such 

sequences of ω’s that µ(ω) = m is clearly equal to the number of 

possible selections of m symbols out of n, .m

n
C  And so,  

 

    P{ µ = m} = m

n
C p

m
q

n-m
                                                              (3.1) 

 

which is the main formula of the Bernoulli trials. 

    Its theory is seen to be almost trivial but not trivial is to learn how to 

apply it, that is, how to find those phenomena that are sufficiently well 

described by that pattern. A classical example of the trials is a toss of a 

coin, but when attempting to discover something more interesting, we 

enter the domain of doubtfulness. Thus, is it possible to consider a 

birth of an infant of one or another sex as a Bernoulli trial (and regard 

a male birth, say, as a success)?  

    According to genetic ideas, this is quite natural. However, those 

ideas lead just as naturally to the frequency of male births p = 1/2 

whereas it somewhat exceeds 1/2 as established by examining such an 

immense material that it becomes impossible to question it. Then, 

however, it is perhaps permissible to admit the opposite hypothesis of 

p ≠ 1/2? Once more, no, since the Bernoulli trials presume a constant 

probability of success whereas the statistical data certainly indicate 

that the frequency of male births increases after long wars. The 

dependence of the probability of male births on the social conditions 

of the family [and on other circumstances] is also being discussed so 

that the model of Bernoulli trials does not in this case completely 

correspond to reality.  

    Then, statistically investigating that frequency we find out that, 

strictly speaking, the model of those trials is unacceptable; however, 

since the probability of male birth is nevertheless very near to 1/2, it is 

only possible to reject the hypothesis of its applicability through 

statistical research based on profound corollaries of formula (3.1). We 

will see now how it is carried out in Chapter 4. 

    An application of stochastic methods results in a conclusion that, 

strictly speaking, we ought not to discuss the probability of male births 

(or statistical stability). However, in the final analysis we will find out 

much more than had there been an ideal conformity with the theory of 

probability: we discover for sure that there exists a still unidentified 

agent regulating the numbers of men and women.  

    The model of Bernoulli trials is often applied for estimating some 

plans of acceptance inspection in which the manufacturing of faulty 

(failures) or suitable (successes) articles must be described by that 

pattern. However, after recalling the discussion in Chapter 1 of the 

possibility of a stochastic description of manufacturing faulty 

products, it becomes evident that that model can only be made use of 

when the industrial process is arranged well enough. 

    We will discuss at length the attempt to apply the same model to the 

problem of legal verdicts. Pertinent investigations are connected with 

the names of such first-rate scholars as Laplace and Poisson, and their 

study is very instructive. It shows by an example taken from history 

that a perfect command of the mathematical methods of the theory of 
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probability can be coupled with an absolutely wrong approach to 

reality
4
. 

    3.2. Poisson’s jurors. Laplace, and then Poisson investigated the 

issue of the probabilities of mistaken legal verdicts. A certain juror can 

naturally make a mistake. Laplace assigned jurors a very modest 

ability of correct judgement: he thought that for each separately 

considered juror the probability of a mistake was a random variable 

uniformly distributed on segment [0, 1/2]. Poisson did not agree; he 

rather believed that the probability of a correct judgement should be 

estimated by issuing from statistical data. The impossibility of 

precisely establishing whether rightly or not a given accused person 

was found guilty presents here the greatest difficulty of a direct 

statistical estimate. 

    Poisson’s ideas widely applied now also consisted in that in such a 

situation it was necessary to construct a statistical model with the 

unknown probability entering it as a parameter and to attempt to 

determine it by pertinent data.  

    Let us consider the administration of justice in more detail. The trial 

is based on the inquest. Denote the event consisting in that the 

evidence collected at the inquest was sufficient for the trial to declare 

the defendant guilty by A, and the contrary event by .A  Given A, all 

the jurors, provided their judgement is faultless, ought to unanimously 

vote for the prosecution; otherwise (event A ) for the defence.  

    Actually, rather often the votes are divided owing to mistakes made 

by the jurors. Poisson’s main proposition was that such division 

conformed to the Bernoulli pattern. If n is the number of jurors, p, the 

probability of a correct judgement of each juror, the number of votes 

for the prosecution, µ, it is described in the following way. 

    1) Given A, µ is the number of successes for the n pertinent 

Bernoulli trials with probability of success p. 

    2) Given A , µ is the number of failures for the same pattern. 

    According to the French legislation, n = 12 and the defendant was 

declared guilty if µ ≥ 7. The probability of that outcome is 

 

    Pg = P(A)P{µ ≥ 7/A} + P( A )P{µ ≥ 7/ A } =  

          
12 12

12 12

12 12

7 7

( ) (1 )  [1 ( )] (1 ) .m m m m m m

m m

P A C p p P A C p p
− −

= =

− + − −∑ ∑   (3.2) 

 

Criminal statistics provides the frequency of such verdicts which is 

approximately equal to Pg and Poisson thoroughly checked its stability 

over the years. However, expression (3.2) includes two unknown 

parameters, P(A) and p. Knowing only Pg, it is impossible to determine 

them and it is therefore necessary to turn to statistics which will 

indicate not only whether defendants were found guilty or exonerated, 

but [in one case, see below] by how many votes as well. Thus, being 

accused exactly by seven votes has probability 

 

    Pg{µ = 7} = P(A)P{µ = 7/A} + P( A )P{µ = 7/ A } = 

     7 7 5 7 5 7

12 12( ) (1 )  [1 ( )] (1 ) .P A C p p P A C p p− + − −                             (3.3) 
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    Knowing the left parts of relations (3.2) and (3.3) approximately 

equal to the frequencies provided by the criminal statistics it is 

possible in principle to determine both P(A) and p. Equations (3.2) and 

(3.3) are of a high degree and their solution is not easy. Poisson, 

however, developed a general method of their solution and finally 

successfully solved them. In that, the 19
th

 century, following Laplace 

and Poisson, problems on probabilities of verdicts entered all 

textbooks on probability theory, but in the next century such 

applications of the theory were declared absolutely nonsensical. We 

ought to find out the reason why. 

    Poisson’s main presumption was independence of the jurors’ 

individual judgements. Fully understanding the need to check the 

stability of frequencies, he (1837) did not say a word about an 

experimental check of independence. How was such a procedure 

possible? When solving equations (3.2) and (3.3), Poisson found out 

that the probability of a correct judgement of an individual juror 

approximately equalled 2/3 so that a correct unanimous accusation had 

probability (2/3)
12

 < 0.01 and was almost impossible. However, in 

neighbouring England, as Poisson himself noted, the law demanded a 

unanimous decision of all the 12 jurors, and English courts 

pronounced much more condemning sentences, death sentences 

included, than the courts in France. To remind, the exposition 

concerned the 19
th

 century.  

    Poisson considered that circumstance as a cause for national pride, 

England was seen as a much less civilized nation although it should 

have been seen as an argument for doubting his own stochastic model. 

True, it should be said in all fairness that anyway he was unable to 

check it given the French criminal statistics. Indeed, protecting the 

secret of the jurors’ voting, the French judicial code did not demand to 

indicate the number of condemning votes the only exception having 

been the case of the minimal necessary votes. 

    Thus, from the modern viewpoint, Poisson’s error, formally 

speaking, consisted in recommending a stochastic model without 

checking it. He determined two unknown parameters by two observed 

magnitudes with no possibility of such checking. It is interesting to 

describe the pertinent opinion of Cournot (1843). Poisson’s 

contemporary, he apparently was not as mathematically powerful as 

Poisson, much less as Laplace. However, we ought to recognize that 

he possessed more common sense of a natural scientist, than those 

first-rate scholars.  

    In particular, he clearly understood that independence of the jurors’ 

judgement was only a premise that should have been experimentally 

checked. He even proposed such a change of the judicial code which, 

without violating the secret of the jurors’ voting, would have allowed 

to obtain the necessary statistical data. As to the independence itself, 

Cournot believed that, if it did not exist in all the totality of legal 

proceedings in general, then in any case legislation can be separated 

into groups of independent cases. He even found out that two such 

groups concerning crimes against the person and against property will 

have very near to each other values of the parameters P(A) and p as 

determined according to the Poisson method. 
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    Nowadays we are sure that no independence of the judgement of 

individual jurors does exist, so that the groups isolated by Cournot 

would have most likely consisted of one case only. True, this 

statement is not really proven so that according to modern science 

Cournot’s point of view is formally invulnerable which once again 

confirms that he had essentially outstripped his time.  

    For our days, an important conclusion from the above is that it is by 

no means permissible to use all the available statistical information for 

determining the parameters of a statistical model; it is absolutely 

necessary to leave some part of it for checking the model itself, 

otherwise, great scientific efforts can result in complete rubbish.  

 

4. Substantial Theorems of the Theory of Probability 
    4.1. The Poisson theorem. When compiling his treatise, Poisson 

(1837) discovered one of the main statistical laws. Calculating the 

probabilities P(µ = m) that m successes will be achieved in n Bernoulli 

trials, he found out an approximate formula for large values of n and 

small values of p: 

 

    λλ
{µ }

!

m

P m e
m

−= ≈                                                                       (4.1) 

 

where λ = np; for more details see Gnedenko (1950). The exact 

expression for P{µ = m} depends on three parameters, n, m and p; in 

the approximate expression, n and p are combined into one.  

    At first sight this simplification seems trivial and Poisson himself 

did not think that his formula was really important. Indeed, his treatise 

included a large number of more precise and almost as suitable 

formulas. However, the combining mentioned allows to compile a 

comparatively short table for calculating (4.1) with two entries, m and 

λ, whereas the precise expression for P{µ = m} would have demanded 

a table with three entries which is not done yet in a sufficiently 

convenient form.  

    Nevertheless, the main role of the formula (4.1) consists not in 

convenient calculation. Strictly speaking, we express it as a 

mathematical theorem (Gnedenko 1950) concerning Bernoulli trials, i. 

e. independent trials with two outcomes and a constant probability of 

success. The most important circumstance is that those conditions may 

be violated without denying its conclusion, that is, the equality (4.1). 

    For example, we may admit that different trials have differing 

probabilities of success 

 

    p1, p2, ..., pn, ... 

 

(if only all of them are low). Then the exact expression for P{µ = m} 

from Chapter 3 as well as good enough approximate expressions 

become useless (because they are too exact). The comparatively rough 

expression (4.1) remains valid if only p1 + p2+ ...+ pn, or, if desired, 

np  be substituted instead of λ. It follows that for calculating λ it is not 

necessary to know the values of pi, suffice it to know one single 

parameter, their mean, the new value of the probability of success. 
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Note also that we often are unable to repeat an experiment with a 

given probability of success for a sufficiently large number of times so 

that it is perhaps impossible to find out pi, which does not necessarily 

prevent us from calculating p . The approximate value (4.1) therefore 

has much more chances to find practical application than the exact 

formula for P{µ = m}. 

    Then, the demand of independence of the individual trials can be 

weakened: it may be assumed that they have more than two outcomes 

but such possibilities exceed the limits of this booklet. 

    Those possibilities of weakening the conditions of the Poisson 

theorem without changing its conclusion lead to the Poisson 

distribution attaching probabilities (4.1) to values m = 0, 1, 2, ... 

becoming one of the most universal laws. Consider for example the 

problem of the number of refusals during time T in cases of 

complicated systems. Suppose a system consists of n elements and pi = 

pi (T) is the probability of a refusal of the i-th element (and that after 

refusal the damaged element is instantly replaced). The number of 

refusals is the number of successes in n trials with the i-th trial being 

connected with the i-th element and its success means a refusal of that 

element. A given element can experience more than one refusal and its 

refusal can somewhat influence the refusals of the other elements, − all 

the same, if pi are sufficiently low, we expect the Poisson distribution 

with the parameter λ = n p  to describe the number of refusals.  

    Deviations are only possible if the connections between the refusals 

of different elements are strong. Given low values of pi it is natural to 

expect a linear dependence of pi = pi (T) on T:  

 

    ( ) .
i i

p T p T′=  

 

Then  

 

    λ = λ(T) = λ′T                                                                          (4.3) 

 

and the probability of m refusals will be 

 

    λ(λ )
{µ } e .

!

m
TT

P m
m

′−′
= ≈  

 

For the probability of failure-free work during time T, that is, for µ = 

0, we have 

 

    λ{µ 0} e TP
′−= ≈  

 

which is the generally known exponent law for the time of failure-free 

work. 

    The Poisson and the exponent laws therefore correspond to each 

other. There occurs some harmonious correspondence that we may 

hope to apply beneficially for solving practical problems.  

    Our model does not allow for aging; to achieve that we ought to 

replace the linear dependence (4.3) by a more complicated dependence 
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    λ = λ(T) 

 

with λ(T) being actually approximated by a function of a most simple 

kind, for example by a polynomial. Its coefficients can be obtained by 

one or another method, for instance by the method of least squares. 

However, the number of parameters necessary to be included will in 

this case be larger than when aging is not allowed for and, accordingly, 

the model will enjoy less faith.  

    In general, with or without allowing for aging, it is natural to apply 

the Poisson law for describing the number of failures, only its 

parameter is determined in differing ways. The fit of the Poisson law, 

its agreement with the actual data should be checked by statistical 

tests. If a good agreement is lacking, it will be likely more natural to 

suspect the statistical homogeneity of the data rather then the 

applicability of the Poisson law. Only after checking that out may we 

think about choosing another distribution for describing the number of 

failures. 

    None of this certainly applies to the case of strong ties between the 

failure of different elements. For example, if the failure of one part of 

the system automatically leads to a failure of its other part, the total 

number of failures will be doubled. In such cases, even if the number 

of initial failures follows the Poisson law, the doubled figure will not, 

and it is more natural to apply here the normal law. And the Poisson 

law is certainly only applicable when a failure really is a rare event.  

    An excellent set of other examples of the application of the Poisson 

law is to be found in Feller (1950) only the theory of rare excursions of 

stochastic processes can possibly be added to it. Just as any rare event, 

the number of such excursions beyond a sufficiently high level obeys 

the Poisson law.  

    4.2. The Central Limit Theorem. The Poisson law is determined  

by a single parameter λ. It is not difficult to show that λ is the 

expectation of a random variable distributed according to that law. 

Here, we will consider an even more universal stochastic law, the so-

called normal law determined by two parameters, expectation and 

variance. It was discovered at about the same time by Gauss and 

Laplace who issued from absolutely different considerations.  

Gauss discovered that exactly in the case of a normal law of 

distribution of the observational errors it is most natural to choose the 

arithmetic mean of the individual measurements as the estimator of the 

real value of the measured magnitude. Laplace’s starting point was his 

discovery of an extremely powerful method of calculating the 

distribution of a sum of random variables. Gauss’ ideas are important 

for treating the results of measurement and were further developed in 

mathematical statistics as the so-called method of maximum 

likelihood. Laplace’s ideas concerned the properties of arithmetic 

operations on a large number of random variables and actually 

constitute the foundation of modern probability theory. In this booklet, 

devoted to the theory of probability rather then mathematical statistics, 

we adopt the Laplacean approach
5
. 

    Consider arbitrary independent random variables 
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    ξ1, ξ2, ..., ξn, ...                                                                             (4.4) 

 

taking the same values  

 

    0, ± 1, ± 2, ..., ± m 

 

with the same probabilities 

 

    P{ξi = m} = pm. 

 

    Such variables are called identically distributed. Probabilities pm are 

arbitrary, they only obey the condition of adding up to 1 and 

sufficiently rapidly decrease as m → ± ∞. More precisely, it is 

necessary that the variables ξi have a finite expectation and a finite 

variance 

 

    2 2Eξ  ,  varξ ( ) σ .i m i m

m m

mp a m a p
∞ ∞

=−∞ =−∞

= = = − =∑ ∑  

 

Otherwise, the set of probabilities {pm} is absolutely arbitrary. It can 

therefore be impossible to describe that set by any finite number of 

parameters.  

    Laplace discovered that for a large number of terms of the set (4.4) 

the distribution of their sum becomes incomparably simpler than that 

of their separate terms so that, allowing for some additional conditions 

(Gnedenko 1950, Chapter 8)
6
, 

 
2

1

( )1
    σ {ξ ... ξ } exp[ ],  
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                              ( ) .                                         (4.5a,b)
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    It is beneficial to bear in mind the following simple considerations 

which help to understand the geometric meaning of equality (4.5). 

Suppose that we desire to show graphically the distribution of each 

random variable (4.4) and their sum. We choose an abscissa axis, 

indicate points  

 

    0, ± 1, ± 2, ..., ± m ... 

 

and show probability as a rectangle with base 1, its midpoint being at 

m, and area (that is, its height) pm. We will have some, generally 

speaking, irregular set of rectangles. An attempt to show the 

distribution of the probabilities of the sum of those variables for a 

large n will be unsuccessful because the possible values of that sum 

can be very large and the probabilities of the separate values, small, as 

can be proven. A change of the scale will be therefore needed so that 

showing the values of the random variable 
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    (1/Bn)(m − An) 

 

instead of the value of the sum m = (ξ1 + ...+ ξn) will be necessary. 

    And now the essence of Laplace’s discovery can be expressed by a 

single phrase: the figure should be shifted by 

 

    An = E(ξ1 + ... + ξn) = na 

 

and the coefficient of the change of the scale should be equal to  

 

    1var(ξ ... ξ ) σ .n nB n= + + =  

 

    The random variable 

 

    *

1 1

1

1
[(ξ ... ξ ) E(ξ ... ξ )]

var(ξ ... ξ )
n n n

n

s = + + − + +
+ +

             (4.6) 

 

is called the normed sum. Obviously, 

 

    * *E 0,  var 1n ns s= =  

 

and the numbers (4.5b) are the possible values of that normed sum. Let 

us attempt to show its probabilities as rectangles with bases 

 

    
1

( 1) ( ) ,
σ

n nx m x m
n

+ − =  

 

their midpoints coinciding with points xn(m) and areas equal to 

probabilities 

 

    *

1{ ( )} {ξ ... ξ }.n n nP s x m P m= = + + =  

 

The heights of these rectangles should be  

 

    *

1σ { ( )} σ {ξ ... ξ }.n n nnP s x m nP m= = + + =  

 

    Thus, because of (4.5a) the upper bases of these rectangles will be 

almost exactly situated along a curve described by equation 

 

    
21

( ) exp[ ]
22π

x
y y x= = −                                                    (4.7) 

 

independent of anything and calculated once and for all. 

    A result absolutely not foreseen and almost miraculous! Disorder in 

probabilities pm somehow gives birth to a unique curve (4.7) which 

simply occurs by summing random variables and transforming the 

scale of the figure. That is Laplace’s remarkable discovery without 
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which the theory of probability would have almost lacked original (not 

reducible to known concepts of mathematical analysis) contents.  

    True, the statement (4.7) has some exceptions. For example, if all 

the random variables (4.4) only take even values (so that pm ≠ 0 only 

for even values of m) the sum (ξ1 + ...+ ξn) is also always even, 

whereas at odd values of m the left part of (4.5a) vanishes and that 

equality is violated. This exception is actually the only one (Gnedenko 

1950, Chapter 8) and, for avoiding it and because of a number of other 

considerations, it is preferred to formulate the central limit theorem in 

terms of distribution functions. Here the appropriate formulation is 

effectively known to Laplace. 

    Theorem. Let ξ1, ..., ξn, ... be a sequence of independent identically 

distributed random variables having a finite expectation a and finite 

variance σ2
, and suppose that *

ns , see (4.6), is the normed sum of those 

variables. Then, as n → ∞,  

 

    
2

* 1
{ } exp[ ]

22π

x

n

x
P s x dx

−∞

< → −∫  

 

and for − ∞ < x < ∞ the convergence is uniform for every x. 

    This formula is still less sensitive to violations of its conditions then 

even the Poisson theorem remarkable in this connection. The 

development of the theory of probability is essentially linked with the 

perfection of its proof and weakening of its conditions. It is possible to 

deny, i. e. to replace by less restrictive each of the latter without 

invalidating its conclusion. Liapunov denied the identical distribution 

of the random variables and thus occurred his theorem (Gnedenko 

1950, Chapter 8) whereas Bernstein (1926) denied independence. 

    Attempts were recently made to abandon essentially the condition of 

randomness of the variables (4.4). It is also possible to replace random 

variables taking numerical values by random elements of some groups 

(and to consider the relevant group operation instead of summing). 

Certain success was achieved but it is too soon to discuss this subject 

here. The finiteness of the variance can not be denied (Gnedenko & 

Kolmogorov 1949) since the convergence to the normal law will not 

hold. It is only possible to weaken somewhat that condition. 

    4.3. The normal distribution. And so, the most widely applied 

distribution of probabilities is the Gauss – Laplace law whose density 

is provided by formula (4.7). In other words, it is said that the random 

variable ξ has a standard normal distribution if (practically for any) set 

A the equation  

 

    
21

{ξ } exp[ ]
22πA

x
P A dx∈ = −∫  

 

is valid. 

    It is natural to consider random variables of the type 

 

    η = σξ + a 
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along with ξ. For example, if ξ is the result of some measurement, and 

η is its result in another system of units, it is not difficult to show that 

the density of distribution of η is 

 

    
2

η 2

1 ( )
( ) exp[ ]

2σσ 2π

x a
p x

−
= −  

 

with expectation and variance of η being Eη =a and varη = σ2
. The 

distribution of the random variable η is called normal with parameters 

a and σ and denoted by N(a, σ). 

    Most important is the following theorem: If η1 and η2 are 

independent random variables having distributions N(a1, σ1) and N(a2, 

σ2), their sum will have distribution N(a1 + a2, 
2 2

1 2σ σ ).+  

    4.4. The De Moivre – Laplace theorem. Consider n Bernoulli 

trials with probability of success p in each. The number of successes µ 

can be represented as a sum 

 

    µ = µ1 + µ2 + ... + µn 

 

where the random variable µk is the number of successes in the k-th 

trial, i. e., is equal to 1 or 0 for achieving a success or not. Since all 

trials are identical, µ is the sum of independent random variables and 

the central limit theorem is applicable to it. The distribution of µ is 

therefore approximately normal with parameters 

 

    Eµ= np, var npqµ =  

 

which is indeed the De Moivre – Laplace theorem
7
. 

    4.5. The application of the central limit theorem 
    Checking statistical homogeneity. In Chapter 1 we have discussed at 

length the statement that a scientific application of the theory of 

probability is conditioned by checking statistical homogeneity. Here, 

finally, we can explain the main pertinent methods. 

    The discussion usually concerns the following problem. In n1 trials 

the event A occurred µ1 times, in n2 trials, µ2 times. May we believe 

that the probability of success was the same in both series? Or, is the 

difference of the frequencies µ1/n1 and µ2/n2 sufficiently small and 

possible to be explained by purely random causes? 

    It is natural to assume that µ1 and µ2 are approximately normally 

distributed whether the trials were dependent or not. If the 

probabilities in the series are p1 and p2 then 

 

    E(µ1/n1) = p1, E(µ2/n2) = p2,  

 

and, if p1 = p2 = p, E(µ1/n1 − µ2/n2) = 0. Also, it is natural to assume 

that the trials in both series are independent, then the magnitude (µ1/n1 

− µ2/n2) should be approximately normally distributed with zero 

expectation and variance 
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    1 2 1 2

1 2 1 2

µ µ µ µ
var( ) var( ) var( ).

n n n n
− = +  

 

    If the terms in the right side are known, we could have said by 

means of a table of the normal distribution whether the mentioned 

difference can be explained by purely random causes or not. And for 

calculating those variances (but not at all for applying the central limit 

theorem) we have to assume that the trials in both series are 

independent, that is, that two series of Bernoulli trials were made 

whereas the central limit theorem does not demand complete 

independence. Then, if p1 = p2 = p (whose value is unknown),  

 

    1 2

1 2 1 2

µ µ 1 1
var( ) var( ) (1 )( ).p p

n n n n
+ = − +  

 

    It can be shown that the unknown p may be replaced here by 

 

    1 2

1 2

µ µ
p̂

n n

+
=

+
 

 

and, assuming that the probabilities were identical, we see that 

 

    1 2

1 2 1 2

µ µ 1 1
ˆ ˆξ ( ) (1 )( )p p

n n n n
= − ÷ − +  

 

has an approximately standard normal distribution. Now, ξ can also be 

calculated only by issuing from numbers (µ1, n1) and (µ2, n2), i. e., by 

the known results of experimenting. It is known that the absolute 

values of ξ exceeding 2 or 3 are unlikely. It follows that, when 

obtaining values of that order, we should conclude that either the 

hypothesis p1 = p2 does not hold or, if it does, that an unlikely event 

had taken place.  

    How to choose between these conclusions? Some authors think that 

the decision theory can allegedly numerically express the risk of each 

possible choice and thus help here. However, the risk there is 

expressed by magnitudes which either are senseless or in any case will 

never be known to the researcher. The theory based on a quantitative 

expression of risk is always useless except in studies of games of 

chance
8
. Actually, the choice between the two mentioned decisions is a 

complicated procedure; at present, it is impossible to study it within 

the limits of a mathematical theory. 

   When solving such problems, we have to compare somehow the 

importance of each possible solution should it occur wrong. Both 

scientific and moral considerations denoted by the word conscience 

are involved here. Approximately similar but somewhat simpler is 

checking the hypothesis that the probability of success p in a given 

series of Bernoulli trials equals a given number p0. If it is also true for 

a series of n trials with µ successes, then 
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has an approximate standard normal distribution. Exactly by 

calculating that magnitude can the hypothesis of a male birth being 

equal to 1/2, see § 3.1, be checked (and rejected). 

    The arc sine transformation. I have just expounded the principles of 

checking the equality of probabilities in two series of Bernoulli trials. 

Now, I aim at indicating by an example the pertinent convenient 

methods developed in mathematical statistics. Nothing new in 

principle is here involved, but the practical convenience is essential. 

As an example, I choose the so-called arc sine transformation 

discovered by the celebrated English statistician Fisher. His idea was 

very simple: we consider some function f(µ/n) instead of µ/n, of the 

frequency of success itself. We have 

 

    
µ µ µ

( ) [( ) ] ( ) ( )( ) ...f f p p f p f p p
n n n

′= − + = + − +  

 

    For large values of n, that frequency is close to p, so that we ignore 

the other terms of that expression and 

 

    
µ µ

var ( ) var[ ( )( )]f f p p
n n

′= − =  

 

    2 2µ (1 )
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f p f p
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    Let us choose the function f in such a manner that the expression for 

var f(µ/n) would not depend on the unknown parameter p. More 

precisely, we assume that  

 

    2[ ( )] (1 ) 1.f p p p′ − =  

 

This is a differential equation and we may choose any of its solutions 

as f(p); in particular,  

 

    f(p) = 2arcsin√p. 

 

    Since, if allowing for the approximation made, f(µ/n) is a linear 

function of µ and, for large values of n, the distribution of µ is 

approximately normal, the expression 

 

    
µ µ

( ) 2arcsinf
n n

=                                                                 (4.8) 

 

is also approximately normal. Its expectation is approximately 

 

    f(p) = 2arcsin√p 



 38 

 

and variance approximately 1/n which is how we have chosen the 

function f and it does not therefore depend on p. It also occurs that the 

distribution of (4.8) is even more close to the normal that that of the 

number µ itself.  

    Now let us have those two series of Bernoulli trials with n1, µ1, p1 

and n2, µ2, p2 and suppose we wish to check the equality of the 

probabilities. Assuming that the two series are independent, the 

magnitude  

 

    1 2

1 2

µ µ
2arcsin 2arcsin

n n
−  

 

is approximately normal and its expectation 

 

    1 22arcsin 2arcsinp p−  

 

vanishes if the hypothesis is true. The variance of that random variable 

is the sum of the variances, (1/n1) + (1/n2), and  

 

    1 2

1 2 1 2

µ µ 1 1
[2arcsin 2arcsin ]

n n n n
− ÷ +                                   (4.9) 

 

has a standard normal distribution N(0, 1). After calculating (4.9) we 

may either adopt or reject the hypothesis of equal probabilities. 

    Mathematical statistics has plenty of such simple but very 

convenient methods; here, convenience is really attained when 

applying tables of the function 2arc sin√x included in many collections 

of statistical tables; even a slide-rule will do. 

    Behaviour of the sum of independent random variables. When 

considering independent identically distributed random variables (4.4) 

with expectation and variance a and σ2
 respectively, their normed sum  

 

    * 1ξ ... ξ

σ
n

n

na
s

n

+ + −
=  

 

can not be especially large at any fixed n. Thus, in case of the normal 

distribution we easily find by means of its table that 

 

    *{| |   3}  0.997nP s ≤ =  

 

and it is almost certain that 

 

    |ξ1 + ... + ξn − na| ≤ 3σ√n.                                                      (4.10) 
 

    True, we ought to caution readers that that statement was derived for 

any fixed n. When considering a set * *

1 ,..., ,...ns s  we certainly can not 

state that all of its terms were less than 3 in absolute value. The 
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distribution of the maximal term |sk|, 1 ≤ k ≤ n, presents a special 

problem which we will not discuss. 

    For any fixed n the deviation of ξ1 + ... + ξn from its expectation na 

is only possible by a magnitude of the order of √n. This means that the 

non-random magnitude na, certainly if a ≠ 0, plays a predominant part 

as compared with random deviations of the order √n. Now, dividing 

(4.10) by n, we get 

 

    1ξ ... ξ 3σ
| |n a

n n

+ +
− ≤                                                               (4.11) 

 

which is valid with probability 0.997 (if we believe in the normal 

distribution). When replacing 3σ by 4σ or 5σ, this inequality will be 

valid even with a higher probability. Given a large n, the difference in 

the left side of (4.11) is practically certainly small which is the 

celebrated law of large numbers. 

    It is interesting to dwell on the history of its proof and 

interpretation. It was note long ago that the results of separate 

observations, physical, meteorological, demographic or other, fluctuate 

essentially whereas the mean values of a large number of observations 

reveal a remarkable stability. The first statisticians had seen here 

divine intervention, but, as a scientific understanding of the world was 

being established, that stability became a scientific fact.  

    In the 18
th

, the century of reason, mathematics became very trusted; 

it was believed that the main laws of natural sciences and even of 

economics, moral philosophy and politics can be derived by that 

science. A desire to regard the stability of mean values as a 

mathematical theorem had been established and that opinion persisted 

in the 19
th

 century. Exactly in that sense did Poisson interpret the 

discovery of his form of the law of large numbers and he thought that 

he had succeeded in proving that the mean of really made observations 

should be stable. 

    Chebyshev essentially developed the mathematical form of the law 

of large numbers by reducing its proof to the application of the 

[Bienaymé –] Chebyshev inequality. His proof can be found in any 

textbook on the theory of probability, and after him that law began to 

be considered as a very simple theorem independent of, and 

expounded before the central limit theorem. Students are now even 

taught to apply the inequality 

 

    
2

1

2

ξ ... ξ σ
[| |  ε]  

ε
nP a

n n

+ +
− > ≤  

 

for estimating the probability that the mean will deviate from a more 

than by ε. However, such an application (of the Bienaymé – 

Chebyshev inequality) is absolutely absurd because the central limit 

theorem provides a much more precise result. True, the Chebyshev 

form of the law of large numbers demands less mathematical 

restrictions to be imposed on the random variables ξi as compared with 

the central limit theorem, but it is just the same practically impossible 
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to check whether the appropriate mathematical restrictions are met. 

And it is certainly impossible to distinguish when only the Chebyshev 

theorem is valid from the case when both it and the central limit 

theorem are valid. 

    The evolution of the opinion on the natural scientific significance of 

the law of large numbers is connected with Mises. He especially 

indicated that there can not be any mathematic proof that the mean of 

the results of an experiment should be close to some number. 

Nowadays, we believe much less than at the time of Laplace and 

Poisson that the laws of the outer world can be mathematically 

derived. There exist too many causes which can change the course of 

an experiment from what should have followed according to our 

mathematical model.  

    For example, the conditions of all the known mathematical theorems 

on the law of large numbers include as an assumption that (4.4) is a 

sequence of random variables. Practically this means that we may 

discuss the probability of an event consisting in that ξ1 took a value 

from some number set A1, ξ2, the same from A2, etc, so that for any 

sets A1, ..., An the event 1 1{ξ ,...,ξ }n nA A∈ ∈ should be statistically 

stable. However, possible sets A1, ..., An are so numerous that an 

experimental check of the stability of all such events is impossible. 

And the violation of statistical stability wholly depreciates any 

stochastic theorem and can be the cause of the observed violation of 

the stability of experimental means. 

    The natural scientific significance of the law of large numbers is 

now reduced to an understanding that when stochastic models are 

applied the corresponding theorems reflect the experimental fact of the 

stability of means. In Chapter 1 we indicated that there are many 

problems, for instance in geology or economics (their examples can be 

multiplied without any difficulty) in which it is senseless to discuss the 

statistical homogeneity of the ensemble of experiments. It is 

interesting that in such cases stability of means rather often also 

persists. We must acknowledge that we do not nowadays have any 

satisfactory mathematical explanation of the stability. 

   In the 20
th

 century the study of the law of large numbers by means of 

a model of the space of elementary events had been essentially 

advanced. The so-called strong law of large numbers connected with 

Borel and especially Kolmogorov was discovered. For explaining its 

essence recall that in the Kolmogorov model the random variables 

(4.4) are functions ξ1(ω), ..., ξn(ω) considered in the space of 

elementary events. It is possible to consider the event, that is, the set  

 

    1ξ (ω) ... ξ (ω)
{ω : lim }n a

n

+ +
= , n → ∞ 

 

consisting of those elementary events ω for which that limit exists and 

is equal to a. The theorems of the type of the strong law of large 

numbers state that the probability of that set is 1 whereas the usual law 

does not deal with that set at all, it only discusses the sets of the type 
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{ω :| |   ε},  ε 0n a
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+ +
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for any finite n and states that the probability of such sets tend to 

vanish as n → ∞. 

    After considering rather subtle mathematical examples it occurs that 

the strong law of large numbers is really strong: the ordinary law is 

certainly obeyed when the strong law is valid, but the inverse 

statement is not necessarily true. From the theorems concerning the 

strong law we indicate a very elegant Kolmogorov statement: for 

independent and identically distributed random variables the existence 

of expectation is sufficient for it to hold. Mathematically interesting is 

that the existence of variances is not demanded. 

    A special mathematical tool was needed for proving that theorem 

and in particular Kolmogorov discovered a remarkable inequality that 

goes under his name and generalizes the [Bienaymé −] Chebyshev 

inequality; the tool itself can certainly be applied in natural science. 

However, no such applications in which essentially more can be 

elicited from only the formulation of the strong law than from the 

usual law are discovered. This is connected with the fact that (see 

Chapter 2) a random variable ξ = ξ(ω) as a function of an elementary 

event is usually not observed; we know the value of ξ(ω), but not ω 

itself. We can rather discuss probabilities of various events. Similarly, 

it is somewhat senseless to discuss the observation of the limit of ξ , 

we can only study ξ  for a finite n. Those circumstances lead to any 

non-mathematical applications of the strong law being unlikely.  

    To conclude the problem of the application of the central limit 

theorem we will dwell on the statement made by no other but the 

undoubtedly great scientist of genius, Laplace, which for us is only 

interesting as being a psychological curious historical example. He 

discovered the mentioned above fact that for large values of n the sum 

ξ1 + ... + ξn behaves approximately like the non-random magnitude na 

whereas the random variations have order √n so that with an 

increasing n that non-random magnitude will finally prevail over those 

variations. It follows that if a > 0, the sum of the random variables will 

also become positive.  

    Without any explanation Laplace infers that a colony situated far 

across the sea will finally achieve independence. He evidently 

imagined the strive for independence as some non-random factor 

whose action was gathering force with time whereas the opposite 

efforts of the metropolitan country as random variables with zero 

expectation. The first assumption is sufficiently understandable but the 

second one is very strange. However, in the long run Laplace was in 

the right: colonies did free themselves but we can not consider the 

effort to hold on to them as a random variable, it does not possess 

statistical stability. In the 19
th

 century there was nothing special in 

sending out an expeditionary corps for putting down a rebellion in a 

colony but in our days that would have led to vigorous protests in the 

metropolitan country as well. 
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    A scientist, discovering something remarkable (as the Laplacean 

central limit theorem) evidently can not keep from applying it 

everywhere. For example, in our time Wiener proposed to apply the 

theory of extrapolation of stochastic processes for forecasting the route 

of an airplane under anti-aircraft fire. That route however is not a 

stochastic process, or at least not such process for which there exists a 

theory of extrapolation and Wiener’s proposal was senseless. 

    Evidently, science is collectively created; true, it is not beyond 

question whether an essential discovery can be made collectively, or is 

it necessary to have an outstanding scientist in a collective with its 

other members working in essence as his assistants. But what is 

undoubtedly a collective process is the delivery of science from the 

rubbish which some scientists usually adduce to their real discoveries.  

    4.6. When the central limit theorem can not be applied? That 

theorem is one of the reasons for believing that observational results 

usually obey the normal distribution. If only they, ξ1, ..., ξn, are known, 

but not the parameters of the corresponding law, we are able to 

determine them approximately by appropriate methods. Indeed, 

according to the law of large numbers 

 

    a = Eξi ≈ (1/n) (ξ1 +... + ξn) = ξ . 

 

    It can be shown that 
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The theory of errors allows to determine the precision of those 

approximate values.  

    In general, the observations are rather well describable by the 

normal law thus determined. In other words if 

 

    F(x) = P{ ξi < x}, 

 

N(x, ξ , s) being those probabilities calculated according to the normal 

distribution, then 

 

    F(x) ≈ N(x, ξ , s). 

 

    However, this approximate equality is sometimes very perceptively 

violated. It happens when the values of x are such that F(x) is near 0 or 

1, − that its so-called tail areas are involved.  

    Let us begin by considering why those areas are practically 

significant in a special way. Suppose we intend to build some tall 

structure which will have to withstand high winds (or, if you wish, a 

spillway which has to pass spring floods, etc). We desire to reckon 

with such wind velocities that happen sufficiently rarely, once in a 

century, say. But how are we to find out that velocity? Or, if ξ(t) is that 

velocity at moment t, we ought to indicate such a number x, that 
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    P{max ξ(t) ≥ x} = 0.01, 0 ≤ t ≤ 1 

 

where t is measured in years and the left part of the inequality is the 

maximal yearly wind velocity. 

    Suppose that we know the values ξ1, ξ2, ..., ξn of the maximal 

velocity during the first, the second, ..., n-th year during which 

meteorological observations were made. However, wind velocities had 

not been recorded continuously but only several times a day, so that 

those maximal yearly velocities are in essence unknown. For the time 

being, let us nevertheless abstract ourselves from this extremely 

essential difficulty. 

    And so, we have those observations of the random variable ξ, the 

maximal yearly wind velocity, and we wish to assign an x such that 

 

    P{ξ ≥ x} = 0.01.                                                                     (4.11) 

 

Had the number n been very large, we would have been obliged to 

select such an x that about a hundredth part of the ξi will be larger than 

it. The trouble, however, is that n, the number of years during which 

observations are available, is much less than 100. Then, if x is such 

that (4.11) is fulfilled, that is,  

 

    P{ξi ≥ x} = 0.01 for each i, 

 

the number of variables ξi larger than x will obey the Poisson law with 

parameter λ = 0.01n < 1. It will follow that most likely all of our ξi will 

be less than x so that we are only able to say that x should be larger 

than each of the ξi′s with no upper boundary available.  

    Therefore, we are tempted to smooth our ξ1, ..., ξn by some law, for 

example by the normal law N( ; ξ, )x s  and determine x from equation 

 

    N( ; ξ, ) 1 0.01 0.99.x s = − =  

 

Or, we will propose to identify the tail areas of the unknown function 

F(x) with those of the normal law. 

    We turn the readers’ attention to the fact that such a procedure 

should not be trusted either when applying the normal, or any other 

law, and that there exist both theoretical grounds and considerations 

based on statistical experiments for that inference. Theoretical grounds 

consist in that the central limit theorem only states that the difference 

between the exact distribution function *{ }nP s x<  and the normal law 

is small: 

 

    *{ } N( ) 0.nP s x x< − →  

 

For example, if that probability P = 0.95, N(x) = 0.99 and the 

difference is only 0.04 which is sufficiently small. However, the 

relative error 

 

    *[1 { }] [1 N( )] 400%nP s x x− < ÷ − =  
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is very large. It is not indifferent that actually *{ }nP s x≥  = 0.05 so that 

the event *{ }ns x≥  occurs once in 20 cases (once in 20 years, so to say) 

whereas by means of the normal distribution we found out that it 

happens once in a hundred cases (once in a century, so to say). We 

stress that the central limit theorem does not state that 

 

    *[1 { }] [1 N( )] 1nP s x x− < ÷ − →                                                   (4.12) 

 

uniformly for every x, and such a conclusion is actually wrong. 

    Thus, in the domain of probabilities close to 1 (and to 0) the 

application of the normal distribution can lead (and as a rule actually 

leads) to a large relative error whereas according to the central limit 

theorem the absolute error will be small. In particular, it should be 

borne in mind that the equality 

 

    1ξ ... ξ 3σ
{| |   }  0.997nP a

n n

+ +
− ≤ =  

 

applied in § 4.5 is somewhat tentative. Instead of 0.997 values 0.990 or 

0.980 can easily happen. Only when n is very large will 0.997 actually 

occur.  

    The ratio in the left side of (4.12) is stochastically studied by means 

of the so-called theorems of large deviations (Feller 1966). Their 

practical significance is however insufficiently clear. Incidentally, they 

indicate that the result will not be better if other frequently occurring 

distributions, for example, the Pearson curves, are applied instead of 

the normal law.  

    As to the available statistical experience of working with the tail 

areas of distributions, it shows that their behaviour is irregular. The 

violation of statistical homogeneity influencing the outcome of 

separate trials possibly especially concerns those areas. In such cases 

the attempts of describing the trials by statistical methods are hopeless. 

    The study of the values of wind velocities possibly occurring once in 

a century becomes complicated also because maximal yearly values 

are meant. If the values of those velocities at given moments are 

naturally assumed to be normally distributed, that maximal value will 

be naturally considered by means of some distribution of extreme 

values. However, these latter are only derived for independent 

magnitudes and are therefore unable to allow for a gradual increase of 

wind velocities under certain meteorological conditions. In addition, 

the theory of extreme values itself is often applied at an essential 

stretch. Recall also the lack of continuous records of wind velocities 

and you will be able to say absolutely for sure that nowadays there 

exist no scientific method of finding out how strong can the wind be 

once in a century. The designers should find some other method for 

stating how reliable are their buildings. 

 

Notes 
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    1. This example and considerations pertaining to medical statistics below are 

certainly in order. However, it is instructive that Soviet authors apparently avoided 

illustrations concerning touchy social statistics. O. S. 

    2. A drawing of lots described in the Talmud (Sheynin 1998) shows that the 

participants doubted the irrelevance of the order of drawing.  

    Laplace (1812/1886, p. 413) was apparently the first to note that preliminary 

drawings tend to equalize chances of the participants. O. S. 

    3. Sometimes experts have to apply subjective probability for various estimations. 

The same apparently may be said about jurors. Jakob Bernoulli, in his Ars 

Conjectandi, introduced non-additive subjective probabilities. He could have 

borrowed that idea from the scholastic theory of probabilism according to which the 

opinion of each Father of the Church was considered probable. O. S.  

    4. The author’s conclusion is too harsh. Laplace and Poisson apparently only 

examined the ideal case; the former mentioned this restriction only in passing, the 

latter did not at all. Their work concerned general recommendations, for example, 

about the needed number of jurors. During the latest few decades the interest in 

stochastic studies of the administration of justice has been revived, although much 

more stress is now laid on interpreting background information (e. g., on estimating 

the number of possible perpetrators).  

    Laplace considered the juror’s mistake (see somewhat below) according to the 

Bayesian approach and apparently only as a first approximation. See his actual 

understanding of that point elsewhere (Laplace 1812/1886, p. 523). Gelfand & 

Solomon (1973, p. 273) somewhat softened the issue of the interdependence of 

jurors. O. S. 

    5. The author cited the first Gauss’ justification of the principle of least squares 

(which he later abandoned). Gauss arrived at the normal distribution by assuming, in 

part, that the arithmetic mean was the best estimator of a set of measurements. 

Incidentally, the true value mentioned by the author has been later understood as the 

limit of the appropriate arithmetic mean (Sheynin 2007). O. S. 

    6. The author could have stressed that a rigorous proof of the central limit theorem 

was only due to Liapunov and Markov, then to Chebyshev. I also note (Zolotarev 

1999, p. 794) that that theorem is now understood in a somewhat more general sense 

(as the appearance of the normal distribution or its analogues). O. S. 

    7. It is in order to note additionally that De Moivre proved his theorem (the first 

proof of the most simple case of the central limit theorem) not at all as the author 

did. O. S. 

    8. The author did not, however, mention any such theory. O. S. 
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V. N. Tutubalin 

 

Treatment of Observational Series 
 

 Statisticheskaia Obrabotka Riadov Nabliudenii. Moscow, 1973 

 

Introduction 
    Facts are known to be the breath of the scholar’s life. In our century 

of exact scientific methods, observation usually means measure, and 

facts which we have to deal with, are as a rule expressed in numbers. 

In any scientific establishment you will be shown long series of 

numbers also represented by graphs drawn by coloured pencils on 

squared paper. All of them are observational series. What benefit can 

4we elicit of such coloured splendour whose collection demanded 

many long years of efforts by many authors?  

    Observational series often lead to some evident conclusion. Thus, 

after the introduction of antibiotics into medical practice, mortality 

from most infectious diseases sharply declined, but no mathematical 

treatment for such conclusions is necessary: the result speaks for itself. 

In other cases, however, conclusions can be not so unquestionable, and 

we have to apply statistical treatment and attempt to make them more 

reliable by mathematical methods. 

    It is important to imagine that in many cases the statistical treatment 

is beneficial but that perhaps even more often it is useless and 

sometimes even harmful since it prompts us to make wrong 

conclusions. Thus, antibiotics are useless in cases of viral infection. 

This booklet deals with instances in which statistical treatment is 

scientifically justified. 

 

1. Two Main Mathematical Models of Observational Series 
    1.1. Why is statistical treatment needed? As stated in the 

Introduction, it can be not necessary at all. One more such example 

concerns the reliability of machinery. Suppose we discovered some 

preventive measure that obviously lowers the number of failures. Our 

observational series (for example, the number of failures over some 

years) certainly confirms the efficacy of our finding and we may be 

satisfied. Human nature, however, is incessantly wishing somewhat 

better; since there are less failures, we will wish to have none of them 

at all, so we propose another development and desire to confirm its 

efficacy by showing that the number of yearly failures will lower still 

more. 

    You can guarantee that this will not be so easy. When the number of 

yearly failures is small, it will be noticeably influenced by random 

causes. This does not yet mean that it can be studied by purely 

statistical methods, because their applicability demands the probably 

lacking statistical homogeneity [i]. However, such models allow to 

reach some important conclusions which we need to bear in mind. In 

addition, once a good technological result is already achieved, and we 

strive for a still better outcome, statistical homogeneity occurs rather 

often. 
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    We will therefore assume that a stochastic model for the number of 

failures is valid and consider the check of efficacy of the innovation. 

When recognizing stochastic methods in general it is very natural to 

acknowledge the Poisson distribution of rare events as well, i. e., to 

apply the formula 

 

    λλ
{µ }

!

k

P k e
k

−= =  

 

in which λ is the mean yearly number of failures. Suppose we have 

introduced the innovation at the beginning of a year and that during 

that year no failures have occurred whereas the mean number of them 

for the previous years was 2. May we conclude that the new 

development was effective?  

    That number, 2, was derived from previous statistical data and it 

does not necessarily coincide with the real value of λ, but for the time 

being we will disregard this circumstance. And so, λ = 2. Then the 

probability of a purely random lack of failures, or of µ = 0, will be 

 

    P{µ = 0} = e
−2

 ≈ 1/7. 

 

    Therefore, if recognizing the innovation’s efficacy, and awarding 

prizes to its inventors, the loss of money will have probability 1/7. 

Thus, 1/7 of all the employees proposing something useless, for 

example, perfuming the machinery, will get prizes. The trouble is not 

so much that the money will be lost, but rather that absolutely false 

viewpoints will be accepted. And so, perfuming of machinery is 

entered in search engines which do not distinguish between truth and 

rubbish and therefore find its way into general practice. Next year 1/7 

of those who applied that method will once more be happy and publish 

pertinent rapturous papers with the unlucky 6/7 keeping silence 

because papers on setbacks can not be written
1
. That process 

intensifies as an avalanche; chairs of perfuming are established at 

universities, conferences organized, dissertations and textbooks 

compiled.  

    Such a picture although really sad is not a pointless abstraction since 

some pertinent examples are known, and we will provide some in the 

sequel. Considerations of that picture compels us, as we see it, to 

estimate in a new manner the merits of real science of that wonderful 

achievement, of collective intellect. Sciences of perfuming do emerge 

now and then, and even often, flourish (the more numerous are those 

participating the more reports about successes are made since 1/7 of 

them will become yearly successful) but do not live long.  

    Someone will always destroy them, and only the really valuable 

survives. The part played by stochastic methods in that self-

purification of science is far from being the least important, although 

to declare that its role is exclusive will be nonsensical. We should be 

able to say whether the observed outcome can have been purely 

random
2
.  

    However, just as any other science, mathematical statistics can have 

its own branches treating perfuming. We will consider the general 
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structure of statistical methods, discuss what is certain and what 

tentative there and on what premises are they founded.  

    1.2. The part played by mathematical models. Any statistical 

treatment must be preceded by a mathematical model of the 

phenomenon studied stating which magnitudes are random, which not; 

which are dependent, and which not, etc. Sometimes you will 

encounter a delusion that tells you that if any magnitude is not 

determinate (if its values can not be precisely predicted), it may be 

considered random. This is completely wrong because randomness 

demands statistical stability. Therefore, indeterminate behaviour is not 

generally speaking, randomness; or, if you wish, in addition to 

determinate and random there exist indeterminate magnitudes which 

we do not know how to deal with. 

    A mathematical model can include either determinate or random 

magnitudes, or both, but, as of today, not those last mentioned. The art 

of choosing a mathematical model therefore consists in approximately 

representing the indeterminate magnitudes appearing practically 

always as either determinate or random. It is also necessary that the 

values of the determinate magnitudes or the distributions of the 

probabilities of the random variables be derivable from the 

experimental material at hand (or available in principle).  

    Let us return to the determination of the efficacy of a new 

preventive measure. We have an observational series 

 

    µ1, µ2, ..., µn, µ                                                                      (1.1) 

 

where µi are the numbers of failures for the previous years and µ, the 

same for the year when the innovation is being tested. Where is the 

mathematical model here? In case of rare failures it is rather 

reasonable to assume that the series (1.1) is composed of random 

variables. However, when introducing that term, we oblige ourselves 

to state the statistical ensemble of experiments in which the variable is 

realized. Two paths are open: either we believe that the number of 

failures before the innovation was implemented are realizations of a 

random variable, or we imagine the results of many sets of machinery 

identical to our set working under the same conditions. In the first, but 

not necessarily in the second case the magnitudes  

 

    µ1, µ2, ..., µn                                                                              (1.2) 

 

ought to be identically distributed. Or, assuming a Poisson distribution, 

we have in the first case  

 

    Eµ1 = Eµ2 = ... = Eµn = λ                                                        (1.3) 

 

and, in the second case we may assume that 

 

    Eµ1 = λ1, Eµ2 = λ2, ..., Eµn = λn 

 

where 

 



 50 

    λ1, λ2, ..., λn                                                                            (1.4) 

 

can differ.  

    Theoretically, the second case is more general and therefore, at a 

glance, more inviting, but we will see now that it does not lead to 

anything and should be left aside. Indeed, we have to know the value 

of the Poisson parameter λ = Eµ for the number of yearly failures 

during the test of the innovation had it been ineffective. However, if 

there is no connection between the numbers (1.4), this parameter is not 

at all linked with our observations (1.2). And so, we are unable to 

determine λ. Then, when estimating (1.4) we should choose estimators 

λ̂i  based on a single realization (if we only observed one set of 

machinery) and we can only very roughly assume that 

 

    1 1
ˆ ˆλ µ ,...,λ µ .n n= =  

 

    Thus, when choosing a very general model, we are unable to 

determine its parameters which happens always. On the other hand, a 

particular model with equalities (1.3) is able to provide better 

approximation 

 

    λ̂ = µ.                                                                                       (1.5) 

 

For the case of an ineffective innovation it is natural to assume 

approximately that  

 

    λ = Eµ ≈ λ̂ = µ.                                                                      (1.6) 

 

    This particular model enables us, in general, to solve our problem, 

but it has another disadvantage: it can be wrong. For example, aging of 

the machinery can lead to increase of the mean number of failures 

from year to year: 

 

    Eµ1 < Eµ2 < ... < Eµn < Eµ- 

 

Here, equality (1.6) will underestimate the actual value of Eµ. Suppose 

that λ̂ 2=  but that actually Eµ= 4, then properly 

 

    P{µ = 0} = e
−4

 ≈ 1/55 

 

instead of the result of our calculation, P ≈ 1/7, see § 1.1, after which 

we will not admit that the innovation is effective although actually 

almost surely it is such. 

    We see that when constructing a statistical model we have to choose 

between Scylla and Charybdis, that is, between a general model, 

useless since we are unable to define its parameters and a particular 

model, possibly wrong and therefore leading to false conclusions. It is 

only unknown which is Scylla and which is Charybdis.  
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    Suppose that we have adopted the particular model, i. e. declared 

that the magnitudes (1.2) are identically distributed random variables. 

Will this be the sole necessary assumption? No, since we badly need to 

know how large can be the error of the approximate equality (1.6). For 

example, if λ̂=2,  can the real value of λ be 4? In other words, we 

should be able to calculate the variance of (1.5). It is equal to 

 

    
2

1

1ˆvar λ [ varµ cov(µ µ )].
n

i i j

i i jn = ≠

= +∑ ∑  

 

    For the Poisson law 

 

    varµi = Eµi = λ 
 

and, as a rough estimate, it is possible to assume varµi = λ̂ µ,=  but we 

can not say anything abut the covariations. The available data are 

usually far from adequate for estimating it. Nothing is left than to 

suppose that the variables (1.2) are independent, i. e. to consider that 

the covariations vanish.  

    We thus arrive at a model of independent identically distributed 

random variables, that is, to a sample. The reader will probably agree 

that our considerations, if not logically prove that only a model of a 

sample is useful, are still sufficiently convincing in showing that it is 

difficult to tear away from the sphere of ideas leading to the model of a 

sample. It is therefore very popular and researchers are trying to work 

with it provided that its falsity is not proven.  

    The chapters of mathematical statistics devoted to samples are 

undoubtedly in its best and the most developed part. However, the 

model of sample is sufficiently (and even too) often wrong. We saw 

that if the machinery is aging, the observations (1.2) do not compose a 

sample. The same is true when a preliminary period is involved, when 

the work begins by eliminating defects after which the number of 

failures drops. Other causes violating the identity of the distribution of 

the variables (1.2) also exist. 

    Their independence can also be violated. For example, if a failure 

will lead to a capital repair with the replacement of many depreciated 

although still workable machine parts, a negative correlation between 

µi and the depreciated and worn-out µj will appear. If, however, the 

wear and tear of a machine part intensifies the depreciation of the other 

parts and no replacements are made, the appeared correlation will be 

positive. 

    When introducing models differing from a model of a sample, we 

should evidently specify their distinction by a small number of 

parameters determinable either theoretically or by available statistical 

data. Complicated models, as stated above, are absolutely useless. It is 

practically possible to allow for either deviations from the identity of 

distributions given by determinate functions or from independence 

provided that identity is preserved. We will now consider such models. 

It should be borne in mind that both these models and the model of 

sample are sufficiently tentative. True, if a model is proper, our 
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conclusions are derived in a purely mathematical way and therefore 

certain. However, on the whole everything depends on the model. 

Statistical methods are as certain (not more or less) as the conclusions 

of other sciences applying mathematical means, for example physics, 

astronomy or strength of material. In practical problems these sciences 

can provide guiding lines but can not guarantee that we have correctly 

applied them. 

    1.3. Model of trend with an error. In a mathematical model of an 

observational series something is always determinate and something 

random. We will consider a model in which that series 

 

    x1, x2, ..., xn  

 

 is given by formula 

 

    xi = f(ti) + δi.                                                                       (1.7) 

 

    Here ti is the value of some determinate variable specifying the i-th 

experiment, f(t), some determinate function (the trend) and δi, a 

random variable usually called the error of that experiment. This 

situation means that the Lord determined the true dependence by f(t) 

so that we should have observed f(ti) in experiment i, but that the devil 

inserted the error δi. 

    For example, f(t) can represent one or another coordinate of an 

object in space as dependent on time, and xi is our measurement of that 

coordinate at moment ti. The devil’s interference δi can certainly be 

determinate, random or generally of an indeterminate nature. Thus, the 

observed xi can be corrupted by a systematic error so that Eδi is not 

necessarily zero. We may assume that Eδi = C and does not depend on 

i but it is also possible to consider Eδi = φ(ti) is a function of ti. Still 

worse will happen if Eδi depends on a variable ui which we can not 

check. In neither of those cases statistical treatment can eliminate the 

errors.  

    However, a sufficiently thorough planning of the observations can 

allow us to hope that the errors will be purely random in the sense that 

statistical homogeneity is maintained and there is no systematic shift: 

Eδi = 0. More precisely, the systematic error will be sufficiently small 

and can be neglected. Such situations indeed comprise the scope of the 

statistical methods. 

    After recalling what was said in § 1.2 it becomes clear that most 

simple statistical assumptions should be imposed on the errors δi. Most 

often these errors are supposed to be independent and identically 

distributed. Normality is also usually assumed. Only one of their 

deviations from the model of sample was brought into use: it is 

sometimes thought that their variances are not equal to one another but 

proportional to numbers assigned according to some considerations. 

Or, it is assumed that such numbers wi called weights of observations 

are known that 

 

    w1 var δ1 = w2 var δ2 = ... = wn var δn = σ2
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and the variances are inversely proportional to the weights  

    
2σ

var δ .i

iw
=  

 

    I have described the assumptions imposed on the random 

component of our observations. Now I pass to their determinate 

component f(t) otherwise called trend.  

    The most simple and classical case consists in that the function f(t) 

is of a quite definite class but depends on some unknown parameters 

c1, c2, ..., ck:  

 

    f(t) = F(t, c1, c2, ..., ck)                                                               (1.8) 

 

where the function F is given by a known formula or an algorithm of 

calculation. For example, in case of the motion of an object in space 

those parameters can be understood as its coordinates and velocities at 

any definite moment; other, more opportune parameters can also be 

introduced. 

    Then any coordinate f(t) will be uniquely determined by the 

parameters and the Newtonian laws of motion (if that object has no 

engine). The problem consists in determining estimates of the 

parameters 
îc  given observations (1.7). It is solved by the Gaussian 

method of least squares: the estimates are determined in such a way 

that the minimal value of the function 

 

    2

1

1

[ ( ; ,..., ]
n

i i k

i

x F t c c
=

−∑  

 

of ci will be attained at point ( 1̂
ˆ,..., ).kc c  

    More often, however, is the case in which the real dependence f(t) is 

unknown. Here also the equality (1.8) is applied but the function F is 

chosen more or less arbitrarily. Thus, a polynomial might be chosen 

and the method of least squares once more applied. 

    Such a non-classical situation when f(t) is not known beforehand 

demands a more detailed analysis, see a concrete example in the next 

Chapter. Here, however, we describe an absolutely different model 

also applied for statistically treating observational series. 

    1.4. Model of a stochastic process. The main attention is turned to 

the isolation of the determinate component, the trend f(t). The values 

themselves, xi, of the observational series (1.8) are not random; 

random are only the additional magnitudes δi considered as errors, 

noise, and generally the devil’s machinations. Another approach is 

possible with randomness being considered the main property of the 

series under study which we now denote by 

 

    ξ1, ξ2, ..., ξn.                                                                               (1.9) 

 

    Here, the most simple model consists in treating that set as a 

realization of an n-dimensional random variable. Such a model can be 

useful if the experiment providing it can be repeated many times over, 
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i. e., if many observational series can be obtained under similar 

statistically homogeneous conditions. More often, however, we have 

only one such series, distributions of probabilities certainly can not be 

reconstructed and the model of an n-dimensional distribution is 

absolutely useless. However, if we assume that the joint distribution of 

the magnitude ξ1, ξ2, is the same as that of ξ2, ξ3, of ξ3, ξ4, etc, then the 

pairs (ξ1, ξ2), (ξ2, ξ3),..., (ξn−1, ξn) provide many realizations, although 

perhaps not mutually independent, of that bivariate distribution. Such a 

distribution is therefore determinable in principle. 

    It is convenient to generalize somewhat the mathematical model. Let 

us consider a sequence of random variables infinite in both directions 

 

      ... ξ−1, ξ0, ξ1, ξ2, ..., ξn, ξn+1, ...                                                 (1.10) 

 

called a stochastic process. We assume that theoretically there exist 

distributions of probabilities of any finite set 

 

    {ξα, ξβ, ξγ}                                                                                 (1.11) 

 

of random variables. Our observational series (1.9) is a part of the 

infinite sequence (1.10) and only allows us to reach some conclusions 

about that whole process if the model includes a rule representing 

distributions of magnitudes (1.11) with negative and large positive 

subscripts through the distribution of the observed variables (1.9). 

Without such a rule the model of a stochastic process is useless.  

    In the most simple and most natural case the condition of 

stationarity is imposed: for any τ the distribution of the variables (ξα+τ, 

..., ξγ+ τ) coincides with that for τ = 0. The model of a stochastic 

process consists in that [now] we consider our observations (1.9) as a 

part of the realization (1.10) of a stationary stochastic process.  

    When assuming a model of a stochastic process, only bivariate 

distributions are usually applied and in addition only the correlation 

between the different values of that process are studied. It ought to be 

said that in spite of the popularity of the concept of stochastic process, 

only quite a few examples can be cited in which it allowed to describe 

adequately the statistical properties of observational series. Most 

publications begin by stating that a pertinent stochastic process 

specified in such and such a way is given, but there really are only a 

few works where these specifications are indeed determined 

theoretically or experimentally.  

    The theory of stochastic processes is here suitable for solving 

abstract problems: what will happen if a white noise of a given 

intensity influences some system. Such problems, however, only 

indirectly bear on the real behaviour of a system because under real 

conditions it is not likely the white noise that influences the system, – 

it  does not even concern a stochastic process (lack of statistical 

homogeneity). But meanwhile often no one studies what is really 

acting on the system because such investigations are complicated, 

difficult and expensive so that it is much easier to restrict the attention 

to arbitrary prior assumptions.  
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    It is interesting therefore to see what occurred when the most 

eminent statisticians attempted to study actual data by models of a 

stochastic process. Rather often they experienced failure, see Chapter 

3. We will also briefly mention the statistical theory of turbulence in 

which the notion of stochastic process has been applied with brilliant 

success. 

 

2. The Method of Least Squares 
    Gauss discovered and introduced it into general usage. The classical 

case which he considered consisted in that some known relations 

should be maintained between the terms of the observational series 

 

    x1, x2, ..., xn 

 

had not the observations been corrupted by errors. For example, in the 

case of the path of an object in space
3
 it would have been possible to 

express all terms of the series through a few of its first terms had these 

been known absolutely precisely. This classical case can be 

comparatively easily studied within the boundaries of mathematical 

statistics. Practical applications of the method of least squares can 

encounter more or less essential calculational difficulties which we 

leave aside. Other difficulties are connected with the possible non-

fulfilment of the assumption of the model of trend with error. Thus, 

errors of successive measurements of distances by radar apparently 

can not be assumed independent random variables. It is in general 

unclear whether they possess a statistical character so that statistical 

methods are here unreliable and moreover helpless.  

    The observations themselves, however, are highly precise and can 

be made many times, so that statistical methods are not needed there. 

In spite of all the merits of the classical case, its shortcoming is that it 

occurs comparatively rarely. Much more often we are convinced that 

our observations can be approximated by a smooth dependence  

 

    xi ≈ f(ti) 

 

where ti is a variable describing the conditions of the i-th experiment. 

The exact form of the function f(t) is, however, unknown.  

    Methods strongly resembling those of the classical case are applied 

here, but their study indicates that they are not mathematically 

justified. Mathematical statistics widely applies mathematics but is not 

reduced to that comparatively very transparent science. Statistics is 

rather an art and as such it has its own secrets and we will indeed 

begin by studying them. 

    2.1. The secrets of the statistical art. When wishing to apply the 

method of least squares we can in most cases use a computer 

programme compiled once and for all. It is just necessary to enter the 

data, wait for the calculations to be made and the printer will provide a 

formula for a curve fitting the observations. However, he who passes 

all these procedures to a machine will be wrong. It is absolutely 

necessary to represent the available data in a visible way and at least to 

glance at the figure. 
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    The human eye is able to detect such special features in the material 

that the machine will miss. For example, if the first half of the 

observations is situated above, and the second half, below the fitting 

curve, then, obviously, the assumption of independent errors in the 

model of trend with error is violated. In such a case no computer 

calculation has any sense [since] the machine is unable to note these 

special features all by itself. A pertinent programme can certainly be 

compiled but the trouble is that there are so many possible features of 

the data for including the study of all of them in the programme.  

    It is natural to entrust the application of any given statistical test to a 

machine, which however is barely able to formulate the necessary 

tests. This should be done by a statistician by issuing from a visual 

estimation of the statistical data that should be therefore represented in 

a graphical way. It follows therefore that the statistical art is based in 

the first instance on visual estimation. 

    He who wholly trusts the automatic computer calculations deprives 

himself of the possibility of checking the statistical model and, as a 

result, the more is given over to machine treatment, the less trust it 

deserves. However, if statistical material demands to be estimated by 

the naked eye, this will be possible for functions of one variable well 

enough (since they can be represented by graphs), much worse with 

functions of two variables (they can be depicted by isolines like the 

heights above sea level on topographic maps) but we are absolutely 

unable to study functions of a larger number of variables.  

    That is the domain where we may only reckon on help from the 

computer. First steps were done here. Such directions like multivariate 

statistical analysis and design of extremal experiments have emerged, 

but it is still a very long way to go before really reliable methods are 

created. The methods of the directions just mentioned are sometimes 

effective, sometimes not and we do not know the reason why. The 

main shortcoming here is the low moral level of research, the custom 

of pretending the desired to be real so that we do not know what 

exactly can we trust in.  

    And so, when desiring to apply the method of least squares, we 

should begin by drawing a graph of the observational series. The 

reader will imagine what transpires here by having a look on the 

broken line on Fig. 1; its meaning is yet unimportant. Such a broken 

line obviously fluctuates about some smoothly changing curve. This 

curve is indeed expressing the true regularity whereas the fluctuations 

of that broken line are occasioned by random causes and have no 

relation [...]  

    The italicized phrases usually comprise all the available information 

about the real studied dependence. Understandably, it is too diffuse 

and indeterminate for directly admitting some scientific investigation. 

Conclusions reached by a naked eye study should be transferred into a 

mathematical model applicable for statistical treatment. That 

transformation is the second mystery of the statistical art.  

    In case of the method of least squares most often a model 

 

    xi = P(ti) + δi, i = 1, 2, ..., n 
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is applied with P(t) being a polynomial whose coefficients should be 

estimated by that method. [...] It is usually said that in case another 

model 

 

    xi = f(ti) + δi, i = 1, 2, ..., n 

 

is valid with f(t) not being a polynomial, we may apply the Weierstrass 

theorem according to which we can approximate f(t) by the polynomial 

P(t) as precisely as desired. However, that reference is , however, 

inappropriate because any continuous function can be approximated by 

a polynomial of a sufficiently high degree. In practice we attempt to 

choose a low rather than a high degree. [...] A polynomial of a higher 

degree [can be] further from reality than that of a lower degree. Then, 

the Weierstrass theorem is also valid for functions of several variables. 

However, if the earth’s surface as shown by isolines on a topographic 

map is considered a typical function of two variables, and its 

approximation is attempted, the result will be usually unsatisfactory: 

the degree of the polynomial should be too high. The theoretical 

Weierstrass theorem and practical smoothing differ.  

    The method of smoothing by a polynomial is therefore not 

mathematically justified and the success of that procedure is one more 

mystery of the statistical art. How can we explain the rather often 

success here? Apparently the human eye feels well enough the 

behaviour of the graphs of analytic functions, polynomials in 

particular. As students are taught, only a few points ought to be 

calculated, − discontinuities, extrema, sometimes points of inflexion, − 

and functions are then reconstructed quite well. It may be supposed 

that we are able to catch whether the real dependence is approximated 

when smoothing a broken line by a polynomial well enough. This 

statistical procedure of smoothing a function by a polynomial is 

probably only applied when success is expected after having a look at 

the graph by naked eye. 

    The situation changes at once if that procedure is attempted to be 

wholly accomplished automatically. In that case no data will be 

preliminarily estimated and the portion of successful smoothing will 

be sharply reduced. The case of functions of many variables is quite 

complicated. We are unable to show either the experimental data or the 

result of smoothing and can not even say whether it was successful or 

not. 

    2.2. Smoothing by a polynomial: an example. It is time to explain 

the provenance of the observations represented on Fig. 1. [It was the 

study of the damage of insulation of the stators of large turbo-

generators (Belova et al 1965, 1967).] The total number of failures is 

naturally comprised of failures of separate generators. Rather early in 

our work we decided that the probability of a failure of a given 

generator is proportional to the total area of its insulation and little 

depends on its constructive or operational conditions; hydrogen 

cooling was then almost non-existing. We have therefore studied the 

behaviour of a unit area of that insulation (100sq. m. corresponding in 

its order to an area of insulation a large machine) without allowing for 

any other peculiarities. The problem of aging of the insulation, i. e., of 
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the increase of the probability of failure with time, was formulated. 

[...] 

    The values of the frequencies of failures comprise a broken line. 

Their scatter increases with t, a circumstance connected with a sharp 

decrease of the area of insulation, i. e., of the amount of experimental 

material.  

    We are interested in the values of probabilities p(t) of a failure of a 

unit area of insulation aged t during unit time (10
4
 working hours, 

about 1.5 years). For small values of t the amount of experimental 

material is large, but p(t) themselves are low, 0.01 – 0.02, so that their 

direct determination through frequencies is fraught with very large 

errors. The mean square deviation of the frequency, µi/Si, where µi is 

the number of failures during time interval between (i – 1)-th and i-th 

time units and Si, the corresponding area of insulation, is known to be 

equal to 
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where ti =10
4
i hours. For t1 = 10

5
 p(ti) ≈ 0.02, Si = 200, so that 

deviation is roughly 0.01 or 50% of p(t) itself.  

    Then it is natural to attempt to heighten the precision of determining 

p(t) by smoothing since the estimation of this probability then depends 

on all other experimental data. But then, a statistical model is 

necessary here. It is rather natural to consider the observed number of 

failures (1.2) as random variables with a Poisson distribution. 

Understandably,  

 

    Eµi = Si p(ti). 

 

    It is somewhat more difficult to agree that the magnitudes µi are 

independent. Here, however, the following considerations applicable 

to any rare events will help. Take for example µ1, µ2. Failure occurring 

during the first interval of time influences the behaviour of the 

insulation in the second interval, but that action is only restricted to the 

failed machines whose portion was small. Having admitted 

independence, the mathematical model is completely given although it 

is connected not with the most convenient normal, but with the 

Poisson distribution. Then, the variances 

 

    var µi = Eµi = Si p(ti) 

 

depend on probabilities p(ti) which we indeed aim to derive. A 

transformation to magnitudes 

 

2 µi iv =                                                                                                              (2.1) 

 

essentially equalizes the variances and therefore helps. 

    These magnitudes v1, v2, ..., vn from which we later return to 

magnitudes (1.2) are smoothed. The smoothing itself is easy in essence 
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but some mathematical tricks described in detail elsewhere (Belova et 

al 1965, 1967) are applied. 

    The approximate expression  

 

    p(ti) = p(xi) ≈ (1/4)[b0 – 0.1333b2 + b2x
2
]
2
 + 0.35/Si, xi = ti/22, 

 

where ti is measured in the selected intervals of time and the last term 

is necessary for allowing for the systematic error that occurred when 

transferring to vi (2.1) should be considered final.  

    Estimates for b0 and b2 and their variances are 

 

    4 4

0 2 0 2
ˆ ˆ ˆ ˆ0.225,  0.20,  var 2.12 10 ,  var 44.5 10 .b b b b

− −= = = ⋅ = ⋅  

 

The magnitudes 0.35/Si are smoothed by a certain polynomial.  

    Careful statistical work concerning probabilities of failures should 

apply our answer exactly in the provided form. However, it is not vivid 

enough and we have therefore represented it in a simplified way. A 

confidence rectangle for (b0, b2) with an 80% coefficient was therefore 

indicated with curves p1(t), p2(t), p3(t) added. Curve p2(t) provides the 

best estimate of the real probability of failure which we are able to 

offer. It corresponds to the estimates of b0 and b2. The other curves are 

obtained if the real point (b0, b2) is replaced by the left lower and right 

upper vertices of the confidence rectangle respectively. They provide 

an idea about the order of the possible error of curve p2(t) but, strictly 

speaking, are not the boundaries of the confidence region for the true 

curve. The confidence region for p(t) can be constructed in different 

ways. Strictly speaking, it is not needed since all the information 

applied for constructing it is summed in the mentioned 

variances, 0 2
ˆ ˆ var  and var .b b The region between p1(t) and p3(t) can be 

considered as some approximate (having the adequate order) version 

of the confidence region. 

    Various versions of checking our model by statistical tests are of 

fundamental significance. In statistics, no check is exhausting but a 

number of well passed tests nevertheless produces a feeling of 

certitude in the results. We will dwell in detail on all these checks.  

    The simplest criterion is the study of the final result. Let us have a 

good look at the curve representing the dependence sought. Do not the 

actual data deviate too much? (The maximal among the 22 deviations 

is µ20 = 4 and according to the Poisson formula P{µ20 ≥ 4} ≈ 0.12.) In 

itself, this is not especially significant, and for the maximal of 22 

deviations with only 1/22 ≈ 0.05, it is quite acceptable. [...] 

    It is possible to compile an expression similar to the sum of the 

squares of deviations of the experimental data from the smooth curve 

p2(t). But it is better to deal with magnitudes vi (2.1) since their 

variance does not essentially depend on the unknown probabilities p(ti) 

and is roughly equal to 1. In our case, the variance of the observations 

is thus known almost exactly, a circumstance connected with the 

Poisson distribution, which depends only on one parameter rather than 

two as the normal law does. In general, the test applying the sum of the 

squares of deviations also shows that the final curve fits well enough. 
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    Another group of tests is connected with the choice of the degree 

and the number of terms of the approximating polynomial. Here, we 

also deal with vi (2.1) and test what happens when they are 

approximated by various polynomials up to the third degree inclusive. 

It is obvious that the polynomial sought includes a free term. Then we 

add, in turn, terms of the first, second and third degree. The best 

improvement of approximation is reached when polynomials of the 

type 

 

    c0 + c2t
2
                                                                                 (2.2) 

 

are chosen.  

    And now we check that the addition of terms of the first and third 

degree to it does not significantly improve the approximation; for 

details, see Belova et al (1965, 1967). After all these checks we 

become sure that applying a polynomial (2.2) we have indeed as 

completely as was possible elicited the determinate component from 

the available data. 

    However, having happily concluded the tests of the hypotheses 

connected with the smoothing, we do not at all check the main 

hypothesis, that the probability of the failure of a unit area of 

insulation does not depend on the constructive or operational 

peculiarities of the pertinent machine. Indeed, we are only checking 

whether the magnitudes µi are obeying the Poisson distribution (and, in 

part, whether they are independent).  

    However, that distribution also occurs when the probabilities of 

failures occurring on different areas of the insulation are unequal 

(provided all the probabilities are sufficiently low). The most 

important hypothesis of statistical homogeneity of the various unit 

areas of insulation is yet left unchecked and can not be checked by 

issuing from the generalized data of Fig. 1
4
. At the same time most 

interesting is exactly the isolation and study of machines with high and 

low break-down rates (or a confirmation that all of them have the same 

rate of failures). We will see now how these problems can be solved. 

    2.3. Check of statistical homogeneity. The most important 

condition of acquiring a statistically homogeneous totality, or, so to 

say, the most important mystery of the statistical art consists in 

carefully selecting the material to be studied. Thus, the data of Fig. 1 

does not include failures of the insulation occurring because of causes 

[of various causes of its random damage]. We supposed that such 

causes, although usually called random, are not random in the 

stochastic sense since they are not statistically stable.  

    The selection of material was made easier by the fact that a failure 

of a large machine is an extreme event whose causes are thoroughly 

investigated and duly registered. The most suitable for including a 

failure into statistical treatment was the formulation local defect of 

insulation. In general, however, all failures were included if an alien 

cause was not clearly indicated. Failures included into statistical 

treatment composed about a half of all the failures of insulation.  

When selecting material, the statistician must invariably keep to some 

principle once and for all. 
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    It is clear therefore that no special significance can be attached to 

statistical calculations of reliability. This conclusion is important for a 

principled evaluation of the real meaning of the reliability theory. 

Now, however, our interest is concentrated on another point, on 

ascertaining whether our thoroughly selected totality was statistically 

homogeneous. Suppose that practically the derived curve precisely 

expresses the probability of failure, p(t). If the failures of the insulation 

are mostly due to its local damage, it is logical to assume that a failure 

of a certain machine does not influence (or little influences) its failure 

after repair.  

    But then the total number of failures ξi during all the operational 

time of a machine is a sum of independent random variables, − the 

number of failures during the first, the second, ... selected intervals of 

time. Each term obeys the Poisson distribution, so that the total 

number of failures also obeys it. The parameter of that distribution for 

machine i for the (k – 1)-th time interval is 

 

    λik = p(tk)Si ≈ p2(tk)Si                                                            (2.3) 

 

where as before Si is the area of insulation of machine i. 

    Therefore, the parameter  

 

    λi = Eξi                                                                                 (2.4) 

 

of the total number of failures for the i-th machine can be calculated 

by summing the expressions (2.3) over such tk that are less than the 

general working time of the pertinent machine. We may thus consider 

that the numbers (2.4) are known for all the machines. [...] This 

method of determining λi is only valid when statistical homogeneity is 

supposed, otherwise the computed curve p2(t) only provides a general 

characteristic of the breakdown rate.  

    Some machines will have a higher, other machines, a lower rate, − 

will have either more or less failures than indicated by the Poisson law 

with parameter calculated according to our rule. So it seems that we 

have established the effect to be sought for in order to check violations 

of statistical homogeneity. However, the trouble is that it is very 

difficult to discern that effect. Indeed, suppose we have determined 

that for a certain machine λi = 0.1 whereas ξi = 2. Since 
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it would seem that we detected a significant departure from that 

homogeneity. But statistics covers several hundred machines, so that 

for one (and even for a few) of them an event with probability 1/200 

can well happen.  

    There are several possible ways for establishing a useful statistical 

test of homogeneity. One of them is, to apply the Poisson theorem 

once more. Consider the total number of machines that experienced 

one, two, three, ... failures. We will show that the distribution of 
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probabilities for those magnitudes can be derived. Introduce a random 

variable 

 

    fk(ξ) = 1, if ξi = k; 0, if not, k = 1, 2, 3, ... 

 

    Since ξi is the number of failures for the i-th machine, the number of 

machines that had k failures is equal to ∑fk(ξi), a sum of independent 

random variables. For most machines λi is near zero, therefore, if k ≠ 

0, the probability  

 

    P{fk(ξi) = 1} 

 

is low, and the sum above roughly obeys the Poisson distribution. Its 

parameter is derived from 
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where, provided the hypothesis of statistical homogeneity is valid, λi is 

calculated as stated above. A simple calculation (Belova et al 1965, 

1967) indicates that at different values of k the studied sums are close 

to independent random variables. 

    How does deviation from statistical homogeneity reveal itself? 

Some machines will have a higher breakdown rate and experience two 

or more failures, other will deviate in the opposite sense and work 

failure-freely. When statistical homogeneity is corrupted, the number 

of machines with two or more failures will increase, and will decrease 

for those with one failure.  

    The treatment of actual data resulted in the following number of 

machines with 1, 2, 3 and 4 failures (line 1) as compared with the 

corresponding expectations (line 2).  

 

    1. 27       10    1      1 

    2. 29.6   5.7   1.5   0.44 

 

The number of machines with one failure decreased insignificantly but 

of those with two failures increased noticeably: for the Poisson law 

with parameter 5.7 the probability of 10 or more is 0.065. For k = 3 

and 4 the deviations were small.  

    The only deviation worth discussing is that for machines having 2 

failures. However, we may consider it maximal for four independent 

deviations and then its probability is 1 − (1 – 0.065)
4
 ≈ 0.25 so that its 

deviation is not especially significant. 

    Although the hypothesis of statistical homogeneity had passed a 

rather rigid test with credit, some shadow of doubt is still cast on it. 

This seems to mean that for most machines the breakdown rate is 

roughly the same but that small groups of them it can stand out. A 

wide scatter would have led to an essentially more significant result of 

the test. [...] 

    It follows that in general the derived fitting mean curve p2(t) can be 

applied for an approximate calculation of the mean number of failures 
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of various groups of machines, and this provides us a test for 

estimating the reliability of the insulation. Purely statistical methods 

certainly do not concern the improvement of that reliability which is a 

technological problem. But at least we may say whether the reliability 

of insulation had changed and in which direction or that it remained as 

it was previously. This is the practical significance of the work done 

which would not be so important had the comparatively high statistical 

homogeneity of the insulation not been established. [...] 

    2.4. The naked eye study. We had assumed that smoothing by 

polynomials is usually successful because the data for that treatment is 

selected beforehand by naked eye. It would have been improper to fail 

to mention that physicists and engineers also often perform the 

smoothing itself by naked eye without applying the method of least 

squares. And how do we decide that the smoothing in a given case was 

successful? Perhaps because the curve derived by least squares passes 

exactly where it would have been if drawn without applying that 

method?  

    An experimental smoothing by naked eye of the broken line in § 2.2 

was carried out. Participants were mathematicians, workers at a 

statistical laboratory, and engineers. Each received a list of paper with 

only that line shown [...]. The results achieved by an overwhelming 

majority were very good. Fifteen out of sixteen of those participating 

had almost completely drawn their curves between the two curves, 

p1(t) and p3(t) as shown on Fig. 2. [...] 

    I. V. Girsanov, the chief of one of the sections of the statistical 

laboratory, achieved the best result; he unfortunately perished in a later 

tourist mountain tour. [...] In general, the results of smoothing by 

naked eye are quite comparable in precision with the method of least 

squares. Had we been only interested in curve p2(t), we could have 

well drawn it without any calculations. However, a thorough statistical 

treatment demands an estimation of precision as well for which a 

statistical model and science in general are necessary.  

    Thus, when estimating the probability of success in Bernoulli trials, 

we turn to frequencies, but for understanding how large can the 

deviations of frequency from probability be, we should, first, consider 

the trials independent (the statistical model) and second, apply the De 

Moivre – Laplace theorem which (however done) is proven in a 

complicated manner [in essence, by the former in 1733] and this is 

undoubtedly science. 

    When smoothing a broken line by naked eye, we do not even have 

to know the number of observations used for calculating its points [...] 

and anyway it is impossible to indicate the confidence region for the 

curve sought. Here, we need all the science connected with the method 

of least squares and still the almost complete coincidence of the area 

shown on Fig.2 with that between the curves p1(t) and p3(t) demands to 

be somehow explained.  

    Note, however, that for small values of t that first area is somewhat 

narrower than the second one whereas that latter, as shown by 

calculation, is 1.5 – 2 times narrower there than a thoroughly 

constructed confidence region with the usual confidence coefficient of 

0.70 – 0. 95. This means that the indefiniteness of the naked eye 
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smoothing is, however, in general less than it is when calculated 

according to the rules of statistics.  

    It occurs because, when deciding by naked eye, we have to do with 

a given graph, with a result determined by random experimenting; on 

the other hand, when working by statistical methods, we apply a 

statistical model and therefore also cover the possible scatter of the 

results of random experiments themselves from one of their 

realizations to another one. However, the general problem of the real 

possibilities of the naked eye methods demands wide experimental 

investigation.  

 

3. The Theory of Stochastic Processes 
    However beneficial (in suitable cases) is the method of least 

squares, a glance at the observational series often convinces us that the 

model of trend with error can not describe the observations, since we 

are unable to isolate by naked eye a determinate curve with 

observational points chaotically scattered around it. This is what 

Slutsky (1927/1937, p. 105), a co-creator of the theory of stochastic 

processes, wrote about it: 

 

    Almost all of the phenomena of economic life, like many other 

processes, social, meteorological, and others, occur in sequences of 

rising and falling movements, like waves. Just as waves following each 

other on the sea do not repeat each other perfectly, so economic cycles 

never repeat earlier ones exactly either in duration or in amplitude. 

Nevertheless, in both cases, it is almost always possible to detect, even 

in the multitude of individual peculiarities of the phenomena, marks of 

certain approximate uniformities and regularities. The eye of the 

observer instinctively discovers on waves of a certain order other 

smaller waves, so that the idea of harmonic analysis [...] presents itself 

to the mind almost spontaneously. 

 

    The idea of harmonic analysis can nevertheless attempted to be 

achieved by the model of trend with error. It is done by the so-called 

method of periodogram that preceded the methods of the theory of 

stochastic processes and we will briefly consider it.  

    3.1. The periodogram method. Suppose that our observations 

made at discrete moments of time, each second, say, can be described 

by the model 

 

    xt = sin(λ0t + φ) + δt, t = 0, 1, ..., n                                               (3.1) 

 

where λ0 is some parameter (circular frequency of oscillation), φ, the 

phase of oscillation and δi, random error. Suppose that λ0 is much less 

than 2π, so that successive observations of only one component sin(λ0t 

+ φ) would provide a clearly seen sine curve each unit of time (which 

is much shorter than the period of oscillation, 2π/λ0). The addition of 

random errors (suppose, for the sake of simplicity, independent) will 

certainly corrupt the picture. So how to reconstruct the frequency λ0?  

    Multiply our observations xi by sin(λt) and cos(λt) where λ is a 

variable, and consider the sums 
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(λ) sin λ , (λ) = cosλ .
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= =
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In previous times this calculation for various values of fairly many λ 
was rather tedious, but computers removed that difficulty. Calculate 

now the function  

 

    C(λ) = A
2
(λ) + B

2
(λ) 

 

called periodogram. Formerly, it was imagined as a function of the 

period, 2π/λ, rather than of frequency λ, which explains the origin of 

that term. 

    The main statement is that, given a sufficiently large number of 

observations n, the periodogram as a function of λ will take a clearly 

expressed maximal value in a small vicinity of the real frequency λ0. If 

the determinate part of the observations consists of several harmonics  

sin(λ0t + φ) rather than one; that is, if 

 

    
0

sin(λ φ ) δ ,
k

t j j j t

j

x A t
=

= + +∑                                                    (3.2) 

 

then the periodogram will have several maximal values situated close 

to λ0, ..., λk. Their heights will depend on the number of observations, 

n, and amplitudes, Aj. When not knowing beforehand the number of 

harmonics and the variances σ2
 of the errors δi, we find ourselves in a 

rather difficult situation. The periodogram generally has very many 

local maxima and it is incomprehensible how to interpret them, either 

as really corresponding to latent periods λj or as occurring purely 

randomly
5
.  

    These difficulties can be somehow overcome. It is worse that as a 

rule there is no guarantee that model (3.2) is valid. We can likely be 

sure that it is not. For example, when studying series of observations 

taken from economics, it is seen by naked eye that they rather 

smoothly depend on time (they rarely change from increasing to 

decreasing or vice versa) which should not occur for observations 

represented by model (3.2): they ought to be scattered around the 

smooth curve, the main term at the right side of (3.2). We may 

certainly assume that that curve itself badly corresponds to our idea of 

a smooth curve and that its roughness compensated random scatter, but 

an unreasonably large number of harmonics is needed for that to 

happen.  

    The most important problem therefore consists in determining how 

reasonable are the results provided by the periodogram method when 

the model (3.2) is wrong and the observational series {x} is described 

by some other model. The generally known English statistician M. G. 

Kendall [Sir Maurice Kendall] carried out such experimental studies 

described in his rather rare book (1946) on mathematical statistics. 

This small contribution is one of the most remarkable books on 

mathematical statistics. Its epigraph is curious: 
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To George Udny Yule 
    To borrow a striking illustration from Abraham Tucker, the 

substructure of our convictions is not so much to be compared to the 

solid foundations of an ordinary building, as to the piles of the houses 

of Rotterdam which rest somehow in a deep bed of soft mud. 

J. A. Venn, The Logic of Chance [1886]
6
 

 

    We (§ 1.1) stated that sciences of perfuming do emerge [...] flourish 

[...] but do not live long. This had indeed happened to the periodogram 

method which was ruined in particular by Kendall (1946). He 

considers the model of autoregression (we will soon deal with it) 

which is as applicable as model (3.2) if not to a greater extent to 

analyzing series in economics. And in case of that model the 

periodogram method isolates frequencies that have absolutely nothing 

in common with its structure. Kendall concludes his opinion about that 

method in a brief sentence: As misleading as it could be.  

    It seems in particular that exactly in the same way Kendall regards 

the works of the renown English economist Beveridge who is 

celebrated due to his compilation and analysis by the periodogram 

method a few long series in economics, for example of cost of wheat 

in Europe covering 370 years. It could have been interesting to know 

the considerations that had guided him while compiling that series and 

whether it was done properly, but this is likely impossible. Beveridge 

compiled a periodogram and isolated many periods in his series which 

are likely senseless. 

    3.2. Stochastic processes. Nowadays correlation and spectral 

theories of stationary stochastic processes are applied instead of 

periodograms. A stochastic process is a function of variable t often but 

not necessarily playing the part of time and of an elementary random 

event ω. We will denote a stochastic process in an abbreviated form as 

ξi leaving aside the random argument ω since the functional 

dependence of the stochastic process on w is never considered in 

applications. Had we desired to describe clearly the space of 

elementary events, Ω = {ω}, the separate elementary events would 

have been as a rule extremely complicated. Thus, a separate 

elementary event is often understood as a function ω = ω(t) of 

argument t.  

    In that case, the value of the stochastic process at moment t and 

elementary event ω is ω(t) which is a tautology pure and simple and 

practically does not lead anywhere. Such an understanding is 

necessary for developing an axiomatic theory but it is not practically 

applicable. Applications invariably discuss only distributions of 

probabilities of process ξi at some moments t1, t2, ..., tn. Two cases are 

possible with time t taking discrete values (observations are made at 

discrete moments of time) or continuous values on some interval.  

    The concept of stochastic process with continuous time demands to 

be very cautiously treated. When understanding the relevant 

mathematical theorems too seriously, the realizations often acquire 

paradoxical properties able to direct the researcher’s mind along a 

wrong route. I [i] mentioned the paradox concerned with the property 
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of the mathematical model of the Brownian motion allowing to 

determine precisely the coefficient of diffusion given observations of a 

however small interval of a realization of that motion. He who believes 

that this is indeed true for a physical Brownian motion will be wrong.  

    Here is another such example. Any broadcasting station is 

transmitting over a waveband of restricted width. If a radio signal is 

considered as a stochastic process, its spectrum will be contained in 

that finite interval. And there exists a mathematical theorem stating 

that with probability 1 a realization ξi of such a process is an analytical 

function of t. Consequently, after listening for any however short 

interval of time, we may unambiguously establish what was and what 

will be broadcast, an obviously absurd conclusion. 

    It is certainly easy to indicate the mistake here. First, a broadcast is 

not a stochastic process since it is not an element of some statistical 

ensemble; second, an analytical function can be reconstructed given its 

values on any interval only if they are given absolutely precisely 

which is impossible for a function of a continuous variable. Even a 

single number can not be written down precisely, much less a totality 

of an infinitely many numbers. Third, a radio signal is not an analytical 

function of time because in the 19
th

 century there were no broadcasting 

stations whereas an analytical function vanishing on some interval 

vanishes everywhere. 

    A digression about the concept of function in mathematics is in 

order here
7
. At the emergence of mathematical analysis it was usually 

understood as a formula determining a dependence y = y(x). And all 

functions except at a few points were continuous and differentiable. 

The problem concerning the proof of differentiability did not even 

exist. Later, however, in the 19
th

 century an idea was established that a 

function is simply a relation between the sets of values of the argument 

x and the function y = y(x). It is usually demanded that exactly one 

value of y corresponded to each value of x, but that the inverse was not 

necessarily true. And there was no cause for an arbitrary 

correspondence y = y(x) to be continuous or differentiable. 

    It is rather difficult but therefore interesting to provide an example 

of a continuous but nowhere differentiable function. The first such 

example was due to Weierstrass, later other and more simple examples 

were discovered. Such objects proved very interesting for 

mathematicians and to them their attention had been to a large extent 

swung. For us, it is especially interesting that mathematical 

considerations concerning the theory of stochastic processes lead to 

the realization of many such processes which should be recognized as 

continuous but not differentiable functions (or functions only twice, 

say, differentiable with a continuous but not anymore differentiable 

second derivative).  

    This was indeed joyful because it apparently proved that non-

differentiable functions indeed existed in nature. However, we wish to 

cast a shadow on that joy: it is absolutely absurd to believe that such a 

function can be experimentally observed. Such a realization of a 

stochastic process can not be given either by a formula, or a table, a 

graph, or an algorithm of calculation. When considering it indeed real, 

exactly known at all of its points, we will be able to come to absurd 
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conclusions. The same concerns realizations of such processes which 

should be analytic functions. Here, we will discuss stochastic 

processes with discrete time which do not tacitly contain such 

paradoxes as processes with continuous time and in general we may 

usually state that the observed values ξi are precisely known.  

    One remark concerning terminology. In Russian literature, the term 

time series usually denotes a stochastic (and often, a stationary 

stochastic) process, see its definition in Chapter 1. In the English 

literature, however, the same term denotes the values of any variable 

including non-random ones depending on time and observed at its 

discrete moments. Here, we call such objects observational series and 

will not apply the term time series but rather either stochastic process 

(when randomness is supposed to exist) or observational series (when 

it can exist or not). Because of causes described in Chapter 1, 

stationary stochastic processes are playing the main part. 

    The concept of stochastic process allows us to imagine a joint 

distribution of random variables ξi although usually the discussion is 

only restricted to bivariate distributions, and only the expectation and 

the correlation function 

 

    m(t) = Eξi, B(s, t) = E[(ξs − m(s)] [(ξt − m(t)] 

 

are studied. For stationary processes distributions of probabilities do 

not change in time, so  

 

    m(t) = Eξi= m                                                                           (3.3) 

 

does not depend on t and the correlation function only depends on the 

difference of the arguments, (t – s): 

 

    B(s, t) = B(t – s).                                                                      (3.4) 

 

    A process only satisfying conditions (3.3) and (3.4) is called 

stationary in the wide sense. Exactly this is the main concept with 

which modern mathematical statistics is advising to approach 

observational series. The theory of stochastic processes only dealing 

with mean value and correlation function is called correlation theory. 

We will consider it now. 

    3.3. Correlation and spectral theories. The main achievement of 

the general theory of stationary stochastic processes is the theorem 

establishing that in the general case the correlation function can be 

represented as  

 

    

π

π

( , ) ( ) cos λ( ) (λ)B s t B t s t s dF
−

= − = −∫                                       (3.5) 

 

where F(λ) is a restricted non-decreasing function. It is usually 

presumed that there exists a spectral density, i. e., such function f(x) ≥ 

0 that  
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    Spectral analysis, that is, an experimental determination of the 

spectral density f(λ), is therefore sometimes explained as the 

determination of the variances of the separate random components of 

the process. For practically applying the correlation or spectral theory 

it is necessary, first, to find out the practical conclusions possible from 

the correlation function or spectrum (spectral density); and, second, to 

be able to estimate the correlation function (or spectral density) by 

observations.  

    That correlation function is normally applied in statistical problems. 

For example, the variance of the arithmetic mean ξ  is expressed 

through the sum of paired covariations, i. e., through a correlation 

function. It can also be expressed through the spectral density. 

    However, an estimate of a spectrum, or of a correlation function, is 

sometimes applied as a magic remedy allegedly making it possible to 

penetrate the essence of the observed process. It should be clearly 

imagined that the correlation theory generally deals with such 

characteristics that are far from determining the process as a whole and 

often only provides a superficial information about it. If we are 

interested in some problem of its structure, we must be able to 

formulate it in terms of the correlation theory while bearing in mind 

that usually we do not know precisely either the correlation function or 

the spectral density but estimate them by observations. We should thus 

consider comparatively rough characteristics determinable by issuing 

from non-precise data.  

    For example, there exists the so-called method of canonical 

expansion whose application demands the knowledge of the 

eigenfunctions of an integral equation in which a correlation function 

of a process is included as a series. This method ought to be 

recognized as practically hopeless because the inaccuracy of the 

equation’s kernel very essentially influences the eigenfunctions. I do 

not know about any practical application of that method. All so-called 

applications issue from arbitrarily given correlation functions and do 

not deal with statistical material. 

    The estimation of the correlation function and spectrum is rather 

complicated. At first you should estimate and subtract the mean value 

m of the process. Its estimate is the arithmetic mean ˆ .m ξ=  The 

estimate of  

 

    B(u) = Eξt ξt+n – m
2
 

 

will be 
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    It possesses a number of unpleasant properties. First, for an ergodic 

process the actual values of B(u) rapidly decrease with an increase of 

u. However, the standard deviations of the estimates ˆ( )B u  are roughly 

the same for any u and have order 1/ .n u−  Thus, for u of the order 

of a few dozen the magnitudes B(u) themselves are very small, only 

hundredth and thousandth parts of B(0) whereas the standard 

deviations (if n is not too large), tenth parts of B(0) so that the estimate 

is senseless. 

    Second, these estimates ˆ( )B u  when the values u are close to each 

other are not scattered chaotically near the real values because the 

neighbouring estimates ˆ( )B u , ˆ ( 1)B u + , ˆ ( 2)B u + , ... are correlated 

with each other. When looking at a graph of their values the eye 

automatically selects rather regular oscillations, see Fig. 3, at 

unreasonably large values of u where actually B(u) can not be 

distinguished from zero. Therefore, when estimating the correlation 

function we can not trust our eyes and all our actions become 

uncertain.  

    The estimation of the spectral density f(λ) is preferable. When 

estimating it at points λ = λ1, λ2, ..., λm not too close to each other, the 

respective estimates ˆ (λ )if  will be almost independent random 

variables, a fact first discovered by Slutsky. For estimating the spectral 

density we apply the same periodogram only suitably normed. It is 

however very indent because its variance does not tend to vanish as the 

number of observations increases. Therefore the periodogram is 

smoothed, i. e. a mean value with some weight is taken
8
 and we obtain 

an estimate not of the spectral density itself but of the function 

resulting from taking its mean with the same weight. This means that 

the interval of taking the mean should be small. However, that 

procedure when a small interval is chosen will little decrease the 

variance of the periodogram. Practical recommendations are here a 

result of a compromise between these contradictory demands.  

    I can not go into details of mathematical tricks and I ought to say 

that textbooks on the theory of stochastic processes do not usually 

describe the estimation of the correlation function or spectral density 

in any scientific manner. As I noted above, textbooks prefer to issue 

from a stochastic process given along with its correlation function.  

    As a very reliable source of information concerning statistical 

problems, I can cite Hannan (1960). This book is, however, very 

concise and difficult to read. Jenkins & Watts [1971 – 1972] is easier 

to read, but less reliable. For example, they do not say sufficiently 

clearly that none of the provided formulas for the variances of the 

estimates of the correlation function and spectral density is at all 

applicable to each stationary process; some strong conditions 

mathematically expressing the property of ergodicity are necessary. 

Nevertheless, that book is usable although regrettably their practical 

examples should be studied very critically. 

    I wish to warn the reader who will study the sources indicated that 

the initial material on which the methods of the theory of stochastic 

processes had been developed mostly consisted of economic data, 
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usually very little of them. Indeed, we may trace the change of some 

economic indicator over decades or at best over a few centuries (as in 

the case of the Beveridge series). A year usually means one 

observation (otherwise seasonal periodicity which we should somehow 

deal with will interfere, and in general most economic indicators are 

calculated on a yearly basis). We therefore have tens or hundreds of 

observations whereas calculations show that for a reliable estimate of 

the correlation function or spectral density we need thousands and tens 

of thousands of them. Already Kendall (1946) formulated this 

conclusion in respect of the former. 

    As a result, mathematicians attempt to attain something by selecting 

an optimal method of smoothing periodograms, but with a small 

number of observations this method is generally hopeless. The real 

applicability of the theory of stochastic processes is in the sphere 

where any number of observations is available. Radio physicists have 

long ago developed methods allowing easily and simply to obtain 

estimates of the spectrum of a stochastic process if unnecessary to 

economize on the number of observations. They apply systems of 

filters separating bands of frequencies (Monin & Jaglom 1967, pt. 2). 

    3.4. A survey of practical applications. Among the creators of the 

theory of stochastic processes who had also dealt with statistical 

materials we should mention Yale, Slutsky and M. G. Kendall (and 

most important are Kolmogorov’s contributions, see below). Those 

works had appeared even before World War II, that is, when automatic 

means of treating the material were unavailable, and these pioneers 

had to work with hundreds of observations at the most.  

    Thousands and tens of thousands are needed in the correlation 

theory because we are attempting to find out too much, not an estimate 

of one or a few parameters, but infinitely many magnitudes B(u), u = 

0, 1, 2, ... i. e. the correlation function (or spectral density, the function 

f(λ) for λ taking values on [− π, π]). 
    We can choose another approach for achieving practically effective 

methods of correlation theory when having a small number of 

observations, namely, looking for models depending on a small 

number of parameters. Slutsky provided one such model, the model of 

moving average. Imagine an infinite sequence of independent 

identically distributed random variables 

 

   ... ξ−1, ξ0, ξ1, ..., ξn, ... 

 

instead of which we observe the sequence 

 

    ... ς−1, ς0, ς1, .., ςn, ...                                                                (3.6) 

 

where  

 

    
0

ς α ξ .
m

n k n k

k

−
=

=∑                                                                        (3.7) 

 

    In other words, ςn is a sum of some number of independent 

magnitudes ξn−k multiplied by suitable αk. Slutsky modelled the system 
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{ξn}; for obtaining ςn  he superimposed a frame with a window through 

which ξn, ξn−1, ..., ξn−k were seen. For obtaining ξn+1 the frame was 

moved one step to the right, hence the term, moving average. Numbers 

α0, ..., αm were parameters. 

    He showed that his model could provide a picture of wavy 

oscillations very similar to oscillations of economic indicators. 

However, he did not state that all the statistical properties of some 

observational series taken from practice are thus described. As far as I 

know, no such examples are provided in careful statistical works. 

    It is necessary to say here that statistical work with observational 

series demands versatile statistical checks of the adopted model. 

Slutsky, as well as the representatives of the serious English school 

such as Yule and Kendall
9
 understood it perfectly well but this attitude 

is now regrettably lost, certainly if having in mind an average work on 

applications of stochastic processes.  

    A conviction that these processes must be universally applicable is 

characteristic for the bulk of publications and, as a result, the main 

premises with the most important of them, that the phenomenon itself 

should be of a statistical rather than of just an indeterminate essence, 

are not checked at all. A current of publications thus appears which do 

not deserve to be seriously considered at all. It is a fact that only a few 

works are left for being seriously analyzed. 

    Among these latter we mention first of all Yule (1927). He studies 

the change of the number of solar spots in time. First of all Yule 

rejects the model of periodogram because in that case randomness is 

only inherent in the errors of our measurements and does not at all 

influence the course of the process itself. He remarks that we ought to 

have some such model in which a random interference influences the 

subsequent behaviour of the process.  

    Imagine for example that we observe the oscillation of a pendulum 

but that naughty boys have begun to shoot it with peas. Each random 

hit changes its velocity and therefore influences the entire subsequent 

process. It is difficult to expect here statistically homogeneous 

shooting, but in real processes, such as solar activity or economic life 

statistical homogeneity of random interference sometimes possibly 

exists.  

    Let us observe the position of the pendulum at discrete moments of 

time (but sufficiently often, so that many observations will occur 

during one period of the initial oscillations). We will obtain a sequence 

of observations 

 

    ξ0, ξ0, ..., ξn, ... 

 

and Yule supposes that it can be described by a model of the type 

 

    ξn + aξn−1 + bξn−2 = δn                                                              (3.8) 

 

where a and b are numbers (parameters of the model), {δn}, a 

sequence of identically distributed independent random variables such 

that δn does not depend on ξn−1, ξn−2, ..., Eδn = 0 and σ2
 = varδn is the 

third parameter of the model.  
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    This is the celebrated model of autoregression (of the second order) 

which was applied by many statisticians deserving complete trust. 

Yule’s considerations leading to model (3.8) were, however, not quite 

clear. In particular, for the case of the pendulum, {δn} is not a 

sequence of independent random variables but is rather describable by 

Slutsky’s moving average. However, introducing additional 

parameters of that average into the model will mean having too many 

parameters and extremely complicated work in its application. 

    Yule’s mistake certainly does not logically prove that the model      

is not applicable to sunspots or some economic indicator, but of course 

it is a bad omen.  

    Descartes noted that the world can be explained in many different 

manners and the problem only is, to choose that which is really valid. 

Most chances to be valid certainly has that manner which is the most 

natural and harmonious and does not contain contradictions. If, 

however, it occurs that the creator of a theory committed a mistake at 

the very outset, even if only concerning a particular case, our chances 

of success in other cases will sharply diminish.  

    As to sunspots, Yule himself did not achieve a decisive positive 

result. He was compelled to change his model (3.8) by assuming that 

we observe not the variables {ξn} themselves, but that our observations 

were corrupted by an additional random error. He had to make this 

change because his model did not pass a statistical check to which he 

subjected it, as was supposed to be done. The change of the model 

allows to make ends meet but in statistics introducing an additional 

parameter is very bad. 

    In general, Yule’s contribution (1927) is an example of a statistical 

masterpiece which, however, provided a dubious (if not negative) 

result often happening exactly with masterpieces. 

    The interest emerged in forecasting stochastic processes led another 

representative of the English school, Moran (1954), to study the 

possibilities of applying model (3.8) for predicting solar activity. Since 

δn does not depend on the previous behaviour of the process, that is, on 

variables ξn−1, ξn−2, ..., the best possible method of forecasting the 

estimate of ξn from all the previous information is to assume that 

 

    1 2ξ̂  ( ξ ξ ).n n na b− −= − +  

 

    Moran did that and had showed his result to his friends among radio 

physicists who told him that a forecast of such a quality could have 

been possible without any science, just by naked eye. And so it was, as 

proved by an experiment. That was the second failure of the model of 

autoregression. 

    That model possesses, however, an excellent property: it is easily 

applied. Its parameters are easy to estimate , the correlation function is 

of the kind of fading sinusoidal oscillations and is comparatively easy 

to be interpreted. The spectral density is also expressed in a simple 

way. It made sense therefore to test it many times on differing material 

and hope that cases in which it works well enough will be found. It is 

best to read about the application of the autoregression model in 

Kendall & Stuart (1968).  
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    Kendall did that even before Moran’s work (1954) appeared. He 

restricted his attention to such values of the parameters a and b in 

formula (3.8) which determine a stationary process, and he mostly 

worked with series from economics. Such series rarely oscillate around 

one level creating a stationary process. They usually have a tendency, 

a trend. The production of electrical energy, say, increases 

exponentially and therefore has a linear trend when described on a 

logarithmic scale. The problem consists in describing the deviations 

during different years from the general tendency. 

    Kendall thought it possible to determine the trend by some method 

(but certainly not by naked eye which is too subjective for a rigorous 

statistical school) and to subtract it. This additionally complicates the 

statistical structure of the remaining deviations, but there is nothing to 

be done about it. Exactly such deviations as though forming a 

stationary process were studied by the method of autoregression. 

    It is difficult to pronounce a definite opinion about his results. In 

some cases the statistical tests were happily passed, but not in other 

cases. May we consider that success was really achieved in those 

former or should we explain it only by the small number of 

observations? And no explanation is known why, for example, the 

model of autoregression with the trend being eliminated does not suit 

the series of the cost of wheat but suits the total head of sheep. No 

decisive success in treating economic series was thus achieved.  

    Kendall (1946) investigated the process of autoregression 

constructed according to equation (3.8) by means of tables of random 

numbers; the longest of the modelled series had 480 terms. In 

concluding, let us have a look at the empirical estimate of a correlation 

function (Fig. 3, dotted line). See how much the estimate differs from 

the real values (continuous line) and fades considerably slower than 

the real function. 

    Hannan (1960) published an estimate of the spectral density of 

Kendall’s series. The graphs of the theoretical density and its various 

estimates are shown on Fig. 4. It is seen that they are pretty little 

similar to the true density. In particular, the later takes a maximal 

value near point λ = π/5 whereas the maximal values of all the 

estimates are at point λ = π/15. 

    An unaccustomed eye can imagine that small values of the spectral 

density are estimated well enough, but nothing of the sort is really 

taking place. The relative error is here just as great as in the left side of 

the graph, i. e., as for large values of the density. We see that the 

correlation theory, created by the founders of the theory of stochastic 

processes for treating discrete observational series, such as the number 

of sunspots in various years or the values of economic indicators 

exactly in those cases did not attain undoubted success.  

    The idea of a mathematical description of wavy processes 

encountered the practical difficulty in that any proper estimation of the 

correlation function demands not tens or hundreds of separate 

observations, but (Kendall 1946) tens and hundreds of pertinent waves 

which means thousands and tens of thousands observations. On the 

other hand, parametric models such as the model of autoregression had 

not been convincingly statistically confirmed. Consequently, the 
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applications of the theory of stochastic processes to that material, and 

to forecasting in particular, are not sufficiently scientifically justified. 

The worst circumstance is that many contributions are published in 

that field such as Ivakhnenko & Lapa (1971) which do not sufficiently 

check the adopted model statistically and therefore can not be 

considered seriously. 

    The situation would have been quite bad but at the same time new 

fields of application of the correlation theory in aero-hydrodynamics 

and physics which constitute the real worth of that theory were 

created. We will indeed consider these applications. 

    3.5. Processes with stationary increments. When having some 

mathematical tool and wishing to describe natural phenomena by its 

means, the most important consideration is, not to ask nature for too  

much, not to attempt to apply that tool in cases in which it is helpless. 

Thus, when imagining some wavy phenomenon, we would have liked 

to apply the theory of stationary stochastic processes for describing it. 

However, it was gradually understood that the largest waves in the 

observed process can either be not of a statistical essence at all, or that 

our observations contain insufficient data for determining their 

statistical characteristics, or, finally, that a purely statistical description 

can be short of our aims.  

    For example, the cyclic recurrence of economic life apparently has 

all these indications. Here, we can not on principle consider a 

phenomenon as statistical because only one realization and no 

statistical ensemble is available. And of course we usually have 

insufficient observations. Finally, a statistical description does not 

satisfy us because we need to know, for example, not how one or 

another decline or rise is developing in the mean but what happens 

with the particular decline or rise existing this moment. 

    It is absolutely impossible to reckon on describing phenomena of 

the largest scale in the boundaries of the theory of stochastic processes. 

The situation is different for phenomena on a small scale; in such cases 

perhaps something can be done. Take another example, the course of 

meteorological processes. It is absolutely clear that a statistical 

description of the largest changes of the weather on a secular scale is 

impossible and senseless. It is uncertain beforehand whether statistical 

methods can be applied for describing changes of the weather on a 

small scale during a few days, for predicting it, say. However, 

experience shows that this is sufficiently useless. Still, when restricting 

forecasts to small territories and short intervals, the success of 

statistical methods is brilliant. The relevant theory is called statistical 

Kolmogorov – Obukhov theory of turbulence and we will later say a 

few words about it. 

    We turn now to geology and formulate, for example, the problem of 

estimating the reserves of a deposit given the per cent of the useful 

component in a number of sample points. Here also we encounter the 

risk of applying stationary processes for describing that per cent over 

the entire deposit. The situation with the ensemble of realizations and 

the availability of data is very bad for determining the statistics of the 

largest fluctuations. On the other hand, the largest irregularities occur 

on a large scale and likely change smoothly; it may be therefore 
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expected that we know them accurately enough and do not need any 

statistical description. But what should be done with irregularities on a 

small scale which can influence the estimation of the reserves as well? 

    Take finally radio physics in which the concept of stationary process 

is recognized best of all. All kinds of interferences and noises are here 

usually considered as stationary stochastic processes. However, there 

is a special noise, the flicker noise or shimmering explained by chaotic 

variations of the emissive capability of the cathode electronic tubes. It 

is sufficiently clearly indicated, see for example Rytov (1966), that the 

shimmering can hardly be described by the model of stationary 

stochastic process. 

    It follows that at present we begin to realize that a mathematical 

description of the largest waves of wavy processes by methods of 

mathematical statistics is in most cases impossible. We have to reckon 

on describing phenomena on a smaller scale but we certainly have to 

forfeit much. Thus, the theory of the microstructure of turbulence is 

useless for predicting the weather because it does not describe the 

most essential phenomena occurring on a large scale. However, it is 

useful in other fields, for example when calculating the passage of 

light through the atmosphere which is important for astronomy (for 

taking into account the corruption of images in telescopes). 

    Kolmogorov introduced a universal concept of process with 

stationary increments which can hopefully replace the concept of 

stationary stochastic process in all the cases considered above. For 

discrete time it means that we turn from an observed process 

 

    ... ξ−1, ξ0, ξ1, ..., ξn, ...  

 

      to differences 

 

    ... η−1 = ξ−1 − ξ−2, η0 = ξ0 − ξ−1, η1 = ξ1 − ξ0, ... 

 

and consider them a realization of a stationary stochastic process.  

    For processes with continuous time we turn instead from ξ(t) to the 

derivative 

 

    η (t) = ξ′(t) 
 

and call it stationary stochastic process; the differentiation should 

sometimes be understood in a generalized sense. 

    Let us explain in more detail what do we expect when turning to 

differences or derivatives. Imagine that the observed process is a sum 

 

    ξ(t) = a(t) + ς(t) 
 

of some random or not component a(t) similar to large waves and the 

other component changing much more rapidly and can reasonably be 

called a stationary stochastic process. We recognize our inability to 

describe the changes of a(t) and wish to study the changes on a small 

scale mostly determined by the other component. This is indeed 
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achieved by differentiating because the large component a(t) likely 

changes slowly, so that its derivation is small. We have 

 

    η(t) = ξ′(t) = a′(t) + ς′(t) ≈ ς′(t)  
 

which means that ξ′(t) practically does not include any component 

connected with a(t). The same is achieved by taking the differences in 

case of discrete time. 

    For continuous time, rather than differentiating, we certainly can 

also study differences 

 

   ∆τξ(t) = ξ(t + τ) − ξ(t) ≈ 

τ

η( )

t

t

s ds

+

∫  

 

where η(s) is a stationary process. The second equality is needed for 

constructing a correlation and spectral theory of processes with 

stationary increments being integrals of a stationary process. 

    Instead of a correlation function a structural function introduced by 

Kolmogorov is being used: 

 

    2

τ(τ) E[ ξ( )] ,D t= ∆  

 

that is, the variance of the increment of the process during time τ. 
Practical application of processes with stationary increments can be 

studied by means of Monin & Jaglom (1967, pt. 2/1975). 

    The situation that emerged nowadays in science can be therefore 

described in the following way. We do not expect that general 

statistical methods can characterize wavy processes as a whole, i. e., 

including large waves. In general, the notion of stationary stochastic 

process is compromised. For applications, it is the turn of the concept 

of stochastic process with stationary increments that does not claim to 

cover a phenomenon as a whole but can cover it in the sphere of the 

small scale. Its possibilities are not yet sufficiently investigated. The 

situation concerning the examples with which we have dealt is this. 

    In economics, there exist works of the American school founded by 

Box, for example Box, Jenkins & Bacon (1967); Box & Jenkins 

(1970). However, the quality of statistical approach is there doubtful: 

no statistical checks are made, attention is concentrated on forecasting 

whereas the exclusion of the large-scale component compels us to 

think that it would have been better to abandon altogether predictions 

since they depend in the first place on the excluded component. In 

general, the situation is doubtful. We will consider it later. 

   For meteorology, processes with stationary increments are of no 

special significance. The Kolmogorov – Obukhov theory of turbulence 

rather belongs to aero-hydrodynamics. Brilliant success is achieved 

there: conclusions made by the creators of the theory were 

experimentally confirmed. That success remains, however, the only 

one attained. 

    In geology, we have the book of Matheron (1962). The factual 

material included there supports in some measure the hypothesis that 
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the structural function of the contents of the useful component is of the 

type  

 

    D(r) = αlnr + β 

 

where r is the distance between sample points and α and β, parameters 

determined by observation. However, the book has a number of 

inconsistencies. Thus, the logarithmic dependence is continued into the 

interval of small values of r which is impossible because D(r) is a non-

negative magnitude. Then, in some cases the subject concerns the 

content, in other instances, its logarithm. In addition, no statistical 

checks are made. But still, the factual material impresses so strongly 

that careful reliable studies in the same direction become desirable. 

    In radio physics, the scientific level is high and similar 

inconsistencies just can not occur. However, as far as we know, no 

reports about successful applying the model of process with stationary 

increments are in existence. Rytov (1966) only formulated a 

hypothesis that the phenomenon of flicker should be thus described. 

    In concluding, I deal in more detail with the statistical theory of 

turbulence and the problem of forecasting. 

   3.6. Statistical theory of turbulence. This theory provides a 

brilliant success of a purely statistical description of a phenomenon, of 

a highly developed and very complicated turbulence with a large 

number of vortical movements on differing scales. Kolmogorov and 

Obukhov founded the basis of the theory before 1941. Experimental 

confirmation of their theoretical conclusions demanded perfect 

measuring instruments and up to 25 years. Application of that theory 

to problems in propagation of electromagnetic and acoustic 

oscillations in the atmosphere is also being developed. 

    A precise knowledge of the field of velocities in a turbulent current 

is understandably both impossible and useless. Indeed, had we some 

method of calculating all the velocities at all points, their registration 

with sufficient precision would have alone demanded an unimaginable 

amount of paper or magnetic tape and work with so much information 

is absolutely impossible. The situation should be resolved by some 

version of a statistical description. 

    It occurred that the main suitable notions can be borrowed from the 

correlation theory; however, in their initial form they were insufficient. 

There is a scientific law stating that ex nihilo nihil fit which means that 

an application of established theories does not cover anything new. 

    Without going into mathematical detail, I will attempt to show 

exactly how does this law work in case of turbulence and what new 

considerations it was necessary to draw for getting the things moving. 

Imagine a turbulent current. Its mean velocity depends on concrete 

conditions (what and where is the current set into motion [...]) and it is 

senseless to describe it by statistical methods. However, the 

differences of velocity in various points of the current and in differing 

moments of time less depend on initial conditions and to a larger 

extent are determined by the properties of the liquid or gas itself. So, 

let us study the differences 
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    u(x1, x2, t1, t2) = v(x1, t1) − v(x2, t2) 

 

where v(x, t) is the velocity of the liquid at point x and moment t with 

the point x being remote from the boundaries of the current and t 

sufficiently large for the stationary condition to be established. 

    It is natural to suppose that the turbulence is stationary in the sense 

that the statistical characteristics of the difference u only depend on the 

difference t1− t2 = τ. The three-dimensional variables x1, x2 as also the 

difference u itself, that is, a three-dimensional vector, still remain. We 

have a three-dimensional field of vectors depending on six space and 

two temporal variables. Its statistical properties however only depend 

on the difference between the latter. If stopping here and expecting to 

determine experimentally the statistical characteristics of such a field, 

the experiment will invariably fail: it is practically impossible and 

science finds itself in a cul-de-sac.  

    And this is exactly the situation in some other sciences. Random 

stress tensors, random strength, elasticity etc can be introduced but the 

advantage of these notions is zero since their statistical characteristics 

can not be determined. Further theoretical development of the theory 

of turbulence was necessary, otherwise no science would have 

emerged there.  

    First of all, in a sufficiently developed turbulence all points and all 

directions should have the same rights. This statement seems simple 

but actually is rather subtle. Indeed, we can imagine a measuring 

device consisting of three vectors (x, e1, e2) the last two of them 

applied to the beginning of vector x and all three fixed together. An 

observation consists in applying the beginning of vector x to point x1 

of the current so that its end will be at point x2 = x1 + x and we 

construct the projection of the difference of velocitys v(x2, t) − v(x1, t) 

on directions e1 and e2 which will be two random variables. In 

correlation theory, their correlation is considered observable. This 

correlation should not change when the triplet (x, e1, e2) is rotated 

anyhow as a solid body nor should it depend on point x1. Turbulence 

satisfying this condition is called locally isotropic.  

    It can be shown that, given such turbulence and an incompressible 

liquid, all the statistical characteristics of the vector field u(x1, x2, t1, t2) 

are expressed through characteristics of any of its components, i. e., of 

the projection of that field on any coordinate axis. We may consider x1 

and x2 situated on that axis and so the problem is reduced to one 

random function of two one-dimensional space and two temporal 

variables. 

    The reduction to one kind of variables, either space or temporal, is 

possible due to the hypothesis of freezing which means that the 

turbulent curls are carried along the main current without change, as 

though they were frozen in the liquid. In such cases we do not have to 

measure turbulence in various points x1 and x2. We arrange the line (x1, 

x2) along the velocity of the main current, put our measuring device at 

point x2 and wait for the turbulence to move from x1 to x2. Thus, all is 

reduced to temporal functions only. This hypothesis (strictly speaking, 

its statistical characteristics rather than the turbulence itself) was 

checked experimentally and fit well enough.  
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    After reducing everything to one space or temporal function, that is, 

to an ordinary process with stationary increments, we may expect 

something. Still, for determination by experiment we need the 

structural function, which is too much. We need it in a parameter form 

D(r) where r is the distance between the points where the component 

of the velocity is measured.  

    The most important considerations are here due to Kolmogorov. 

According to them, D(r) can only depend on the viscosity of the liquid  

which is responsible for the dissipation, the conversion of the energy 

of the turbulent heterogeneities into heat (and thus reducing 

turbulence) and on the amount of energy that being adopted from the 

main current is gradually passed from large to small whirls (and thus 

supporting turbulence). The energy is certainly considered for a unit 

mass of the liquid and unit time. Therefore 

 

    ( ) φ( , , ε)D r r v=  

 

where φ is some universal function, v and ε , parameters. Viscosity v 

is known, and the amount of energy ε  is the only parameter changing 

from one experiment to another. 

    If the distance r is sufficiently small as compared with the size of 

the current, for the model of isotropic turbulence to be applicable but 

large enough so that viscosity is not yet essential for whirls of size r, 

then D(r) does not depend on v. In this case the consideration of 

similarity leads to 

 

    2/3 2/3( ) εD r C r=                                                                        (3.9) 

 

where C is a universal constant.  

    For lesser r when viscosity is essential, a formula is not found 

although it is known that 

 

    1/2

3 1/4
( ) ( ε) β[ ]

( ε )

r
D r v

v
=  

 

where β is some universal function of one variable. The dependence 

(3.9) is called the two thirds Kolmogorov law.  

    There exist spectral analogues of all those statements concerning the 

structural function. These conclusions were published in 1940 – 1941 

and all of them were hypothetical. Intense experimental checks had 

begun after the war [in 1945]. Structural functions are very similar to 

correlation functions so that their estimates have the same unpleasant 

properties and it was more convenient to carry out the check by 

empirically measuring the spectra. No one certainly calculated 

smoothed periodograms, filters were used, see Monin & Jaglom 

(1967).  

    For my part, I will just say that the measurements had confirmed 

everything, the two thirds law for a sufficiently wide interval of the 

values of r, the universality of the constant C and the universal 

dependence of D(r) expressed through function β for small values of r. 
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Reasoning based on common sense and the dimensionality theorem 

occurred exceptionally successful although they can not be absolutely 

precise because some physical consideration oppose them. The entire 

theory is of a purely statistical essence; its aim is to cover the main 

features of the statistics of the studied phenomenon by issuing from 

rather rough considerations and to approach the possibility of an 

experimental check. Now let us pass to a failed example. 

    3.7. Statistical forecast. [...] We firmly believe in scientific 

predictions, for example in calculations of the future situation of the 

planets based on the law of universal gravitation. Actually, our belief 

is certainty and it is never deceived, although the general theory of 

relativity is known to introduce corrections here. Are scientific 

methods of forecasting stochastic processes able to provide a 

reasonable if not firm certainty in predicting the future?  

    Kolmogorov and somewhat later Wiener independently developed 

methods of forecasting stationary stochastic processes. In his 

contribution on the theory of turbulence Kolmogorov clearly states 

that he considers his hypotheses about the structure of turbulence very 

likely. It is curious to compare this with the absence in his works on 

the prediction of stochastic processes of any hint on the possibility of 

practical applications. 

    Both in his report (1952) and in Cybernetics (1969?) Wiener 

indicated that the theory of forecasting was practically important. In 

the first case he stated that he was prompted by 

 

    The problem of predicting the future position of an airplane by 

issuing from general statistical information on the methods of its flight 

and from more specific knowledge of its previous path. [...] My work 

was concerned with instruments necessary for realizing the theory of 

predicted firing in an automatic device for shooting at the airplane 

 

(Translated back from Russian.)  

    It is known, however, that such a method of shooting was not 

realized, not because of calculational difficulties but first of all since 

the path of an airplane can not be described by a model of stationary 

stochastic process. There possibly is a statistical component in the 

airplane’s manoeuvre, but how can it be isolated? The manoeuvre 

depends so much on the concrete conditions that we can not at all 

discuss the statistical homogeneity of all the routes of the flight. We 

can attempt to isolate the statistical elements, but this problem is too 

difficult for being solvable under war conditions. 

    In all other processes, economic, technological, meteorological, etc. 

we usually encounter the fact that the statistical element, even if 

present, does not cover the entire phenomenon. Thus, only the rapid 

component on the small scale can yield to statistical description. And 

even that fact is only scientifically established in exceptional cases, for 

example for the microstructure of turbulence. Another such example 

concerns the change of the frequency of the generator of oscillations 

during very short periods of time, when the action of flicker and other 

technological causes of the change does not have enough time for 

being felt (Rytov 1966). 
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    In a great majority of cases the possibility of a statistical description 

of at least any single aspect of the studied phenomenon is not 

established with certainty. Here the causes can be either an insufficient 

amount of experimental material or lack of understanding the need to 

perform all imaginable statistical checks. In such cases a statistical 

forecast is not more scientific than a prediction by eye which is how it 

is done as a rule. The only possible advantage of the former is that it 

can be more precise but generally its error is large and that advantage 

is hardly realized.  

    For example, if we are interested in forecasting micro-irregularities 

of turbulence (for which statistical homogeneity is established), the 

best statistical prediction of the values ξ(t + τ) of some characteristic 

for moment t + τ given the values ξ(s), s ≤ t, almost does not differ 

from the trivial forecast of ξ(t + τ) = ξ(t). Consequently, the advantage 

of the statistical forecast is not evident beforehand but should be 

experimentally established. 

    I (§ 3.4) have mentioned Moran’s experimental prediction of the 

number of sunspots that indicated the uselessness of the statistical 

method of forecasting. Let us approach the method of prediction 

recently provided by Box, Jenkins & Bacon (1967) and Box & Jenkins 

(1970) from the same viewpoint. The method consists of two parts. 

First, the differences in the available observational series should be 

calculated and attempted to be described by a model of a stationary 

process being a combination of the models of autoregression and 

moving average. If unsuccessful, second differences should be 

calculated etc.  

    This part of the method does not give rise to any special objections; 

the only reservation is that the more differences we calculate, the more 

information about the initial process we lose. In most cases we will be 

able to describe the differences of a sufficiently high order, but how do 

we return back from them? 

    The second part of the method provides an answer although 

mathematically it is incorrect Thus, sums of infinitely many identically 

distributed random variables are considered, but such series are always 

divergent. Nowadays mathematics does not regard divergent series as 

negatively as previously because generalized functions enabled to 

make many of them sensible, but this does not concern the indicated 

type of series. Worse of all, these series are formally applied in the 

theory of conditional expectations whereas that procedure allows to 

provide anything.  

    It seems that that second part is not applicable at all to observational 

series described by the model of trend with error. And no statistical 

tests which would have excluded that model is made. In general, all 

the recommendations are directed to consider only correlation 

functions and forget the observations themselves which radically 

opposes a sound statistical tradition. There is therefore no guarantee 

that the provided method of prediction is scientifically justified; in 

particular, that the error of the forecast will be situated within the 

calculated confidence intervals.  

    Forecasts by eye have absolutely the same rights, the only problem 

is which method results in a larger error. Experimental material for 
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answering that question is extremely restricted. In the sources cited 

above there is in essence only one example of a forecast, see Fig. 5 

borrowed from Box, Jenkins & Bacon (1967). The continuous broken 

line shows the logarithms of the monthly receipts from the sale of 

plane tickets during 1949 – 1960. The dotted line is the result of a 

forecast made from data up to July 1957. The straight lines above and 

below the graph show the result of an experiment consisting in 

smoothing the yearly extrema by a straight line and forecasting by the 

eye the future results.  

    This is shown by continuing those two straight lines through August 

1957 – 1960. The forecast almost coincided with that provided by the 

three authors. The extrema corresponded to July or August or to one of 

the winter months (maxima and minima respectively) of each year. It 

is impossible to repeat that experiment for other months because the 

data on the graph are unreadable and no table of the forecast results is 

provided.  

    It is strange that Box & Jenkins (1970) did not show the described 

experiment on their Fig. 9.2 (p. 308). Here, their forecast is essentially 

better than that made by eye, and it is closer to the actual data. 

However, the model, its parameters and the interval of prediction, all 

are the same, so how can we explain the improvement? In general, the 

contributions of that school do not pass an attentive analysis. 

Borrowing an expression from the Russian author Bulgakov, their 

statistics can be called a statistics of a light-weighted type since it is 

presented as universally applicable and not demanding statistical 

checks, and it is intended to be generally popular but it does not ensure 

a reliable result.  

    The general conclusion from all the above is that we should not 

especially rely on statistical methods of forecasting. For applying, and 

relying on them we should first of all establish whether the studied 

phenomenon can be described by a model of stochastic process. 

 

Notes 
    1. Moran (see § 3.4) possibly was an exception. O. S. 

    2. The separation of the random from divine design was De Moivre’s main goal, 

see his Dedication to Newton of the first edition of his Doctrine of Chances reprinted 

in its third edition. O. S. 

    3. The formal introduction of least squares was due to Legendre. The author’s 

example of an artificial object in space certainly had nothing in common with those 

times. O. S. 

    4. In the sequel, the author applied the three curves of that figure. Their equations 

are of the form c0 + c1t
2
 + c2t

4
. All the other Figures are sufficiently described in the 

main text. O. S. 

    5. Those magnitudes are frequencies rather than periods. O. S. 

    6. Following a nasty tradition, Venn did not provide an exact reference, and Fisher 

followed suit. Abraham Tucker (1705 – 1774) is remembered for his contribution 

(1768 – 1778). O. S. 

    7. On the history of the notion of function see Youshkevich (1977). O. S. 

    8. Not clear enough. O. S. 

    9. The author apparently had in mind Karl Pearson’s generally known 

shortcomings. Student (Gosset) was also serious, but Kendall did not at all belong to 

the Pearson school. O. S.  
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V. N. Tutubalin 

 

The Boundaries of Applicability  

(Stochastic Methods and Their Possibilities) 
 

Granitsy Primenimosti  

(veroiatnostno-statisticheskie metody i ikh vozmoznosti).  

Moscow, 1977 

 

1. Introduction 
    I have published two booklets [i, ii]. The first was devoted to 

elementary statistical methods, the second one, to somewhat more 

complicated methods. Their main idea was that stochastic methods 

(like the methods of any other science) can not be applied without 

examination to any problem interesting for the researcher; there exist 

definite boundaries of that applicability.  

    Rather numerous comments followed, naturally positive and 

negative and, as far as I know, the former prevailed. In purely 

scientific matters a numerical prevalence (during some short period) 

can mean nothing; concerning publications, it is not so. The possibility 

of reprinting [i] for a broader circle of readers had been discussed. 

However, considering that problem, I have gradually concluded that 

during the last five years its contents had in some specific sense, see 

below, become dated.  

    The point is certainly not that previously stochastic methods should 

not have been applied if the studied phenomenon was not statistically 

stable, but that now it became possible. This could have happened if 

new methods not demanding that condition were developed, but 

science does not advance so rapidly. However, a quite definite and 

provable by referring to publications shift in the viewpoint on the 

sphere of applications of stochastic methods had happened. It will 

eventually make proving such a simple circumstance as the need to 

restrict somehow the application of the theory of probability almost 

unnecessary. 

    Then, a rapid development of concrete statistical investigations is 

certainly in the spirit of our time. They are difficult, demanding almost 

superhuman patience and insistence, but they still emerge and are 

being done. In a single statistical investigation, the study of statistical 

stability is practically impossible (and at best only if the result is 

negative). However, a repeated (actually, during many years) 

statistical investigation accompanied by checks of the conclusions on 

ever new material provides them quite sufficient certainty. 

    More precisely, we always come to understand what we know 

certainly; what somewhat doubtfully; and what we do not know at all. 

For a publication intended for a wide circle of readers it is therefore 

extremely important to show how should statistical investigations be 

carried out from the methodical point of view so that the conclusions 

are sufficiently certain for being practically applied. No general 

mathematical results are here available, this can only be done by 

examples. 
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    I have published something in that direction [i, ii] but now I would 

have wished to accomplish such work fuller and better. Finally, for 

each author the aim of publication consists not only in instructing 

others, but to learn something himself as well. In those booklets, I 

have made some rather extreme statements on the practical uselessness 

of certain specific methods, for example [...]. It is not difficult to 

question such viewpoints; concerning each definite problem it is 

sufficient to indicate at least one successful practical application of the 

discussed method. Obviously neither I, nor anyone else is acquainted 

with all the pertinent literature but I attempted to accomplish a sample 

of sorts from an infinite amount of investigations so that the partisans 

of one or another method could have felt offended by my extreme 

point of view and prove the opposite.  

    However, concerning the application of the Bernoulli pattern to 

judicial verdicts, nowadays no one will probably argue; it is generally 

acknowledged rubbish
1
. All the other problems are, however, quite 

vital. I have thus considered the publication of those statements not as 

final conclusions but as the beginning of a big work for better 

ascertaining the actual situation.  

    It was thought that we will have to do with a comparatively small 

amount of concrete material. However, this is not the only essential 

advantage of the described method of sampling as compared with a 

full study of the publications. It is known that scientific papers are 

usually too short so that reading them means decoding
2
 whereas in this 

case all difficult questions could have been resolved by asking the 

authors themselves.  

    Of course, along with really scientific objections I have received 

other, insignificant letters. Usually such are reports about the results of 

investigations in which the correspondent did not participate but only 

knows about them by hearsay. In such cases, since no definite data are 

provided, it always remains incomprehensible whether the success was 

achieved owing to a correct application of the theory of probability or 

in spite of its wrong use which is not excluded either. For example, if 

the report informs about the successful work of some technical system, 

that could have been achieved both because of a correct estimation of 

the essence of random disturbances but also because the designer 

neglected wrong stochastic estimation and guided himself by his 

engineer experience which had proved sufficient.  

    On the whole, the desired result was however achieved: I have 

indeed obtained objections of a scientific kind, although a small 

number of them. They concerned the tail areas of distributions, 

forecasting stochastic processes and possibilities of a periodogram 

analysis. Regarding the first two items, I was able to become thus 

acquainted with interesting and, judging by their first results, 

promising studies, far, however, from being accomplished. Therefore, 

I should not yet reject my statement that no reliable practical 

application of the pertinent methods is known. In spite of all of its 

negative essence, it is useful in that it stresses the need to work 

practically in those fields. 

    The most remarkable and scientifically irrefutable was the objection 

made by Professor V. A. Timofeev concerning the application of 
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periodograms. It occurred that work with them can be successful for 

example when adjusting systems of automatic regulation for isolating 

specific periods of disturbances so as to suppress them. The applied 

technique is not stochastic but I considered it necessary to describe 

briefly the example provided by Timofeev (§ 2.3 below).  

    Then, when becoming acquainted with some statistical medical 

problems, I encountered an apparently promising example of 

application of multivariate analysis (§ 2.2 below). It is almost 

doubtless that such methods can also be widely applied in technology 

for solving various problems of reliability of machinery. However, 

much efforts should be made for excluding the almost.  

    I thought it useful to discuss also a problem of a more general 

nature: what kind of aims is it reasonable to formulate for a stochastic 

study? Naturally, they should not be either too particular (that would 

be uninteresting), or too general (unattainable), see the historical 

material in Chapter 1.  

    I am sincerely grateful to the Editor, V. I. Kovalev
3
, who initiated 

this booklet and invariably helped me. 

 

1. Extreme Opinions about the Theory of Probability 
    1.1. Laplace’s singular and very facile metaphysics. Both in 

teaching and during practical work I have to encounter (although ever 

more rarely) delusions about the actual possibilities of stochastic 

methods. In an intentionally rough way they can be expressed thus. 

Consider some event. We are obviously unable to say whether it 

occurs or not. It is therefore random, so let us study it by stochastic 

methods. 

    If you begin to argue, a few textbooks can be cited where indeed an 

approximately same statement (although less roughly) is written. It 

follows that the theory of probability is a special science in which 

some essential conclusions can be made out of complete ignorance. 

From many viewpoints (historical, psychological, etc) it seems 

interesting to find out the historical roots of that delusion. In general, 

the study of the emergence of some approach (scientific approach in 

particular) is extremely difficult since it usually demands an analysis 

of great many sources. The theory of probability was, however, lucky 

in some sense.  

    At the turn of the 18
th

 century a greatest scholar, Laplace, summed 

and essentially advanced both its general ideology and concrete 

results. Being extremely diligent, he left a very detailed description of 

his views and results in his Théorie analytique des probabilités (TAP). 

We consider it permissible to restrict our attention by analyzing this 

single source although a strict historian of science certainly will not 

approve of such a view. For his part, he will be in the right; for 

example, it is extremely important for the history of science to study 

the evolution of Laplace’s own ideas and his relations with other 

scientists, but we are actually pursuing a narrow applied aim. 

    In our century of rapid development of the science of science we 

ought to describe our source [see Bibliography]. It is a great volume 

containing about 58 lists
4
 and it is pleasant to note that also in our time 
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only a small number of monographs are more voluminous, so that 

human capability of writing great books has not changed much. 

    The TAP is separated into two parts utterly different in style. The 

first part, the Essai, is an Introduction and summary of the book and it 

obeys an indispensable condition of having no formulas. Thus, the 

formula 
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is expressed by words together with the definition of the numbers π 
and e. Such phrases are certainly little adaptable for perception. 

However, the Essai also contains many materials of philosophical, 

general scientific and applied nature described, as I see it, in a most 

wonderful style
5
. Had that style not been so beautiful, we would 

perhaps have no need to counter, after a century and a half, attempts at 

applying the theory of probability universally and indiscriminately.  

    The Essai is about 12 lists long; the rest consists of the TAP proper 

where Laplace applied mathematical analysis in plenty and, for us, 

rather strangely. This strangeness extremely impedes the 

understanding of the second part of the book (whereas the same is true 

concerning the Essai owing to the complete absence there of analytical 

formulas). It is apparently difficult to find someone nowadays who 

could be able to boast about having read (and understood) the TAP 

proper. However, many people have read the Essai whereas the 

attempts to understand the second, mathematical part led to the 

creation of more rigorous (and therefore more easily understandable) 

methods of proving limit theorems of the theory of probability. We are 

here only interested in the Essai.  

    As stated above, it is a work of a rather free style. A scientist’s 

psychology is doubtlessly such that he builds a superstructure above 

his concrete scientific results. It consists of general ideas and emotions 

emerging out of those results and providing new faith, will and energy. 

The concrete results are usually published whereas the superstructure 

remains the property of a narrow circle of students and friends
6
. 

Laplace, however, published both and thus, as I see it, rendered his 

readers an inestimable service.  

    In his Essai, not being shy of the boundaries of a purely scientific 

publication, Laplace carried out a wide polemic. Many scientists 

endured quite a lot: Pascal (pp. 70 and 110)
7
 for a number of 

unfounded statements in his Pensées about the estimation of 

probabilities of testimonies; the author of the Novum Organum 

(Bacon, p. 113) for his inductive reasoning which led him to believe 

that the Earth was motionless (and thus to deny the Copernican 

teaching); and many others, but the great Leibniz endured the most. 

    Leibniz is mentioned in connection with summing the series (p. 96) 

 

    2 31
1 ...

1
x x x

x
= − + − +

+
                                                          (1.1) 

 



 89 

at point x = 1. However, preceding the criticism of Leibniz’ procedure, 

Laplace describes the following case, perhaps too far-fetched to be 

true, but characteristic of his attitude to Leibniz. When considering the 

binary number system, Leibniz thought that the unit represented God, 

and zero, Nothing. The Supreme Being pulled all the other creatures 

out of Nothing just like in binary arithmetic zero is zero but all the 

numbers are expressed by units and zeros. This idea so pleased 

Leibniz, that he told the Jesuit Grimaldi, president of the mathematical 

council of China, about it in the hope that this symbolic representation 

of creation would convert the emperor of that time (who had a 

particular predilection for the sciences) to Christianity
8
.  

    Laplace goes on: Leibniz, always directed by a singular and very 

facile metaphysics, reasoned thus: Since at x = 1 the particular sums of 

the series (1.1) alternatively become 0 and 1, we will take the 

expectation, i. e., 1/2, as its sum. We know now that such a method of 

summing is far from being stupid and may be sometimes applied, but 

Laplace hastens to defeat Leibniz, already compromised by the 

preceding story. 

    It is indeed remarkable that now, a century and a half later, we may 

rightfully say the same about Laplace: directed by a singular and very 

facile metaphysics. This does not at all touch his concrete scientific 

work but fully concerns his general ideas connected with concrete 

scientific foundation. His Essai begins thus (p. 1): 

 

    Here, I shall present, without using Analysis, the principles and 

general results of the Théorie, applying them to the most important 

questions of life, which are indeed, for the most part, only problems in 

probability. 

 

    So, which most important questions of life did Laplace think about, 

and how had he connected them with the aims of the theory of 

probability? That theory includes the central limit theorem (CLT) 

which establishes that under definite conditions the sum 

 

    Sn = ξ1 + ... + ξn  

 

of a large number of random terms ξi approximately follows the 

normal law. When measuring the deviation of the random variable Sn 

from its expectation ESn in terms of var ,nS  we therefore obtain 

values of a random variable obeying the standard normal law. Briefly 

it is written in the form 
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    Here, N(0, 1) is the standard normal distribution (with zero 

expectation and unit variance). Consider now the case of n → ∞. If the 

expectations of all the ξi are the same and equal a, the variance also the 

same and equal σ2
, and the random variables ξi themselves 

independent. Following generally known rules, we get 
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    For a random variable obeying the law N(0, 1) typical are absolute 

values of the order 1. For example, the probability of its absolute value 

exceeding 3 is about 0.003 (hence the three sigma rule): we see that 

the inequality 
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is practically certain. 

    Let a ≠ 0. Then na is the typical value of Sn and its random 

deviations do not exceed 3σ√n, a magnitude that increases with n 

essentially slower than na. Given a large n, the order of the 

determinate component na exceeds that of the random deviations. 

    Such is the purely scientific result known (at least in some particular 

cases) to Laplace. Let us see now what philosophical and emotional 

superstructure did he build above it. Here is one more quotation from 

his Essai (pp. 37 – 38):  

 

    Every time that a great power, intoxicated by the love of conquest, 

aspires to world domination, the love of independence produces, 

among the threatened nations, a coalition to which that power almost 

always becomes a victim. [...] It is important then, for both the stability 

and the prosperity of the states, that they not be extended beyond those 

boundaries to which they are continually restored by the action of 

these causes. 

 

    This conclusion is reasonable, excellent and indeed typical for the 

post-Napoleon France. But then Laplace adds: This is another result of 

the probability calculus. He bears in mind that, just as the determinate 

component prevails over randomness, see above, so also in politics, 

what is destined actually happens. But was it necessary to justify that 

statement by the CLT? For the modern reader it is quite obvious that 

we can only see here a remote analogy, peculiar not for science but 

exactly for metaphysics, and a singular and very facile metaphysics at 

that. 

    A bit later Laplace (p. 38) states, again citing the theory of 

probability: When a vast sea or a great distance separates a colony 

from the centre of the empire, the colony will sooner or later free itself 

because it invariably attempts to get free. And elsewhere he (p. 123) 

says:  

 

    The sequence of historic events shows us the constant action of the 

great moral principles amidst the passions and the various interests 

that disturb societies in every way. 
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    He concludes that since the action of the great moral principles is 

constant, and, as the CLT teaches us, they will in any case prevail over 

randomness, it is better to keep to them, otherwise you will experience 

bad times. That conclusion is really commendable, but from the 

scientific viewpoint it is obviously not better than converting the 

Chinese emperor to Christianity desired by Leibniz. At the end of the 

Essai (p. 123) we find the celebrated phrase:  

 

    It is remarkable that a science that began by considering games of 

chance should itself be raised to the rank of the most important 

subjects of human knowledge. 

 

He means exactly those political applications of the theory of 

probability.  

    All the strangeness of metaphysics in the philosophical and 

emotional spheres notwithstanding, Laplace shows an amazing insight 

when concretely applying the probability theory. I have looked 

through the ATP with a special aim, to find at least one wrong definite 

statement. It seemed that supporting myself with a hundred and fifty 

years during which science has been since developing and given such 

strangeness of his general philosophical views, it will not be difficult 

to find there definite errors as well. Indeed, he considered some 

dubious problems on the probability of judicial decisions etc.  

    It occurred, however, that it was not at all easy to find at least one 

wrong statement
9
. A great many applications that he considered can be 

separated into three parts: 

    1. Obvious and absolutely unquestionable problems such as partial 

censuses of population or the change of the frequency of male births in 

Paris due to foundlings. 

    2. Treatment of the results of astronomical observations. It is 

difficult to discuss those applications since vast material ought to be 

studied. 

    3. Obviously dubious problems like the probabilities of judicial 

decisions. Here, however, Laplace’s conclusions are so careful that 

purely scientific errors are simply impossible.  

   There is nothing to say here about the first group, but something 

instructive can be noted concerning the second one. There, Laplace (p. 

46) quotes the result of the treatment of observations: the ratio of the 

masses of Jupiter and the Sun is equal to 1:1071 and states that his 

probabilistic method gives odds of 1 000 000 to 1 that this result is not 

a hundredth in error
10

. According to modern data, that ratio is a little 

more than 2% larger so that the odds are obviously wrong. 

    The great question here is, however, was that occasioned by a 

mistaken treatment of the observations or by a systematic error of 

those observations impossible to eliminate by any statistical treatment. 

I was unable to answer that question. In general, it is very easy to 

commit such an error, and it is relevant to remark that quite recently 

the mass of the Moon was corrected in its third significant digit so that 

the precision of modern numbers should be carefully considered. If, 

however, we tend to believe that the observations were treated 

correctly, and modern numbers are also correct, we arrive at an 
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instructive conclusion that the presence of systematic errors ought to 

be allowed for. 

    It is interesting to quote also Laplace’s viewpoint on the problems 

of the probabilities of judicial decisions etc. Unlike, for instance 

Poisson, he (p. 120) did not overestimate their reality: 

 

    So many passions, varied interests and circumstances complicate 

questions about these matters that they are almost always insoluble. 

 

    In essence, Laplace considered the relevant mathematical problems 

as models (in the modern sense of that word) and thought that 

conclusions of precise calculations were invariably better than the 

most refined general reasoning. As an example, I take up the desired 

number of jurors. Laplace does not attempt to find their optimal 

number. His only careful recommendation (p. 80) is that, having 12 

jurors, the number of votes necessary for conviction should apparently 

be increased from 8 to 9 since, as the solution of model problems had 

showed him, 8 votes do not sufficiently guarantee against mistaken 

convictions.  

    Bearing in mind the exposition below, it is important to note that 

Laplace readily recognized the existence of problems unsolvable by 

the theory of probability although (see above) the most important 

questions of life,[...] are indeed, for the most part, only problems in 

probability. In our century, the following formulations are almost 

equivalent: 

    The given problem does not belong to one or another branch of 

science; The given problem belongs to this branch of science but is 

unsolvable. 

 

    1.2. Speculative criticism of the theory of probability. We see 

that by the time of Laplace a somewhat contradictory situation had 

already formed in the theory of probability. Concrete results occurred 

incomparably more modest than the wide perspectives imagined by 

him. We ought to stress that such a situation exists elsewhere as well. 

Thus, it is widely believed that physics considers the most 

fundamental laws of nature from which the laws of other, for example 

biological phenomena can in principle be, or will be in the remote 

future derived. Biology also readily speaks, for example, about the 

need for learning to rule the biosphere as a whole. 

    It seems that the psychology of a scientist is arranged in such a way 

that for engaging in science a certain psychological atmosphere is 

absolutely necessary for attaching a certain concord and generality to 

concrete results which often are modest and isolated. In particular, the 

passing of an unfailing interest in scientific pursuits from one 

generation to the next one can hardly be realized without working out 

such a psychological arrangement.  

    Suppose that a school student tends to choose physics as his future 

profession; tell him: All your life you will have to sit by the cyclotron 

and measure no one knows what, and he will hardly become a 

physicist. But tell him: You will be able to contribute to the study of 

the most fundamental laws of nature, and the result will be different.  
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    The verification of the truth of a scientific proposition by practice, 

in the first place concerning fundamental sciences, has a special 

property, namely, that it often takes more than a generation. 

Consequently, at least because of this the transfer of interest in science 

from one generation to the next one is essentially important.  

    On the other hand, it is also important to bring that general 

psychological arrangement in correspondence with the actual results. 

Such efforts are going on in all sciences under differing circumstances. 

In the theory of probability the tension of passions is somewhat 

stronger than, say, in mathematics as a whole: it is possibly partly 

connected with Laplace. He was at the source of modern probability 

and the literary merits of his contribution laid an excessive discrepancy 

between its emotional and philosophical and its concrete scientific 

aspects. 

    The too wide general hopes are characterized by the emotional 

shortcoming of changing into disappointment once encountering a real 

problem. In a purely scientific aspect it consists in that the researcher, 

when formulating new problems, is not sufficiently critical. As a 

result, efforts and material values are spent on futile attempts to solve 

problems whereas the impossibility of achieving this would be obvious 

had he been a bit more critical. 

    In any case, certain ideas were being developed in science 

concerning the sphere of application of the stochastic methods. 

Actually, each scientist, who carried out some applied study involving 

probability theory, made a certain contribution to these ideas. 

However, their clear formulation (brilliant also in the purely literary 

sense) is due to Mises (1928, p. 14). He himself also attempted to 

construct a peculiar mathematical foundation of the theory of 

probability which stirred up animated criticism and at present the 

generally recognized axiomatization of probability is that provided by 

Kolmogorov (1933/1974). Nevertheless the concept itself of practical 

application largely follows Mises’ idea. 

    I remind briefly this concept of statistical homogeneity or statistical 

ensemble (collective). For ascertaining the principles I restrict my 

attention to the most simple case when an experiment can either lead 

to the occurrence of some event A or not. Denote by nA the number of 

its occurrences in n experiments repeated under presumably the same 

conditions. The ratio nA/n is called the frequency of the occurrence of 

event A. Even before Mises statisticians (for example Poisson who 

studied the probability of judicial verdicts) understood perfectly well 

that for the applicability of stochastic methods to study the event A the 

stability of the frequency nA/n as n increases should experience ever 

less fluctuations and tend, in some sense, to a limit (which is indeed 

understood as the probability P(A) of A). 

    Mises supplemented these ideas by a clear formulation of another 

property that was also intuitively perfectly well understood by 

statisticians. Here it is. Separate the n trials beforehand into 

sufficiently large totalities n1, n2, ..., then the respective frequencies 

nA/n1, nA/n2, ... should also be close to each other. The separation ought 

to be done by drawing on the previous information; thus, two totalities 

could have been trials done in summer and winter with the frequencies 
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nA1/n1, nA2/n2, ..., becoming known after the trials. Quite admissible 

and practically useful is also the separation of the trials into parts of 

the collected material although in this case the problem of intentional 

or intuitive arbitrary fit becomes acute.  

    The demand indicated by Mises is important. Suppose that event A 

is the production of defective articles whose probability P(A) 

experiences, say, seasonal fluctuations: 

 

    P(A) = Pt(A) = p0 + p1sin(ωt + φ). 

 

Here t is the moment of observation, p0 and p1 are some constants such 

that Pt(A) ≥ 0. Suppose that t = 1, 2, ..., n. It is not difficult to show 

that, for independent results of observation at those moments the ratio 

nA/n will tend to p0 (if only ω ≠ 2π). At the same time the separation 

according to the seasons if the seasonal fluctuations really exist will 

show that Mises’ demand is violated. The knowledge that such 

fluctuations exist can be practically very important.  

    Here, however, a very complicated question emerges: suppose that 

we did not know whether seasonal fluctuations existed. How could 

have we suspected that the data should be separated according to the 

seasons? And, on the whole, is there any general method for choosing 

the separate groups or should we test all possible groups? We can only 

say that such general method does not exist and that it is obviously 

senseless to test all possible groups because, whatever is the situation, 

a certain group can contain all the occurrences of the event A, and 

another one, none of them so that the equality of the frequencies will 

be violated as much as possible. The researcher chooses the groups 

intuitively or bases his choice on the available pertinent information. 

    Then, we wish to discuss another problem: suppose that the Mises 

demands are fulfilled, will that be sufficient for applying stochastic 

methods? In other words, are those demands not only necessary, but 

also sufficient? Having such a general problem, we can only discuss 

some versions of a mathematical theorem establishing, say, that, given 

that the Mises conditions are fulfilled, some proposition is true, for 

example the law of large numbers.  

    Here, however, the same question emerges: how are we to choose 

the groups of observations? When admitting all possible groups such a 

demand will be contradictory, hence can not underlie a mathematical 

proof. If not all possible, then it ought to be stated which groups, and 

this is difficult. 

    We see that once we only begin thinking about the simplest problem 

concerning the possible presence of seasonal fluctuations of the 

probability of producing defective articles, let alone proceed to 

investigate it, we conclude that available general scientific 

prescriptions are obviously insufficient for solving a given concrete 

problem. I do not know even a single exception from this rule. It does 

not, however, follow that no practical problem can be solved at all, see 

below, but I note now that in spite of all the shortcomings of that 

concept, it still establishes absolutely clearly that some restrictions of 

the sphere of the application of statistical methods are necessary.  
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    In the purely scientific sense this conclusion is not at all new. We 

saw how careful was Laplace concerning those stochastic applications 

where indeed such carefulness was needed. Poisson, although his 

contribution on the probabilities of judicial verdicts was wrong on the 

whole
11

, perfectly well understood the need to verify a number of 

assumptions by factual materials and performed some checks 

obtaining an excellent fit [i]. And in general there was likely no 

researcher who did not somehow choose to solve such problems where 

the application of the theory of probability could have proved 

effective. 

    So the discussion can only concern methodical problems (methods 

of teaching). What should be included in textbooks intended for 

beginners, or in a paper designed for being widely debated? Such 

considerations lead to a special kind of reasoning that I am indeed 

calling speculative criticism of the theory of probability. 

    A student, beginning to study a subject usually does not master any 

concrete material. This concerns not only students of purely 

mathematical specialities for which the curriculum does not envisage 

any such material, but also those following applied specialities who 

study the theory of probabilities (together with all theoretical 

disciplines) during their first years of learning. If, however, we 

consider a paper discussing problems of principle, it is addressed to 

people who are mostly acquainted with factual materials, although 

different from one of them to another. This is indeed what demands a 

speculative discussion of the problem. 

    Such discussions are based on a single principle: since the necessity 

of restrictions in applications of the theory of probability is 

acknowledged, let us see whether we are able to verify their realization 

in practice. It is easily established that the restrictions are generally 

formulated too indefinitely, and if desiring to check the conclusions 

rather than the restrictions, we find that an exhausting verification is 

here also impossible.  

    Pertinent examples can be seen in [i] and Tutubalin (1972). 

However, some contributions of Alimov have become recently known. 

His style is very vivid, and many quotations of his statements is 

desirable, but we have to choose only one (1974, p. 21): 

 

    Thus, the correctness of comparing n measurements with n 

independent random variables is not threatened by any experimental 

check. Following an established tradition, such comparisons are 

assumed as a basis of many branches of mathematical statistics, of the 

theory of Monte Carlo methods, random searching, rationalization of 

experiments and a number of other apparently serious disciplines. 

Being impossible to check experimentally, they are significantly, so to 

say, present at the development of systems of automatic control. 

 

    Here, Alimov bears in mind that, having one sample, it is impossible 

to verify either the independence of separate observations or the 

coincidence of their laws of distribution. In general, imagining an 

ensemble of many possible samples given one really observable, is for 

him inadmissible. Accordingly, he proposes to abandon the main 
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notions and methods of mathematical statistics: confidence intervals, 

distribution of sample characteristics, criteria of fit, consistency, 

unbiasedness and efficiency of estimators. 

    In particular, the problem of Laplace’s wrong estimation of the 

confidence interval for the mass of Jupiter
12

 should have been solved 

simply, although, as I see it, somewhat cruelly: engineers apply 

confidence intervals for avoiding responsibility to the direct customer. 

According to Alimov (1974, pp. 31 – 32), the sense of classical 

formulations of a number of results essentially differs from that 

attributed to them by tradition, and, after being ascertained, become 

simply uninteresting for an applied scientist. 

    The quoted paper is written very expressively and clearly. The only 

point which we still did not understand is why does the Mises concept 

or the related second Kolmogorov axiomatics
13

 better correspond to 

the interests of that scientist than the classical set-theoretic axiomatics. 

In any case, the assumptions of a theory can not be logically verified. 

His work should possibly be understood in the following way.  

    The concept according to, say, Ville – Postnikov
14

 provides another 

speculatively possible approach to applied problems whereas the 

traditional methods of mathematical statistics then seem absurd. 

Consequently, if two speculative models contradict each other, at least 

one of them is very doubtful. However, Alimov’s text indicates no 

decisive grounds for such an interpretation. 

    Alimov’s views about the classical theory of probability, at least 

when comparing them with Laplace’s understanding, are really 

extreme. We do not agree with them, see Chapter 2. On the other hand, 

we can easily imagine factual material the acquaintance with which 

must only lead to such views. Now, however, we note that the 

methodical aims, the only ones that the speculative criticism of 

probability theory is able to pursue, seems to be although not achieved, 

but such whose attainment is seen in principle secured. 

    Planck wrote
15

:  

 

    A new scientific truth does not triumph by convincing its opponents 

and making them see the light but rather because its opponents 

eventually die and a new generation grows up that is familiar with it. 

 

    It is doubtless, at least since methodology of teaching invariably 

follows science, that the same happens in teaching understood in a 

wide sense (including propaganda of some views). The point is 

certainly not that critical opinions (expressed, say, in my or Alimov’s 

contributions) change the viewpoint of the public on the problems of 

the theory of probability. On the contrary, those works only serve as 

expressions of the changed public opinion. No matter that even now 

many university lecturers possibly keep repeating to the students that 

The theory of probability studies random events; random are such 

events that can either happen or not.  

    Yes, public opinion had changed which is reflected in new 

textbooks. For example, in a recently published textbook by Borovkov 

(1972) there is not even a trace of Laplace’s strange and very facile 

metaphysics. On the whole, it is doubtless that the rising generation 
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ought to learn at once the simple truth that a thorough comparison of 

the theory with reality is necessary for the theory of probability as for 

other sciences.  

    What, however, does such comparison consist of, and how do we 

search for it? Alimov believes that in the most important cases this is 

in general impossible. Indeed, scientifically thorough works where it is 

done, are rather rare. We are ending this Chapter by discussing a 

general pertinent problem about what can we reckon on here and 

provide some concrete results in the next Chapter. 

    1.3. The superstition of science and a more realistic view. 
Alimov’s proposal to abolish a larger part of mathematical statistics is 

not the most severe from what can be said about science in general. 

Tolstoi (1910) included a whole chapter entitled False science. His 

main idea was that the empty sciences such as mathematics, 

astronomy, physics do not at all answer such main moral questions like 

Why am I living and how should I live. In addition, the contents of 

sciences consists of separate weakly connected fragments of 

knowledge which had interested, no one knows why, some small 

group of people. And scientists had freed themselves from work 

necessary for life (here, Tolstoi first of all thought about the work of 

peasants) and are living an unreasonable life. 

    It is extremely interesting to see what can be answered in our time 

to these accusations. Nowadays, since the power of science is ever 

increasing, moral problems are discussed especially intensively, see 

for example a review of these problems (Gulyga 1975). As to the 

fragmentary contents of natural sciences, this is true to some extent. 

Indeed, we do not dwell with an all-embracing theory covering the 

entire nature and issuing from common principles, but with many 

theories of different phenomena pertaining to physics, chemistry, 

biology, etc. and many extremely important things do not today yield 

to scientific analysis. 

    But does it follow that the contents of science had formed randomly, 

only to please the whims of some people? I will try to show that this is 

not only incorrect, but extremely unjust (the same concerns the 

statement that the scientists had freed themselves from work necessary 

for life). At first, I allow myself an example showing the difference 

between science and magic. [Cf. [i, § 1.3].] 

    I will now allow myself some useful for understanding the problem 

if remote association. Let us compare the movement of science during 

many centuries towards certain knowledge with another century-long 

movement for the development of a country’s North and East, for 

example in Russia. The Russian peasant had been able to get 

acclimatized and build villages only where tilling the soil was possible 

(practically, along river valleys).  

    Just the same, science had only developed where comparatively 

certain knowledge was possible. As a result, when looking at a map, 

we see clusters of villages along the rivers with practically no 

inhabitants in between them. Turning to science, we see that some 

spheres (celestial mechanics) are well developed and more than 

plentifully cover practical requirements, whereas we only learn how to 
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solve scientifically many not less important problems from weather 

forecasting to prevention of the flu. 

    Elsewhere Tolstoi compares natural sciences with pleasures, − 

games, riding, skating, etc, outings, − and concludes that enjoyment 

should not impede the main business of life. In his time, scientists 

apparently yet constituted such a thin layer of the population, that the 

great writer had no occasion to feel the labouring principle of sciences’ 

nature
16

. Briefly, natural sciences constitute one of the many spheres 

of human activity with all the thus following shortcomings and merits. 

Consequently, for example the criticism of the theory of probability of 

the speculative kind (cf. § 1.2) can only pursue restrictive aims. 

Indeed, it logically shows that the premises for applying that theory 

can not be verified. This, however, concerns the premises of any 

science; although the lack of logic undoubtedly somewhat lowers the 

certainty of knowledge, in many cases the conclusions of probability 

theory still have a quite sufficient certainty for admitting them as 

scientific. 

    Many authors including Laplace discussed how the practical 

applicability and certainty of those conclusions is established. His 

reasoning in the Essai is not rich in content and is reduced to stating 

that induction was not reliable [cf. his criticism of Bacon in § 1.1] and 

that analogies were still worse. In my context, the response is utmost 

simple: the practical verification is achieved by the work of many 

people and many generations; they ever again return to studying a 

given problem.  

    If several large boulders were lying on a peasant’s plot, he had to 

bypass them when ploughing. But if his son becomes able to remove 

them, he will do it. Just the same, in science it is not forbidden to 

approach old problems by new methods and either to confirm or refute 

the previous results. In statistics, this means that, having a small 

amount of data, it is impossible to say anything in a certain way, but 

during a prolonged statistical investigation, with new material being 

ever again available, no doubts are finally left.  

    Alimov is in the right when asserting that, having one sample, it is 

not at all possible to verify whether we are dealing with independent 

random variables. However, the situation is sharply changed after a 

few new samples become available. Then, in particular, we can check 

the previously calculated confidence intervals. 

    I had occasion to encounter some people keeping to logical 

reasoning for whom the very concept of statistical testing of 

hypotheses caused a feeling of displeasure. That concept from the very 

beginning fixes the level of significance, i. e. some non-zero 

probability to reject mistakenly an actually true hypothesis. Some 

consider this unacceptable, but the process of cognition does not 

consist of a single test, and even when we reject a hypothesis, we do 

not, happily, pass a death sentence. If new data appear, we will test it 

anew. 

    Tolstoi would have hardly rejected the viewpoint that science is 

some sphere of labour not higher, not lower than any other sphere 

(industry, agriculture, fishing etc). To support this assumption I can 

cite his admission, in the same book, that in its sphere of cognition of 
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the material world science had indeed essentially advanced. And 

modern development leaves no doubt in the existence of the really true 

science in contrast to the false science. 

    What are the practical conclusions from the considerations above? 

Once we acknowledge science as a kind of active human work, it 

follows, on the one hand, that at each moment it is incomplete and 

fragmentary; indeed, active work always lacks something (or even 

very much). On the other hand, what also follows is universality: man 

will always engage in science and attempt to widen the sphere of the 

certainty known. 

    In a number of fields of application of mathematics and probability 

theory in particular to real phenomena the situation became abnormal 

since the practical possibilities of application are overestimated. In 

such cases it is expedient to stress the unavoidable fragmentary state of 

all the existing applications: in mathematics, too grand intentions can 

occur unattainable and their inevitable failure will create for that 

science an extremely undesirable blow to its prestige, a situation in 

which science can not normally develop.  

    Thus, some years ago it was thought that, had there occurred a 

possibility of solving great problems of linear programming covering 

the economics of the entire nation, economic planning should be 

reorganized on that foundation. It is now absolutely clear that such a 

problem can not be either formulated or solved at least because, given 

that global setting, such a notion of linear programming as set of 

possible technological methods has no sense
17

. As a result, the study of 

local problems for which linear programming can be effective, is not at 

all sufficiently developed. 

    Awkward and absolutely useless concepts emerge when attempting 

to combine global problems of linear programming with a stochastic 

description of the possible indeterminateness. Here also only properly 

isolated local problems can have sense. In general, when applying the 

probability theory to describe an indeterminate situation, it is 

extremely important to attain some unity between the extent of 

roughing out the reality still admissible for a stochastic model and the 

amount of information to be extracted from reality for determining the 

parameters of the model. This situation is perfectly well described by 

the proverb: You can not run with the hare and hunt with the hounds. 

In other words, a model that adequately describes reality in detail can 

demand so much information for determining its parameters, that it is 

impossible to collect it. And a rough model only demanding a little 

amount of statistical information can be unsuited for describing reality. 

The main demand on a researcher who practically applies the theory of 

probability is indeed to be able to find a way out of these difficulties. 

 

2. Logical and Illogical Applications of the Theory of Probability 
    Five years ago I thought it expedient to explicate, in a popular 

booklet, the elements of the mathematical arsenal of probability 

theory. However, almost at the same time as that booklet had 

appeared, a sufficient number of textbooks on the theory of probability 

had been published with the mathematical aspect being described even 

more than completely. Then, a tradition begins to take shape (and 
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wholly dominates now the teaching of mathematical analysis and a 

number of other mathematical disciplines) which sharply separates the 

pertinent contents into mathematical and applied parts.  

    At the beginning of the century textbooks on the theory of 

probability had contained very many real examples of statistical data; 

in the new textbooks such examples are disappearing. A natural 

process of demarcating teaching mathematical theory and applications 

is possibly going on. Indeed, had we wished to include applications in 

a textbook on mathematical analysis, we would have to expound 

mechanics, physics, probability theory and much other material.  

    It is a fact, however, that the applications of mathematical analysis 

naturally find themselves in courses and textbooks on mechanics and 

physics, but that the applications of the theory of probability, while 

disappearing from textbooks on mathematical sciences, are not yet 

being inserted elsewhere. It follows that the main methods of proper 

work with actual data and, in particular, of how to decide whether 

some statistical premises are fulfilled or not, are not included 

anywhere.  

    I have therefore thought it appropriate to insert here a part of these 

methods. They are indeed constituting its, so to say, didactical part. 

All such methods are particular, and are described in a natural way by 

concrete examples. However, the inclusion of a few such examples, 

that seemed to me important for one or another reason, pursues in 

addition another and more general aim. I attempted to prove that, in 

spite of a possible logical groundlessness, a stochastic investigation 

can provide a practically doubtless result. Confidence intervals, criteria 

of significance and other statistical methods to which, in particular, 

Alimov objects, are serving in these examples perfectly well and allow 

us to make definite practical conclusions. But of course, real 

applications of probability theory both at the time of Laplace and 

nowadays are of a particular and concrete type. As to my attitude 

towards all-embracing global constructions, it is sufficiently expressed 

in Chapter 1. 

    2.1. On a new confirmation of the Mendelian laws. We explicate 

Kolmogorov’s paper (1940) directly connected with the discussion of 

biological problems which took place then
18

.  

    At first, some simple theoretical information. Suppose that 

successive repetitions of an observed event constitute a genuine 

statistical ensemble and its results are values of some random variable 

ξ. The results of n experiments are traditionally denoted 

 

    x1, ..., xn                                                                              (2.1) 

 

(not ξ1,..., ξn) and Fn(x) is called the empirical distribution function: 
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    This function changes by jumps of size 1/n at points (2.1); for the 

sake of simplicity we assume that among those numbers there are no 

equal to each other. That function therefore depends on the random 
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values of (2.1) realized in the n experiments and is therefore itself 

random. In addition, there exists a non-random (theoretical) 

distribution function 

 

    F(x) = P[ξ < x] = P[xi < x]                                                   (2.3) 

 

of each result of the experiment. 

    Kolmogorov proved that at n → ∞ the magnitude 

 

    λ sup | ( ) ( ) |nn F x F x= −                                                    (2.4) 

 

has some standard distribution (the Kolmogorov distribution); the 

supremum is taken over the values of x. This result is valid under a 

single assumption that F(x) is continuous. Now not only the 

asymptotic distribution of (2.4) is known, but also its distributions at n 

= 2, 3, ... 

    The practical sense of the empirical distribution function Fn(x) 

consists, first of all, in that its graph vividly represents the sample 

values (2.1). In a certain sense this function at sufficiently large values 

of n resembles the theoretical distribution function F(x). [...] 

    There also exists another method of representation of a sample 

called histogram [...] Given a large number of observations, it 

resembles the density of distribution of random variable ξ. However, it 

is only expressive (and almost independent from the choice of the 

intervals of grouping) for the number of observations of the order of at 

least a few tens. The histogram is more commonly used, but in all 

cases I decidedly prefer to apply the empirical distribution function.  

    The Kolmogorov criterion based on statistics λ, see (2.4), can be 

applied for testing the fit of the supposed theoretical law F(x) to the 

observational data (2.1) represented by function (2.2). However, that 

theoretical law ought to be precisely known. A common (but gradually 

being abandoned) mistake was the application of the Kolmogorov 

criterion for testing the hypothesis of the kind The theoretical 

distribution function is normal. Indeed, the normal law is only 

determined to the choice of its parameters a (the mean) and σ (mean 

square scatter). In the hypothesis formulated just above these 

parameters are not mentioned; it is assumed that they are determined 

by sample data, naturally through the estimators 
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Thus, instead of statistic (2.4), the statistic 
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is meant. Here, F0 is the standard normal law N(0, 1). 

    Statistic (2.5) differs from (2.4) in that instead of F(x) it includes F0 

which depends on (2.1), x  and s and is therefore random. Typical 
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values of (2.5) are essentially less than those of the Kolmogorov 

statistic (2.4). Therefore, when applying the Kolmogorov distribution 

for (2.5), we will widen the boundaries of the confidence region and 

thus admit the hypothesis of normality more often than proper.  

    And so, the careful practical application of the Kolmogorov test in 

the most elementary (and therefore most common) situation is 

impossible. That criterion helps in those cases when many such 

examples are available which were already tested by some statistical 

criteria and we wish to secure a general point of view concerning their 

numerous applications. 

    Let us pass now to the essence of the problem on the confirmation 

of the Mendelian laws. Here is the classical situation. Some indication 

has two alleles, A (dominant) and a (recessive). Two pure lines with 

genotypes AA and aa are taken and compulsorily crossed. A hybrid 

with genotype Aa emerges with its phenotype corresponding to 

indication A. Then a second generation is obtained under free crossing. 

When admitting the hypothesis of absolute randomness of the 

combinations of the gametes, the probability of the occurrence of 

genotype aa is 1/4. Only individuals with genotype aa reveal 

indication a in their phenotype so that the probability of its occurrence 

is also 1/4. And so, if there will be n individuals in the second 

generation, the number of occurrences of indication a in the phenotype 

may be considered as the number of successes µ in n Bernoulli trials 

with probability of success p = 1/4.  

    This is the simplest case of the Mendelian law. Vast experimental 

material had been collected up to 1940 from which it was seen that in 

many cases such a simplest law was indeed obeyed. Essential 

deviations (perhaps connected with a differing survivorship of 

individuals of different genotypes and other causes) was also revealed. 

    The school of Lyssenko had been attempting to prove that that law 

was not working. To attain that aim, experiments were carried out, in 

particular by Ermolaeva (1939). They were peculiar in that the 

material was considered not from all the individuals of the second 

generation taken together, but separately for families. It is better to 

explain the meaning of that term by an example. In experiments with 

tomatoes a family is consisting of all the plants of the second 

generation grown in the same box. Each box is sown with seeds taken 

from the fruit of exactly one plant of the first generation. The 

separation into families occurs quite naturally. 

    However, Kolmogorov (see above) showed that Ermolaeva’s most 

numerous series of experiments can be explained exactly by the most 

elementary Mendel model. Suppose that for k families numbering n1, 

n1, ..., nk the number of manifested recessive alleles was µ1, µ2, ..., µk, 

then the classical De Moivre – Laplace theorem [proving that the 

binomial law tended to normality] leads to the normed magnitudes 
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having approximately the standard normal distribution N(0, 1); the 

precision of approximation is quite sufficient for ni of the order of 



 103 

several dozen. The totality *µi  can thus be considered (if the 

Mendelian model is valid) a sample with theoretical distribution being 

the standard normal law. 

    Kolmogorov studied two most numerous series of Ermolaeva’s 

experiments and respectively two samples (2.6) with 98 and 123 

observations. [...] He obtained λ = 0.82 and 0.75. The probability of a 

better fit (a lesser λ) was 0.49 and − 0.37 so that those values of λ were 

quite satisfactory.  

    A purely statistical investigation thus changed the results: an alleged 

refutation of the Mendelian laws became their essential confirmation. 

Apart from the opponents of the Mendel theory Kolmogorov also 

mentioned the work of his followers, Enin (1939) in particular. He did 

not subject that paper to a detailed analysis, but indicated that the 

agreement with the main model of Bernoulli trials was too good (the 

frequencies concerning separate families deviated from p = 1/4 less 

than it should have occurred according to the main model of Bernoulli 

trials). A detailed analysis is instructive from many viewpoints and I 

am therefore providing Enin’s main results.  

    He considers the segregation of the tomato hybrids according to 

differing leaves: normal and potato-like. His results are separated into 

two groups depending on the time of sowing the seeds of the hybrid 

plants in the hothouse (February or April). [...] 

    All the material except one observation is shown on Fig. 3. We 

ought to decide now what kind of statistical treatment is needed. In 

applied mathematical statistics the application of each given statistical 

test is objective, [...] but which criteria should be chosen is an 

essentially subjective question. The answer depends on which 

singularities of the data seem suspicious and the statistician more or 

less adequately converts this impression into statistical tests. There are 

no common rules, we can only discuss examples.  

    The matter is that in principle any given result of observations is 

unlikely (and in our present case of a continuous law of distribution 

the probability of any concrete result is simply equal to zero). 

Therefore, a criterion can also be found that will reject any hypothesis 

considered in any circumstances. We ought not to be here super-

diligent and only admit criteria having a substantial sense suitable for 

the concrete natural scientific problem. On the other hand, if not 

wishing to reject some tested hypothesis, it will be usually possible to 

choose such criteria that will not do that. Here, we are already 

speaking about the honesty of the statistician. 

    Concerning the material presented on Fig. 3, we first turn our 

attention to the empirical function for the first series of observations. It 

is situated completely above the theoretical function and in general is 

quite well smoothed by some straight line (dotted on the Figure) 

almost parallel to the theoretical. The entire difference is some shift to 

the left. Since we deal with a shift (we see it perfectly well, but do not 

know whether it is significant or not), we ought to apply the test based 

on the sample mean. It is equal to – 0.64 and its variance is 

1/ 11 0.30;≈  to remind, the tested hypothesis concerns the standard 

normal distribution for the values of µ*. The deviation exceeds two 
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sigma in absolute value and is highly significant. The first series of 

experiments is not, strictly speaking, a confirmation of the Mendelian 

laws. 

    Let us ask ourselves now, how large should the deviation be from 

those laws that we ought to admit when considering this series of 

experiments. It is certainly possible to say at once now that the 

discussion is pointless when declaring that such a result compels us to 

doubt the presence of a statistical ensemble; or, roughly the same, to 

doubt the independence of the separate outcomes of the experiments. 

    But let us try to manage by less cruel means. Suppose that each 

plant reveals the recessive indication independently from others, but 

that the probability of success (appearance of a plant with potato-like 

leaves) p differs from 1/4: p = 1/4 + ∆p. How large should ∆p be for 

explaining the observed shift of the empirical distribution function? 

Suppose that ∆p = − 1/40. We thought that the magnitude (2.6) with p 

= p0 = 3/4 and q = q0 = 3/4 has a standard normal distribution; 

actually, this will be true for 
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    The magnitudes n differ in different experiments, but, according to 

Table 1, np = np0 = n/4 mostly exceeds 50, so that n ≥ 200. Therefore, 

the systematic shift is 
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and ∆p = − 1/40 quite well explains the systematic shift of − 0.64. 

An estimate by naked eye using the dotted line on Fig. 3 provides  

− 0.58, little differing from − 0.64 since the mean square deviation of 

the arithmetic mean is 1/ 11 0.30.≈  

    At present, there are tables of the distribution of the statistic 

 

    λ′ = sup |F(x) − Fn(x)|                                                        (2.7) 

            x 

 

also for finite values of n, see for example Bolshev & Smirnov (1967). 

For the first series of observations (n = 11) that statistic is 0.28. It is 

very moderately significant for levels higher than 20%. 

    Consequently, when applying this test, we are not compelled to 

consider that the data of the first series reject the applicability of the 
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Mendelian laws. It is not sufficiently clear which conclusion has more 

natural scientific sense: either that the data do not agree with those 

laws, but that the discrepancy can be understood by a slight change of 

p (equal to 10%); or, that somewhat reluctantly we may suppose that 

there is no obvious contradiction with those laws. 

    However, Enin provides some explanation of the possible 

discrepancy: the plants in the hothouse sown in February suffered from 

a shortage of heat and light and a considerable part of the sprouted 

seeds perished. Plants having a recessive indication could have well 

had a somewhat lower probability of survival (which should be 

checked by a special experiment). The final results of the first series 

can be considered as some modest confirmation of the Mendelian 

laws.  

    We turn now to the second series. The pertinent empirical 

distribution function on Fig. 3 is only badly smoothed by a straight 

line (according, however, to my somewhat subjective opinion). In any 

case, the scatter of the observations is essentially less than supposed by 

the standard normal distribution. The most simple way to show it by a 

statistical criterion is to calculate the sum of the squares of the 

observations. It is equal to 2.85 whereas its distribution (if the checked 

hypothesis is valid) is the chi-squared law with 14 degrees of freedom. 

As indicated by the tables of that law, that value is thus practically 

impossible. The value of the statistics (2.7) is 0.33; with n = 14 that is 

significant at about the 5% level. 

    The shift of the first series of observations was in some way 

reasonably explained; the second series has an insignificant shift (the 

sample mean is − 0.21) but an essentially smaller than supposed 

variance. The Mendelian laws are thus obeyed more precisely than 

supposed which is hardly possible. The most probable statistical 

conclusion is that the results were tampered with deliberately or not. 

The corruption of normality of the distribution (the impossibility of 

smoothing the empirical distribution by a straight line) also indicates 

some defect; however, for the given number of observations this 

conclusion would be difficult to justify by a statistical test. 

    In general, as far as was possible to ascertain, the trouble is 

apparently that the experimental data are not provided in full. And so, 

it is possible to confirm the Mendelian laws while intending to refute 

them, and it is also possible to throw them into doubt when intending 

to confirm them, and all of this is revealed by a purely statistical 

investigation. 

    Here, we encountered a curious violation of the order being 

established in mathematical statistics. When acting strictly 

scientifically, statistical tests should be chosen beforehand and the 

experiment carried out and the verdict passed only afterwards. 

Actually, the tests are more often chosen by issuing from peculiarities 

of the material noted by naked eye. They serve for checking whether 

these peculiarities are statistically significant or not. However, having 

established in our case that useful are tests based on the sample mean 

and the sum of the squares of the sample values, we could have, when 

analyzing new similar material, strictly followed statistical science. 
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But then the newly appearing peculiarities of that material will have 

not been noticed.  

    What kind of peculiarities could happen? For example, on Fig. 2a 

and 2b a certain non-zero number of observations is shown in the 

region µ* ≤ − 3. The probability of one observation being there 

(assuming that the Mendelian laws are valid) is 0.0014, and, of one out 

of approximately a hundred (to recall, the numbers of observations 

were 98 and 123), about a hundred times higher; here, almost precisely 

so. Thus, the probability of observations appearing in that region in 

both series is about 0.14
2
 ≈ 0.02, which means that a deviation from 

normality N(0, 1) is significant on the level ≈ 2%. So, are the 

Mendelian laws nevertheless wrong? Well, first of all, we have chosen 

a test corresponding to known data; second, a perfectly reasonable 

attitude does not mean dogmatically following tests of significance. A 

reasonable answer apparently means that the bulk of observations 

perfectly agrees with the Mendelian laws but sharp deviations perhaps 

do occur. It can be supposed that a deficiency in the number of 

displayed recessive indications has some biological sense (if, 

according to a very simple explanation, there exists a connection with 

survivorship). 

    Incidentally, the above sufficiently illustrates the simple idea that 

truth in science is established by the work of a number of generations 

and is not always attained at each separate investigation. 

    2.2. No one knows the hour ... The ancient saying, No one knows 

the hour of his death, became somewhat shaken (certainly in the 

statistical rather than individual sense) after life tables have been 

compiled and it occurred that the probability of living up to a definite 

age, is subject to fluctuations (depending on the conditions of life), 

which are, however, not too essential. A further step towards an 

individual forecast based on multivariate statistical analysis is partly 

made and partly being made. I am describing one of the most 

outstanding contributions in this field, the so-called Framingham 

investigation (one of the pertinent publications is Truett et al 1967).  

    The cardiovascular diseases are known to be one of the central 

problems of modern medicine. They are manifested in different ways; 

one of the most common kind is the so-called ischemic heart disease 

(IHD). According to the classification adopted in the cited work, it 

comprises cases of myocardial infarction, coronary insufficiency, 

angina pectoris and deaths occasioned by disturbances of the coronary 

blood circulation. We know well enough that the IHD often affects 

people yet being in the prime of creative power which makes the 

problem especially acute. 

    There exist some rather vague ideas on the part played by the factors 

of modern industrialized life in the development of the IHD (little 

physical activity, nervous-emotional stress, irrational diet, etc) and 

also by the possible influence of genetic factors. These ideas are 

certainly extremely important but we would like to have, in addition to 

general (but insufficiently clear and incompletely proven) ideas some 

amount of scientific (i. e. trustworthy) information. 

    That, perhaps not covering the entire problem, would provide a 

reliable foundation for some practical conclusions. Important is, for 
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example, the problem of the objectively established risk factors. To 

these belong, on the one hand, portents of an illness established by 

modern diagnostic means (e. g. changes in electro-cardiogram), on the 

other hand, factors of life and behaviour (age, smoking, amount of 

cholesterol in the blood, etc). Since the business concerns some 

precisely determined factors rather than vaguely understandable 

excessive tempo of modern life, a scientific investigation of their part is 

in principle not unlikely. 

    The possible ways of the development of the IHD are little known, 

so the statistical method of studying it is the main method. As usual, 

expectations here will be chiefly based on relying that a large amount 

of data will be able to compensate the deficiency of information about 

the essence of the phenomenon (in this case, of the IHD). And since 

that disease develops gradually, over many years, it is desirable that 

the investigation covers not only a large number of people, but a very 

long period of time as well (if possible, their whole life).  

    A single examination of a large number of people presents serious 

difficulties; and, taking into account that people usually move several 

times during their lifetime, you will understand that the real difficulties 

are great. It ought to be also borne in mind that the relative number of 

cases (of people finally developing the IHD) is rather small, so that the 

population to be examined mostly consists of non-cases (other people). 

Therefore, the loss of a non-case by the researcher is comparatively 

unimportant, but losing at least one case is extremely undesirable.  

However, if we allow the loss of people (for example, occasioned by 

the man’s move or refusal to come for the examination), we do not 

know whether it was a case or not and it should be attempted that the 

losses be as small as possible, so perhaps the greatest part of the entire 

effort is spent to attain that goal. 

    The examination covered practically the whole population of a 

small American town Framingham aged 30 – 62 years at its beginning. 

It is going on for more than 20 years and the cited source reports the 

results of the first twelve years. They are based on investigating 2187 

men and 2669 women not suffering initially from the IHD. Its 

development during those twelve years was revealed in 258 men 

(11.8%) and 129 women (4.8%); it was known long ago that women 

suffer from IHD more rarely than men. 

    The connection between the risk factors measured during the first 

examination and the probability of the development of the IHD during 

the 12 following years was considered. In general, it is possible to list 

rather many such factors, but only seven were taken account of:  

 

    1. Age (in years). 2. Content of cholesterol in the blood serum 

(mm/100 millilitre). 3. Systolic blood pressure (mm of mercury 

column). 4. Relative weight (weight expressed in per cents of man’s 

weight relative to mean weight for appropriate sex and stature). 5. 

Content of haemoglobin (g/100 millilitre). 6. Smoking (0, non-

smokers; 1, 2 and 3, smoking less than a packet daily, smoking a 

packet and more than a packet). 7. Electro-cardiogram (0, normal, 1, 

abnormal). 
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    Treating observations whose results depend on many factors is 

fraught with an absolutely general difficulty and overcoming it was 

possibly the main finding of the work done. The point is that the result 

of observation (in this case, the emergence of the IHD) is generally 

connected with the values of the risk factors in a barely understood 

way. When there are a few such factors, one or two, say, the data are 

usually divided into intervals according to their value; in the most 

simple case, into two, but this is very crude and it is better to have 

more.  

    If each factor is subdivided into several levels, all their 

combinations should be applied to form the appropriate groups 

providing the frequencies of the IHD being estimates of the 

probabilities. These will indeed adequately describe the data 

(somewhat roughly because the values of the risk factors are 

considered approximately).  

    For example, the contents of cholesterol can be considered on four 

levels [...], the values of the systolic blood pressure also on four levels 

[...]. We then arrange a two-dimensional classification [...] and obtain 

16 groups with the frequency of the emergence of the IHD calculated 

in each of them not for all 4856 observations, but for their number in 

the group which is 16 times smaller in the mean. Joining men and 

women together will likely be thought inadmissible so that the number 

of observations becomes about twice smaller. 

    In general, a modest number of observations of the order of a 

hundred (when having a great many total number of observations) will 

be left for each frequency. But what happens if we add three more 

groups of different ages? And four more according to the intensity of 

smoking? [..] As a result, we will obtain a classification with each 

group containing at best one observation and cases of no observations 

at all are not excluded. Consequently, we will be unable to determine 

any probabilities. [...] 

    The same difficulty occurs in many technical problems concerning 

the reliability of machinery established by several types of checks. 

Suppose that the results of the checks are  

 

    x1, ..., xk                                                                                (2.8) 

 

and we would like to derive the probability of failure-free work as a 

function p(x1, ..., xk). The attempt to achieve this by multivariate 

analysis will be senseless.  

    Let us see how this problem was solved in the Framingham 

investigation. As far as it is possible to judge, its solution had an 

indisputable part, but the other part was absolutely illogical. This does 

not mean that it is in essence wrong, but that it possibly needs some 

specification. The first part can be thus expounded. 

    When having to do with several variables, their only well studied 

function is the linear function; there exists an entire pertinent science, 

linear algebra, which also partly studies the function of the second 

degree. It would therefore be expedient to represent the unknown 

probability p(x1, ..., xk) by a linear function. This, however, is 

obviously impossible because probability changes from 0 to 1 whereas 
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a linear function is not restricted. We will therefore take a necessary 

step to further complication supposing that 

 

    p(x1, ..., xk) = f(a0 + a1x1 + ... + akxk) 

 

where f is a function of one variable changing from 0 to 1. 

    There still remains the problem of choosing f; many considerations 

of simplicity show that most convenient is the so-called logistic 

function  
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Finally, changing notation to bring it in correspondence with the cited 

work, we have the main hypothesis in the form 
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    This function is called the multidimensional logistic function. We 

have certainly not proved that the probability sought, p, must be 

expounded by (2.9), but arrived at that function without making any 

logical absurdities.  

    After formulating the main hypothesis (2.9) the parameters of that 

function ought to be estimated and it is here that the authors 

deliberately admit a logical contradiction. They suggest the model of a 

multidimensional normal distribution for the results of the examination 

(2.8). This is obviously impossible because two of the seven factors, 

NNo. 6 and 7, are measured in discrete units so that normality is 

formally impossible. Then, it is rather strange to suppose that age is 

normally distributed. In general, unlike the small illogicalities of 

choosing a statistical test when data are already available (§ 2.1), here 

we see a serious corruption of logic which can only be exonerated by 

the result obtained (cf. the proverb: Victors are not judged). 

    More precisely, the main hypothesis consisted in that there are two 

many-dimensional normal totalities, one consisting of the observations 

of the risk factors for those who were not taken ill during the next 12 

years, the second concerned those who were. A problem is formulated 

about the methods of distinguishing these totalities.  

    The classical supposition of the discriminant analysis states that the 

covariance matrices of both totalities are the same which leads (a 

rather remarkable fact!) to the expression (2.9) which we arrived at by 

considerations of simplicity. Nowadays this probability is understood 

as the posterior probability of being taken ill given that the 

observations provided values (2.8) of risk factors. This time, however, 

the authors also obtained a method of estimating the parameters of 

(2.9). It is illogical to the same extent as the supposition of normality. 

    Our own reasoning which first led us to the expression (2.9) would 

have led us to a quite another and more complicated in the 
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calculational sense method of estimation of those parameters, the 

method of maximal likelihood. It can also be realized and it is believed 

that, for the data given, both methods provide results very close to 

each other. It is interesting, however, to see what practical conclusions 

were made in the cited source. After estimating somehow the values of 

the parameters, we can apply formula (2.9) to find out the approximate 

value of the probability p̂  of developing the IHD for each examined 

person during the next 12 years.  

    The highest probabilities were observed for men of 30 – 39 and 40 – 

49 years (0.986 and 0.742 that the IHD developed) and 50 – 62 years 

(0.770 did not develop). For women the probabilities of developing the 

disease were 0.838 for ages 30 – 49 and 0.773 for ages 50 – 62 [that it 

did not develop?]. To a certain extent these results refute the classical 

saying which served as the title of this § 2.2. True, it should be borne 

in mind that formally these figures concern forecasting already 

happened events. Such a forecast of future events is only possible if 

the coefficients of function (2.9) are roughly the same in another place 

or time as those established by the authors. Such a supposition is 

probable but not yet verified. 

    Then, having arranged the set of values p̂  for each examined 

person, they can be subdivided into several equally numerous groups 

(of ten people, for example) such that those with the lowest values of 

p̂  are placed in the first of them, people having higher, still higher, ... 

values comprise the second, third, ... group. Had there been no 

connection between the considered linear combination of risk factors 

with the IHD, the number of cases of that disease in all groups would 

have been approximately the same, but actually the emerged picture is 

different in principle, see for example Table 3 borrowed from Truett et 

al (1967). The expected number of cases of the IHD was determined 

by summing up the probabilities p̂  of all people in the appropriate 

group. 

    In that table, we are surprised first of all by the great difference 

(amounting to a few dozen times) between the sickness rate in groups 

of high and low risk. Second, in spite of the obvious non-normality of 

the distributions, the results obtained by means of a normality model 

agree well with the actual data. The isolation of groups of people with 

a higher danger of developing the IHD is thus possible by issuing from 

the most simple clinical examination (providing the listed above risk 

factors). The same conclusion can be made when considering the data 

represented in separate age groups. 

    However, it should not be thought that those results are really 

suitable for individual forecasts. Those can only be successful for 

cases of very high or very low individual risk p̂  but for all the totality 

the result would have been bad. This is connected with the IHD 

occurring nevertheless rarely (11.8% in the mean for 12 years). 

Indeed, issuing from the values of p̂  we can only forecast the disease 

in people with a sufficiently high p̂  and the opposite for all the others.  

    When choosing the boundary of the group with the highest risk in 

Table 3 as the critical value of p̂ , a forecast of the disease would have 

been wrong in 100 – 37.5 = 62.5% of cases. And on the other hand 
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258 – 82 – 176 cases or 68.5% of all cases of the disease would have 

occurred in spite of our promise of the opposite. The problem of 

individual forecast is therefore far from being solved. 

    Let us now have a look at the estimates of the coefficients in 

formula (2.9) and at the possible conclusions. These estimates differ 

for different age groups and also for women and men. For the group of 

men of all ages the estimate α̂  = − 10.8986. Other estimates are shown 

in Table 4. It is seen there that the coefficients of two factors out of 

seven (relative weight and haemoglobin) comparatively little exceed 

their mean square errors in absolute value. They should be recognized 

as less influencing the IHD than the other five. One of those five, the 

age, can not be changed, and it is convenient to refer the action of the 

rest of them with the influence of age.  

    For example, a daily packet of cigarettes provides 2 points and the 

corresponding increment of the linear function is 0.7220 which 

approximately means 10 years of age. In other words, smoking a 

packet daily brings forward by ten years the occurrence of myocardial 

infraction. This figure remains approximately the same in the different 

age groups of men. For women, the harm of smoking is represented 

essentially weaker. It is not quite clear why, either the figures 

represent reality or the number of smoking women was small (1562 

women out of 2669 did not smoke at all, and only 301 used a packet 

daily) and the statistics was incomplete.  

    It is inconvenient to compare the influence of cholesterol and blood 

pressure with the action of age by means of Table 4. The point is that 

the coefficients of the linear combination of any dimensional 

magnitudes are also dimensional (whereas in our case, it is demanded 

that the linear combination be dimensionless). The comparison of the 

type we have applied leads, for example, to such a result as 7mg %
19

 of 

cholesterol is equivalent to a year of life. We know very well what is a 

year of life, but is 7mg % much or little?  

    For answering that question we ought to know how large are the 

fluctuations of the content of cholesterol. Or, that content be divided 

by its mean square deviation and thus expressed as a dimensionless 

magnitude. After accomplishing this procedure with all the risk 

factors, a comparison of their coefficients provides the following 

arrangement of the factors in a decreasing order of importance: age, 

cholesterol, smoking, blood pressure, abnormal electro-cardiogram. 

Weight and haemoglobin influence less. The somewhat conditional 

character of such norming that has only a statistical sense should be 

understandable.  

    A question such as the following naturally comes to mind: If, 

according to Table 4, 7mg % cholesterol is equivalent to the same 

number of years of life as 4.5mm of mercury column of blood 

pressure, then what is easier to decrease, the former by 7mg % or the 

latter by 4.5mm of mercury column? Or, the question is formulated 

about dimensionless magnitudes concerning the range of the scatter, 

but this is not the same. Concerning the comparative possibilities of 

influencing the cholesterol and blood pressure, we likely enter a 

scientific cul-de-sac: in all probability, those are quantitatively 

incomparable. In general, the dominant present style of reasoning 
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when formulating problems about optimal solutions concerning 

everything happening in life usually very soon leads to a cul-de-sac.  

    In addition, the cited investigation concerned a totality of men that 

was never attempted to be influenced by pharmacological means. And 

it is absolutely unclear whether its quantitative characterization will 

persist had it been otherwise. Most likely, not, and that any 

comparison of 7mm % cholesterol with 4.5mm mercury column of 

systolic blood pressure becomes senseless. 

    Thus, we can not at all attribute practical significance to the cited 

investigation of being able to indicate a desired way of influencing risk 

factors for preventing the IHD. In my opinion, that investigation has 

no purely applied medical significance at all. However, there exists a 

certain set of studies for which its role should be essential. I bear in 

mind the examination of various medicinal preparations. Statistical 

investigation is the only way to obtain trustworthy results about their 

efficacy.  

    In the most simple case two totalities of men are formed by random 

selection, one of them (the experimental group) is treated by a 

preparation, the other one (the control group) gets placebo, a harmless 

substance similar in appearance. Results are compared, and neither is it 

forbidden to compare them with general statistical information about 

the mean rate of the IHD in a city, country, etc. However, the so-called 

placebo effect is regrettably often revealed in modern cardiology.  

    It consists in that the results of both groups practically coincide 

whereas the mean results for a larger totality are much worse
20

. This 

can be rather likely explained: apart from medicines, the physician 

applies other means for helping patients like advising him/her about a 

rational way of life. During modern experiments, even the doctor does 

not know to which group does a given man belong. As a result, against 

the background of general treatment by a skilled physician, the effect 

of chemotherapy, if it exists, is absolutely imperceptible. On the other 

hand, the overwhelming majority of the population either does not 

visit physicians, or get treated by less skilled specialists, and the 

results are much worse
21

. 

    The placebo effect makes it impossible to judge the real benefit of 

pharmacological means. It can be supposed that the point is, that the 

frequency of the occurrence of the IHD is not so high. When 

considering the extreme case by supposing that some sickness rate is 

1% and that some preventing means lowers it to 0.5%, any reliable 

estimation of the efficacy of the preparation applied should be based 

on at least a thousand patients (on two thousand when counting the 

control group). And in that control group the number of people taken 

ill µ1 will obey the Poisson distribution with parameter 10, and in the 

experimental group, their number µ2 will obey the same distribution 

with parameter 5. The probability of a wrong result (µ2 ≥ µ1) will be, 

roughly, ( 5 / 15) ( 1.29) 0.10,Φ − = Φ − ≈  which is not so small
22

.  

    However, had we been able to select for the experiment a group of 

people with probability of being taken ill of 20%, then for the same 

twofold decrease of the sickness rate (down to 10% due to the action 

of the preparation) 100 patients will much better satisfy us.  
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    The Framingham investigation indeed indicates that in principle 

choosing people with a many times greater probability of being taken 

ill is possible by issuing from a simple medical examination. Note that 

we supposed that the relative efficacy of a preparation is the same for 

all the risk groups. If this premise seems unfounded, it was perhaps 

unreasonable to restrict the experiment by the group of highest risk. 

However, afterwards it is extremely necessary in any case to separate 

the examined patients into risk groups for checking whether anything 

is (more instructive than the placebo effect) will be found when groups 

of roughly the same risk are compared with each other. In other words, 

the results of the Fromingham investigation should become a 

constituent part of treating the results of examining (each or at least 

many) medical preparations. 

    The stated above method naturally applies not only to medical 

preparations but also to many technological means intended to 

heighten the reliability of the work of the machinery. 

    Because the Framingham experiment is so methodically important, 

the problem of its results being justified is raised. It seems that that 

study provides an example of obtaining important results as well as of 

a comprehensive discussion of possible doubts and objections by the 

authors themselves.  

    The authors published not only positive, but also some negative 

results. Thus, all the numerical estimates were based on 12 years of 

observing a certain population, but are they applicable to other 

populations? Or, to ask quite sharply, is not the observed arrangement 

into groups of different risks just an artefact connected with selecting a 

rather large number of parameters? It is indeed known that an 

arrangement of an already collected material according to a large 

number of indications can be done not badly, but that the obtained 

formulas quit being useful when new observations are added. 

    The authors attempted to apply the obtained expression for p̂  to 

isolate those totalities in which new cases of the IHD must occur (after 

the 12 years of observation). This experiment was quite successful for 

men aged 30 – 39 years and women aged 30 – 49 years: 8 new cases 

for men from a high risk group and 10 for women; 2 and 5 for those 

from groups of low risk. However, for other ages the experiment 

proved a real failure. The possible explanation is that for groups more 

advanced in age such a simple medical examination made more than 

12 years ago was not indicative at all.  

    As to the applicability of the concrete numerical values of the 

coefficients of the function (2.9), this question can only be solved 

experimentally. I do not know whether that was accomplished. Usual 

estimates based on the model of two normal totalities do not admit the 

possibility of an artefact.  

    Thus, when analyzing one-dimensional samples (§ 2.1), it was 

possible to be directly convinced in the correctness of the results 

simply by looking at the data represented in a form convenient for 

understanding. For a multivariate analysis such representation is 

impossible which seriously hampers statistical studies in many-

dimensional spaces. 
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    2.3. Periodogram for damping fluctuations. The publication of 

the two previous booklets afforded me the pleasure of a very 

remarkable acquaintance with Timofeev, professor at the generally 

known Leningrad Electro-Technical Institute. Vladimir Andreevich 

regrettably died 5 April 1975, but he left a few books (1960; 1973; 

1975) describing the now little known world of practically effective 

mathematical methods. In connection with the wide development of 

computer mathematics, which extremely broadened the scope of 

practically possible calculations, the attention to simple, in particular 

graphical methods of calculation weakened. For example, I have only 

come to know what is a Lille orthogon
23

 from Timofeev’s books (it is 

a graphical procedure for calculating the values of a polynomial also 

applicable for deriving the root [?]).  

    Of course, a computer can accomplish this incomparably faster, but 

in those cases in which the polynomial appears in a technical problem 

(and it is possible to influence its coefficients for selecting some 

suitable version) a graphical solution is preferable. At the same time 

many such methods are non-trivial inventions (similar to the invention 

of machines or mechanisms) almost impossible to hit upon by oneself. 

These inventions were being made over centuries, but now much less 

interest is regrettably shown for them.  

    Here also the metaphor comparing the progress of science with the 

development of a new territory (§ 1.3) comparatively accurately 

describes the picture: the demand for certain products fell, and the 

settlements existing on their manufacturing are abandoned. In science, 

like in other no less serious things, much depends on whims of 

fashion.  

    It is interesting to describe Timofeev’s opinion about the speculative 

(as I named it here) criticism of the theory of probability. It invariably 

states that we are unable to prove logically that the premises of the 

theory are feasible. Timofeev noted that in essence such reasoning 

always has the form of reduction ad absurdum, but that that method, 

widely used in mathematics, is not mathematical but judicial, was 

obligatory in courts of ancient Greece exactly at the time when 

geometry had been formed. Perhaps it came to mathematics from 

pleadings. 

    And now the periodogram. Periodic dependences should be isolated 

in a series of observations x0, x1, ..., xn (or, for the continuous case, in 

x(t), 0≤ t ≤ T). To achieve this aim, some method of comparing the 

observations with an ideally periodic function  

 

    e
iωt

 = cosωt + isinωt 

 

or with some other periodic function is applied. Most complicated is 

the determination of a latent period (or a few periods) in our 

observations.  

    In mathematical statistics there is a pertinent method consisting of 

calculating the expression 
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or, for discrete observations, 
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at many values of ω and determining one or a few maxima of IT(ω). 

Actually, however, as is possible to find in Timofeev’s book
24

, there 

exist a few other expressions differing from IT(ω) by the limits of 

integration (summation) and also by taking into account not only the 

modulus, but the argument of the complex magnitudes as well. 

    Various graphs are thus obtained whose behaviour at different ω 

allows to localize the possible periods contained in the observations. 

Strictly speaking, Timofeev’s considerations are not stochastic since a 

stochastic approach demands to apply the notion of an ensemble of 

imagined realizations of the observations (of which we see only one) 

and to make estimations based on these notions of the statistical 

significance of the isolated periods. This is possible if certain 

assumptions about the applied model describing the observations are 

made.  

   For example, it is very convenient if the model, in the discrete case, 

is of the kind 

 

    
1

sin(ω φ ) ξ
n

t k k k t

k

x a t
=

= + +∑                                                      (2.10) 

 

where ξ0, ξ1, ..., ξn are independent identically distributed random 

variables. In the continuous case such a model with independence of 

the values of noise ξ(t) at any no matter how close values of t (white 

noise) is less realistic. It is possible to provide a number of physical 

examples where model (2.10) is realistic. 

    The first example to come across I can mention, can be provided by 

the observations of the brightness of a variable star if measured not too 

frequently. The reasonableness of the use of the periodogram method 

and the possibility of certain estimates of significance in such cases is 

doubtless. However, in more complicated cases, in which we are 

unable to discuss a stochastic model of noise corrupting the process, 

stochastic statistical considerations with estimation of significance are 

impossible. 

    Basing myself chiefly on the application of the periodogram method 

to series in economics, I [ii] formulated a number of sceptical 

comments on the actually achieved success. It were these remarks that 

prompted the only scientifically doubtless objection mentioned above 

in the Introduction, and it came from Timofeev. He indicated a very 

interesting unexpected example of a practical application of 

periodograms. To repeat, in this case the study has no stochastic 

essence (isolation of some undeniable peaks on the periodogram 

whose significance is not needed to estimate). [The author describes 

that successful and important industrial case.] 
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Conclusion. Some Problems  

of the Current Development of the Theory of Probability 
    The examples provided in Chapter 2 were aimed at illustrating the 

idea that the problem concerning the boundaries of applicability of the 

theory of probability can not be solved speculatively, by logical 

justification (or by justifying the opposite). Neither does a single 

practical success scientifically assure us in the correctness of a 

theoretical concept. [...] 

    Only prolonged studies lasting many years (almost 20 years in the 

Framingham investigation (§ 2.2)) and even carried out by many 

generations of scientists (like the study of problems of heredity 

originated by Mendel) provide a reliable result. In a purely methodical 

sense such studies ensure complete possibility of experimental checks 

of many stochastic assumptions. In particular, checks of statistical 

homogeneity (for example, by non-parametric criteria for 

distinguishing two empirical distribution functions), of confidence 

intervals (recall my rejection of that interval for the mass of Jupiter in 

§ 1.1) and of much more. 

    And so, it is wrong that no experimental checks are threatening 

those premises (Alimov’s objection). However, if simply collecting the 

(statistical or not) ensemble of all the instances in which stochastic 

methods are applied, and find out in how many cases Alimov and I 

were in the right, then, as I fear, he would have collected an  

overwhelming majority of votes. I would have to take cover behind the 

argument that in science a numerical majority of votes might mean 

nothing.  

    All the circumstances concern one aspect of the problem, of what 

and under which conditions can theory give to practice. Let us try to 

think what, on the contrary, can practice give to theory. For 

mathematics, this is a venerable question and most extremely pertinent 

opinions had been voiced. I begin by quoting the opinion of the 

celebrated French mathematician Dieudonne (1966, p. 11; translated 

now from Russian): 

 

    In concluding, I would wish to stress how little does the most recent 

history exonerate the pious banalities of the soothsayers of a break-up 

who are regularly warning us about the pernicious consequences that 

mathematics will unavoidably attract to itself by abandoning 

applications to other sciences. I do not wish to say that a close contact 

with other fields such as theoretical physics is not beneficial for both 

sides. It is absolutely clear, however, that among all the astonishing 

achievements described, not a single one, possibly excepting the 

theory of distributions, is at all suitable for being applied in physics. 

Even in the theory of partial differential equations the emphasis is now 

much more on the internal and structural problems than on those 

having a direct physical significance.  

    Even if mathematics be cut off forcibly from all the other streams of 

human activity, it will still have food enough for centuries of thought 

about great problems which we still ought to solve in our own science.  
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    What objections can be made? First, since the problem concerns an 

interval of a few centuries of time, it will be advisable to turn to 

history and look whether there are examples of what is happening with 

some fields of intellectual activity the interest in which is preserved as 

long as that. An example of such an activity is the scholasticism of the 

Middle Ages. 

    Scholastics were clever and diligent. In any case, the volume of 

their contributions was of the same order as, say, those of Laplace (the 

amount of paper that a man can cover with writing during his lifetime 

likely little depends on the contents of the written). Universities and 

academies had been initially created for scholastics because of the 

importance of the moral and ethical applications of their work, actual 

or imagined. No one had expelled them from those institutions with a 

red-hot broom
25

, but it somehow happened all by itself that scientists, 

physicists, mathematicians, chemists etc., had occupied their places. 

Why did that occur? 

    I believe that the reason was that scholasticism had gradually 

withdrawn into its own business and quit to provide society solutions 

of moral problems essential for everyday life. For example, now, as in 

the Middle Ages, each solves for himself whether to marry or not. 

Scholastics naturally discussed that problem but their answers became 

long summaries of the diverse opinions of fathers of the church and 

ancient philosophers
26

. What then should have done a practically 

working clergyman when asked by his parishioner? 

    Such questions gradually occurred unbecoming to serious science 

and then it somehow happened all by itself that the society had begun 

to consider unbecoming scholasticism as a whole. This example 

compels us to think carefully what would have happened to 

mathematics had it been for centuries cut off from all the streams of 

activities. The action of the ensuing phenomenon would have been 

very simple: the number of young men wishing to devote themselves 

to mathematics would have gradually decreased since those other 

streams indeed play the most important part in attracting their interest.  

    However, finally it is possible to admit, and Dieudonne’s article 

convinces us, that there exists mathematics of different types; one is 

directed towards its own interests, the other one, towards applications. 

Both have a quite lawful right to exist because, for example, the 

Kolmogorov axiomatics of the theory of probability, necessary in a 

sense for applications as well, had emerged on the basis of the theory 

of functions of a real variable (obviously belonging to the first type). 

But then, to which type does the theory of probability belong? 

    The distinguishing feature of mathematics of the first type is its 

somewhat special elegance (presenting a comparative simplicity which 

makes it possible to perceive that quality). The theory of probability 

has rather many results of exactly that kind, mostly connected with the 

Kolmogorov axiomatics and resembling the theory of functions of a 

real variable. However, the main contents of that science having been 

formed at the time of Laplace
27

, developing after him and being 

elaborated nowadays is not, alas! beautiful at all. For example, limit 

theorems are usually rather decently formulated, but as a rule their 

proofs are helplessly long, difficult and entangled. Their sole raison 
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d’être consists in obtaining comparatively simple stochastic 

distributions possibly describing some real phenomena
28

. 

    Turning to reality always refreshes whereas severing the 

connections with it spells danger of a scholastic degeneration. 

Mathematics is wonderful, but at the hands of its separate 

representatives it can degenerate, for example into scholasticism. It is 

regrettably sufficiently easy to overstep the limits beyond which 

begins scholasticism. Internal problems strongly attract. A man always 

wishes to tidy his own home both because it is his home and because it 

is the easiest. So where is that dangerous limit overstepping which we 

will only be floor polishing in our own apartment without providing 

anything for the society? That limit is only well seen in a historical 

perspective, but at each moment it is extremely indefinite and 

unsteady.  

    In a strange way statistics can partly help here, this time assuming 

the aspect of science of science (Nalimov et al 1969). Rather recently a 

comparatively simple method was applied. It consisted of a formal 

study of the bibliographies appended to each scientific paper. The 

number of those interested in a given circle of problems can be 

roughly estimated by perceiving which groups of authors quote each 

other. Attempts to build up some system of administrative estimates by 

basing yourself on such studies will certainly cause all the authors to 

cite each other in a purely formal way; and it is practically impossible 

to distinguish whether references were essentially needed or included 

as a payback.  

    However, without any administrative pressure the study of 

references is a valuable and more or less objective method of science 

of science. And such analysis shows that in probability theory only 

very small (as compared, for example, with physics) groups of authors 

refer to each other. This means that the interest has narrowed which 

was largely caused by its unwieldy mathematical machinery and which 

is a typical sign of a scholastic degeneration. 

    Perhaps the simplest way to combat that danger is to turn to physical 

applications. Their seriousness was never doubted by anyone, and here 

the interest now concentrates in particular around the problems of 

statistical physics. Most wide and complicated mathematical arsenal 

able to satisfy various tastes is applied. Physical problems are also 

interesting in that very much can be done by mathematical means. 

    However, much more variable is the field of so to say purely 

statistical applications. In very many important matters a far reaching 

mathematical analysis is impossible, but if a vast statistical material 

can be available, it can compensate to a necessary extent the scarcity 

of theoretical ideas. In all such cases statistical treatment is one of the 

main means of study. Here, I provided examples of exactly that kind 

absolutely leaving aside the doubtless problem of physical 

applications.  

    In purely statistical problems the main part is played by some 

stochastic model of the phenomenon. In the simplest case the supposed 

kind of distributions of the observations (normal, exponential, 

Weibull, etc) can be understood as the model. In more complicated 

cases the model gets more complicated as well; the theories of 
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reliability and queuing are known to apply rather complicated 

analytical models. A certain disproportion in the current development 

of probability theory consists in that a rather large number of 

theoretical models (even analytically studied to a sufficient extent) is 

collected, but at the same time in many cases they were never 

practically compared with reality. Of course, a creation of a theoretical 

model marks a necessary initial period without which no such 

comparison, and no understanding of the actual data is at all possible. 

However, too often a study stops at that period. At the same time, each 

comparison with reality usually calls into being new models, that is, 

acts refreshing in that sense as well. 

 

Figures and Tables 

    I did not reproduce them. Fig. 1 − 3 and Tables 1 and 2 concerned 

the papers of Ermolaeva (1939) and Enin (1939). Tables 3 and 4 from 

§ 3.2 explained the Framingham experiment. Table 3 provided the 

expected and actual number of taken ill, in each expected interval of 

risk, separately for men and women. Table 4 showed the estimates of 

the coefficients of the factors of risk. 

 

Notes 
    1. See [i, Note 4]. O. S. 

    2. This was a feature of Soviet publications (perhaps of Russian papers even now). 

The late Professor Truesdell told me that he was unable to read them in translation 

(also because translations are usually quite formal. O. S. 

    3. Strangely enough, no editor is mentioned in the booklet. O. S. 

    4. A list is 24 pages typescript or 16 pages of published text. O. S. 

    5. No wonder Laplace was elected member of the French Academy (not to be 

confused with the Paris Academy whose member he also was) devoted to the study 

of the French language. O. S. 

    6. Some scientists (Chebyshev, Markov) did not have any superstructure. O. S. 

    7. The author referred (not in all necessary cases) to the text of the TAP as 

published in 1886. Instead, I provided references to its English translation 

(2005/2009). O. S. 

    8. This is my quotation from Laplace (2005/2009, p. 97) inserted instead of the 

author’s description. O. S. 

    9. There are mistakes. One of them, noticed by Pearson, concerned his model of 

births and deaths, see Sheynin (1976, p. 160). Then, he had been keeping to his own 

practically useless theory of errors and thus caused French authors to shun Gauss 

(Sheynin 1977, pp. 52 – 54). Laplace’s astonishing mistake (1796/1884, p. 504) was 

to state that the planets moved along elliptical paths not in accordance with Newton’s 

discovery, but because of small differences in densities and in temperatures of their 

various parts. O. S. 

    10. Concerning the precision of his estimate, Laplace (2005/2009, pp. 46 – 47) 

stated: after a century of new observations [...] examined in the same way [...]. See 

also Cournot (1843, § 137). O. S. 

    11. Once more, see [i, Note 4]. O. S. 

    12. See Note 10. O. S. 

    13. The classical set-theoretic axiomatization is thus called the first one. 

Gnedenko (1969, p. 118), in a brief survey of the history of this problem, named only 

one pertinent publication, Lomnicki (1923). O. S. 

    14. Concerning Ville see, for example, Shafer & Vovk (2001, pp. 48 – 50). The 

other reference is Postnikov (1960) O. S. 

    15. I have found this translation in Google with a reference to a commentator of 

Planck. O. S. 

    16. Surely Tolstoi knew about such most actively working scholars as for example 

Mendeleev or Chebyshev. O. S. 
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    17. The author had understandably chosen an ideologically safe cause. In 1959 

Kolmogorov (Sheynin 1998, p. 542) was much more specific. It was necessary, he 

stated, to express the desired optimal state of affairs in the national economy by a 

single indicator. Read: to abandon the Marxian socially necessary labour as 

indicator of cost and measure cost in monetary units. O. S. 

    18. This is an understandably mild expression. Actually, genetics was uprooted as 

decided beforehand by the party’s leadership, many scientists severely persecuted 

(Vavilov, the world renown scholar, died in prison) and even Kolmogorov’s paper 

(1940),see below, was considered dangerous. In 1950, Gnedenko (Sheynin 1998, p. 

545) mildly criticized it (undoubtedly after discussing the matter with him). In 1948, 

Fisher most strongly condemned Lyssenko (Ibidem, p, 544).  

    For the sake of comprehensiveness I add references to Lyssenko and Kolman, a 

high ranking party apparatchik who at the end of his life did not return from a visit to 

his sister in Sweden and then published a book with a telltale title. O. S. 

    19. This is hardly understandable. O. S. 

    20. What does this mean actually? O. S. 

    21. Is this really connected with the placebo effect? O. S. 

    22. No explanation provided. Notation Ф usually meant the distribution function 

of the normal law. O. S. 

    23. This is my attempt of translating that expression from Russian. I did not find it 

in any other language. O. S. 

    24. The author provided a wrong reference. O. S. 

    25. This was a beloved expression of the Soviet press applied in appropriate cases. 

O. S. 

    26. The initial aim of scholasticism was the study of Aristotelian philosophy but 

soon it turned to uniting philosophy and theology. Accordingly, the first universities 

consisted of three faculties devoted to theology, canon law and medicine so that 

scholasticism had indeed been avidly taught there. It was gradually excluded by the 

developing natural science although its structure proved useful for logic. One of its 

teaching was the so-called probabilism, see [i, Note 3]. 

    Rabelais, in his immortal Gargantua and Pantagruel, had left a vivid picture of 

the benefits of gaining useful knowledge (rather than repeating Aristotle or Thomas 

Aquinas). There also the problem of a possible marriage is shown to depend on 

circumstances. O. S. 

    27. Modern probability appeared in the 1930s when such notions as density had 

begun to be considered as mathematical entities. O. S. 

    28. See [iv, Note 2]. O. S. 
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Introduction 
   Both mathematicians and those who have been applying 

mathematics are often recently expressing their concern that in many 

instances mathematical models noticeably alienate from reality. As a 

consequence, the work of highly qualified specialists and valuable 

computer time is used with insufficient effect. Criticism, occasionally 

very sharp, of this situation is seen ever oftener in papers and 

monographs for specialists and in textbooks and popular scientific 

editions, see for example Blekhman et al (1976); Grekova (1976); 

Venikov (1978); Vysotsky (1979). It is indicative that a paper of D. 

Schwarz called On the pernicious influence of mathematics on science 

is didactically quoted in Venikov (1978).  

    In particular, models offered by mathematical statistics are often 

remote from reality. Tutubalin’s booklets [i − iii] are devoted to the 

conditions and boundaries of the applicability of stochastic methods, 

and much attention is shown to such problems in his textbook (1972). 

With respect to its restrictive direction, this booklet adjoins those 

publications. I stress at once that my contribution is not at all opposed 

to statistics as such. 

    I understand statistics as any calculation of means or other combined 

treatment of experimental data aiming at providing their predictable 

integral characteristics. It is assumed that these will be later measured 

for future similar experimental data so that the correctness of the 

statistical forecast will be actually checked. 

    I am not at all against the use of mathematics in statistics either; 

otherwise, the latter is simply unthinkable so that below I am treating 

mathematical statistics. Choose any pertinent treatise and you will be 

easily convinced that by no means any application of mathematics in 

statistics is understood as mathematical statistics. After attentively 

looking, it is seen that mathematical statistics is a very specific 

discipline possessing its own peculiar method whose distinctive 

feature is the conjecturing of exactly one storey of probabilities called 

confidence probabilities or levels of significance above those really 

measured in an experiment. It is possible to disagree with such a 

specific approach. 

    Mathematics can be applied in statistics in a manner somewhat 

different from what is prescribed by mathematical statistics.  

    In practice, the principles of statistically treating experimental data 

which are being applied for a long time now have nothing in common 

with confidence probability and are therefore alien to the foundation of 

mathematical statistics. We find for example that [a certain magnitude] 

is equal to 0.0011609 ± 0.000024. Here, only the maximal error of the 
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measurement is provided. Recently, physicists have sometimes begun 

to indicate instead the mean square error of measuring the last digits of 

the experimental result, usually in brackets; for example, the velocity 

of light in vacuum is [...]. Essential here is that unlike confidence 

probabilities of mathematical statistics, the maximal and the mean 

square error were actually measured. 

    For many years, mathematical statistics has been actively 

propagandized, but still perhaps even nowadays physicists will be 

unable to refrain from smiling had we told them, say, that after treating 

the observations of the velocity of light, c, according to the 

prescriptions of mathematical statistics, c is situated in such-and-such 

confidence interval with confidence probability P = 0.99 and within a 

more narrow interval with P = 0.95. 

    I also refer to physicists in the sequel. It was in physics that the 

basis of modern exact natural science had been laid, the largest amount 

of experience of complicated and subtle experimentation accumulated 

and a developed culture of a sound treatment of experimental data had 

been achieved. On the other hand, it was physics that provided the 

example of applying mathematical structures which is now often 

recognized not favourably enough for other fundamental and applied 

disciplines. I return to that problem at the end of my booklet. 

    Its main aim is to describe the principles of such a treatment of data 

that abstains from mentioning confidence probabilities. These 

principles had appeared even before mathematical statistics had; 

indeed, appeared at the same time as the first quantitative experimental 

results in natural science did. However, they were reflected in the 

theory of probability only much later during the process of the 

development of the approach connected with Mises. This approach has 

been vividly discussed for decades, see my papers and textbooks 

(1976, 1977, 1987b; 1978a; 1979).  

    The connection of that Mises approach with the principles and 

methods different from those of mathematical statistics is fundamental 

and the contents of this booklet is therefore largely reduced to a 

consistent although only understandably sketchy description of that 

approach. Such an exposition is still lacking in the literature easily 

read by a broad circle of readers.  

    I am concentrating on the problems of interpretation and practical 

application of stochastic notions. Unlike the solution of purely 

mathematical issues, any answers to such problems are always to a 

large extent arguable and the reader ought to take it into account. I am 

describing an approach noticeably different from that of the standard 

treatises and most works on probability theory and mathematical 

statistics and I repeat that my point of view is not at all new. Its 

extreme version is nicely expressed, for example, by Anscombe [1967, 

p. 3 note]: it is inadmissible to identify statistics with the grotesque 

phenomenon generally known as mathematical statistics.  

 

1. Introductory Remarks about Forecasting 
    The final aim of research in both fundamental and applied natural 

science is a reliable forecast of the results of future experiments. By 

experiment I mean not only investigative, reconnaissance trials, but 
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also the operations of various devices and systems. I also understand 

prediction as designing all kinds of instruments, devices, systems etc. 

You can say that a forecast as a demand of reproducing a published 

result was being accepted as a definition of the final aim and 

distinctive feature of natural science even at their birth.  

    That demand apparently includes the most essential distinction 

between natural science and magic. It should be regrettably stated that 

forecasting as the final aim of the theories of natural science has partly 

escaping the attention of even the scientists themselves. It seems that 

this circumstance causes the passion felt sometimes for such diffuse 

formulations of those goals of scientific research which are sometimes 

noticeable as explanation or revealing the essence of phenomena. 

    As an example I can cite the caustically indicated (Kitaigorodsky 

1978) tendency of chemists to explain a phenomenon with high 

precision by introducing after the event plenty adjusting parameters 

into formulas. A proper number of these can always achieve an ideal 

coincidence of the theoretical and the empirical curves, only not before 

the latter was experimentally obtained. 

    Kitaigorodsky (1978) offered a formula for quantitatively indicating 

the value P of a theory: P = (k/n) − 1. Here, k is the number of 

magnitudes which can be predicted by that theory, and n, the number 

of adjusting parameters. The value of a theory is therefore non-existent 

if k = n, and it is essential if k is much greater than n. The reader will 

be certainly justified to believe that this proposal is a joke, but of a 

kind that includes a large part of truth. 

    A somewhat exaggerated stress on the idea of forecasting noticeable 

in the newest discipline (Prognostika 1975/Prognostication 1978) is 

likely a reaction to the mentioned partial disregard of that fundamental 

idea. In this connection I indicate once more that in any concrete 

branch of natural science forecasting is not at all a novelty and that 

during many years a large and specific experience of forecasting had 

been acquired with a great deal of trouble. It is hardly possible to 

create some essentially new, general and at the same time substantial 

theory of forecasting. Meanwhile, however, a unification of 

terminology connected with forecasting can undoubtedly play some 

positive role. 

 

2. The Initial Concepts of the Applied Theory of Probability 
    2.1. Random variables and their moments. Denote the controlled 

conditions of trials by U, their result by V and the magnitude measured 

in trial s by X(s). The forecast of X(s + 1) given X(s) often fails. 

Permanence (forecast verified many times) is looked for by averaging 

and obtaining from initial unpredictable magnitude V1 = X(s)  

 

    E ( ) ( )m mV X X s= =  

 

where Em(X), in general also unpredictable, is the empirical mean of an 

unpredictable magnitude, of a random variable X(s). It is often stable: 

 

    Em(X) ≈ E(X)                                                                                (1) 
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which means that sooner or later the scatter of the values of Em(X) 

rather often appreciably diminishes. The author introduced the pattern of an 

extended series of trials. Bearing in mind his statements made in the sequel, it means 

that the behaviour of Em(X) is studied throughout the series rather than appreciated 

by the result of the last trial. This latter method is called the pattern of a fixed series. 

For a predictable permanence it is supposed that (1) persists when the series is 

extended and E(X) is the predictable rough estimate of the empirical mean. 

Expectation of a separate measurement is meaningless. 

    The author introduces moments but barely applies them. 

    2.2. Statistical stability. It is often alleged that homogeneity of 

trials leads to statistical stability. Only controlled conditions of trials 

are meant and therefore, on the contrary, statistical stability means that 

the trials were homogeneous. Statistical stability is best justified by 

empirical induction. Without stability E(X) does not exist.  

    Randomness (in the general sense) is identified with 

unpredictability. It became usual to understand random variables in the 

mathematical sense only as statistically stable unpredictable 

magnitudes, and even such for which the notion of distribution of 

probabilities is applicable.  

    This narrow specialized interpretation of random variable is still 

being willy-nilly confused with its wide general meaning and leads to 

a mistaken belief that the applied theory of probability and 

mathematical statistics are applicable to any random variable 

understood in the general sense, i. e., to unpredictable magnitudes. 

    On the other hand, the reader begins to believe that the 

mathematical propositions of the theory of probability somehow 

directly concern only such magnitudes. Actually, their unpredictability 

is not at all a necessary condition for applying to them the theory of 

probability. It is important that when measuring a magnitude many 

times it indicates statistical stability. An artificial introduction of 

unpredictability in an experiment by the so-called randomization as 

also in some calculations by the Monte Carlo method can be thought to 

mean an excessively brave challenge to the natural scientific tradition
1
.  

    2.3. Probability of an event. An event A is random in both senses if XA(s) 

is random. Stability of frequency is established by empirical induction according to 

the pattern of an extended series. If frequency is stable, E(X), the probability of an 

event, is its predictable rough estimate. If the behaviour of the series is not studied, 

and the probability only determined by its outcome, the statistical stability is not 

investigated.  

    Statistical probability is not applicable to individual trials. For estimating the 

probability of a rare event of the order of 10
−4

, sometimes encountered in the 

reliability theory, 10
5
 measurements are required. 

    2.4. Distribution of probabilities. It is measured for a series of an 

increasing number of trials. If the empirical distributions are stabilized, F(X) is 

determined. This is empirical induction for the pattern of an extended series. Lack of 

stability of the empirical distributions means that the notion of F(X) is not applicable. 

Often recommended is the measurement of those Fm(X) because their stability is 

more noticeable, rather than the histograms, but this is akin to stating that an 

insensitive device is better than a sensitive histogram (indicating a greater scatter, a 

lack of stability). 
    2.5. Statistical independence. Lack of correlation. A necessary 

and sufficient condition of independence is 

 

    F(X1, X2, ..., Xn) = F1(X1) F2(X2) ... Fn(Xn).  
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    It does not exist always even if the pertinent magnitudes are 

intuitively independent. Statistical independence can only be discussed 

with complete justification after establishing statistical stability.  

Independence of a separate measurement is meaningless. Non-correlation 

of pairs of magnitudes X1(s), ..., Xn(s) means that E(Xi, Xj) = 0 for i, j = 1, ..., n and i 

≠ j. 

    2.6. The main problem of the applied theory of probability. After 

heuristically forecasting the initial magnitude V, to predict theoretically some 

secondary magnitude, their functions. Forecasting the initial magnitudes is always 

intuitive. 
    2.7. Limit theorems of the theory of probability. For the central limit 

theorem (CLT) magnitudes X1(s), ..., Xn(s) are considered statistically independent 

for any n and their scatter around their expectations is supposed to be roughly the 

same. For the law of large numbers (LLN) the second demand is dropped and the 

first one weakened so that variance can be even replaced by non-correlation. The 

CLT is practically admitted if the LLN takes place intuitively.  

Quantitative estimates during the proof of the laws of large numbers 

are only possible by means of the [Bienaymé −] Chebyshev inequality 

but they are rough and inexpedient as compared with the CLT. In the 

initial period of the development of the probability theory the 

fundamental importance of limit theorems had been essentially 

exaggerated which is not completely done away with even now
2
. Thus, 

sometimes statements are made asserting that statistical stability is due 

to the LLN.  

    2.8. The Mises approach. His initial concepts are extremely close to being 

experimental. Instead of stability of the empirical mean he postulates the existence of 

 

    E(X) = lim Em(X), m → ∞.  

 

The pattern of an extended series is meant here. Particular cases are the definition of 

probability as the limit of frequency and of F(X) being the limit of Fm(X). The 

convergence can be understood in different ways.  

    Randomness (that is, unpredictability) does not enter directly, the 

whole arsenal of tools is typically mathematical. In similar ways, 

mathematicians discuss derivatives and integrals rather than velocities 

or specific heat. Transitions to the limit are only the means (or 

necessary! expenses) of a rigorous formalization
3
. The Mises approach 

provides civil rights in the theory of probability for the known 

empirical patterns of treating data dating back to the very foundations 

of the natural scientific method with its demand of repeated 

reproduction of results.  

    The main feature of the Mises approach consists in dealing with 

everything as though considering an experiment. Not surprisingly, 

expectation is introduced in applications according to his postulate 

often without citing Mises.  

    2.9. Comparison with the Kolmogorov axiomatization. The 

Mises approach most likely can not be included within the boundaries 

of this axiomatization. The main theoretical problem apparently 

consists in discovering existence theorems for number sequences 

converging to the given beforehand distribution function. This 

problem is still only solved for weak convergence (Postnikov 1960). 

The Mises approach should be specially developed by number-

theoretic methods unusual for the Kolmogorov axiomatics.  
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    The foundations of the Mises approach can be quite rigorously 

formed as a clear set of axioms. Contrasting it to the axiomatic method 

is wholly based on a misunderstanding.  

    2.10. Conclusion. Unpredictability of repeatedly measured initial 

magnitudes is neither necessary, nor sufficient for enlisting the theory 

of probability since it does not ensure the initial statistical stability, i. 

e. the stability of the averaged characteristics of the initial magnitudes, 

which is the really necessary pertinent condition. Independence of 

trials is often presumed, but see § 2.5.  

    I did not have an occasion to enlist officially the notion of 

independence of trials. The introduction of controlled conditions U 

into quantitative notions, formulas or propositions of the theory of 

probability however constructed apparently can not be even hoped for. 

The introduction of the concept of independence of trials is not 

required by the notions of statistical stability and statistical 

independence of magnitudes. On the contrary, it should be based on 

these notions. 

 

3. Critical Analysis of the Method of Mathematical Statistics 
    According to one of the usual definitions (Nikitina et al 1972), 

mathematical statistics studies quantitative relations of mass 

phenomena [...] It is closely linked with the theory of probability. [...] 

Its methods are universal
4
.  

 

    3.1. An alternative to the general purpose of mathematical 
statistics. All treatises state that that purpose is to provide a universal 

numerical theory of measuring averaged characteristics; to find out 

whether a given sample is representative.  

    The possibility of constructing such a theory is doubtful since the 

precision and reliability of the initial presumptions can hardly be 

calculated or justified. Those presumptions are intuitive forecasts of 

some permanences. When adopting them, the alternative is to abstain 

as much as possible from theoretical considerations, to substantiate 

their likelihood of forecasts by empirical induction. We will discuss 

how to verify experimentally the typical pronouncements made by 

mathematical statistics. 

    3.2. Traditional interpretation of limit theorems. [Only the Bernoulli 

theorem is discussed.] It only deals with one series of observations and 

applies two fundamental notions of mathematical statistics, 

independence of trials and convergence in probability.  

    3.3. Independence of trials. Contrary to what is sometimes 

asserted, stability of the controlled conditions of the experiments is not 

sufficient and the conditions U can not at all quantitatively enter the 

theory of probability. It is less superficially stated that each trial 

engenders a random variable so that the independence of the n trials is 

reduced to the statistical independence of the n variables.  

    However, a trial (a measurement of X) only engenders a realization 

of a random variable, the number X(s). Mathematical statistics has no 

clear rules for empirically verifying independence of trials, for 

discussing an ensemble of such series. The correspondence n trials – n 

random variables means imagining an ensemble of random variables. 
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Such imagining is a peculiar feature of mathematical statistics, and 

there are no clear rules for empirically verifying the results of the 

trials. 

    3.4. Convergence in probability. For experimentally checking it
5
 a 

long series of secondary trials is required and many samples of size n 

are needed. The author calls forming many samples the pattern of many series, 

and the patterns of an extended and a fixed series are now both called the pattern of 

one (extended or fixed) series. In mathematical statistics, an ensemble of 

sequences of trials is only imagined. 

    3.5. Two competing mathematical models of statistical stability. 
Thus, the traditional formulation of the limit theorems lack clear rules 

for verifying either the conditions, or conclusions. This is the reason 

that had formerly engendered an illusion, not completely dissociated 

from, that the laws of large numbers theoretically deduce stability of 

means from homogeneity of trials. In particular, it followed that 

mathematical statistics identifies statistical stability with convergence 

in probability as studied in the laws of large numbers. The Mises 

model of stability P = lim ω, n → ∞, is not usually mentioned. The 

author quotes Kolmogorov’s pertinent remark (1956, p. 262):  

 

    Such considerations can be repeated an unrestricted number of 

times, but it is quite understandable that it will not completely free us 

from the necessity of turning during the last stage to probabilities in 

the primitive, rough understanding of that term
6
. 

 

    To put it otherwise, there is no other way out except turning to the 

pattern of one series, i. e. to the Mises model of stability of 

frequencies. If you wish, the Mises definition of probability is exactly 

the turn to probabilities in the primitive rough understanding of that 

term. According to common sense, the turn to the last stage should be 

done in such a manner that the probabilities of the highest rank 

included in the mathematical model of the given experiments were 

indeed actually measured in that experiment. It is apparently difficult 

to warrant the imagination of probabilities of even one superfluous 

rank. Nevertheless, such imagination is one of the fundamentals of the 

method of mathematical statistics.  

    3.6.1. Postulate of the existence of a distribution of probabilities 
for the initial random variables. All the considerations in 

mathematical statistics usually begin by postulating the existence, and 

sometimes even the concrete type of the distribution of probabilities 

for unpredictable magnitudes, then the estimation of density or 

parameters of the objectively existing distribution is demanded. The 

Fisherian theory of estimation is constructed according to this pattern 

as also the method of maximal likelihood, the theories of confidence 

intervals, of order statistics etc
7
. An alternative (see Chapter 2) is to 

concentrate on empirical justification of predictions of statistical 

stability.  

    The most difficult and interesting problem of empirically 

investigating statistical stability is rapidly sped by. Here is Grekova’s 

critical remark (1976, p. 111) about calculating a confidence interval 

when the number of trials is small: 
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    A rather subtle arsenal is developed based on the assumption that 

we know the distribution of probabilities of the random variable (the 

normal law). And once more the question emerges: wherefrom indeed 

do we know it? And how precisely? And, finally, what is the practical 

value of the product itself, of the confidence interval? A small number 

of trials means small amount of information, and things are bad for us. 

But, whether the confidence interval will be somewhat longer or 

shorter, is not so important the less so since the confidence probability 

was assigned arbitrarily. 

 

    From my viewpoint, this remark is still a rather mild doubt. We may 

add: Wherefrom and how precisely do we know that, given this 

concrete situation, it is proper at all to discuss distributions of 

probabilities? Suppose, however, that the distribution of probabilities 

of the unpredictable magnitudes under discussion does exist. But then 

(Grekova 1976), it is not necessary to think highly of the theory of 

estimation. Indeed, this theory allows us to extract the maximal 

amount of information not from sample data in general; the postulate 

on the type of distribution of probabilities is also introduced. It only 

represents reality with some precision at whose empirical estimation 

the estimation theory is not at all aimed.  

    And the theory’s conclusions and it itself, generally speaking, 

changes with the change of that distribution. It would have been 

necessary to calculate the vagueness of the sought estimates of the 

parameters caused by the expected vagueness of the postulated 

distribution. Then, the estimation theory extracts the maximal amount 

of information according to some specific criteria whose practical 

value is not doubtless. Finally, that theory is based on the postulate of 

independent trials with which, as we saw, not everything was in order. 

It ought to be stated that the treatises on mathematical statistics do not 

miss the opportunity to identify the treatment of observations, that 

really not at all simple discipline, with the scientific approach in 

statistics. Here is Grekova (1976, p. 112) once more: 

 

    Mathematical arsenals have some hypnotic property and 

researchers are often apt to believe unquestionably their calculations, 

and the more so the more flowery are their tools [...]. 

 

    In any applied science, a scientific approach presumes first of all a 

creation of an intuitively convincing empirical foundation. The 

complication, rigour and cost of the mathematical arsenal should be 

coordinated with the reliability of the foundation. This pragmatic rule 

applied from long ago is neatly called principle of equal stability of all 

the elements of an [applied − Yu. A.] investigation (Grekova 1976, p. 

111). The theory of estimation hardly satisfies it in due measure. 

    3.6.2. Postulate on the existence of a distribution of probabilities 
for sample estimates. Imagining many additional samples. The 

existence and sometimes even the type of that distribution is 

postulated. Suppose that an experiment according to the pattern of 

many series is carried out. We may only repeat what was said in § 

3.6.1 concerning the distributions of the initial random variables. 
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Actually, however, only the parameter of the distribution is studied. Its 

estimate is usually found by treating all the data as a single entity. In 

mathematical statistics, this procedure is accompanied by imagining 

many additional samples, presuming the postulate of § 3.6.1 and 

independence of the trials.  

    The alternative is to discuss, as far as possible, only random 

variables really measured in long series of trials and to keep to the 

pattern of one extended series. When several series are available, the 

method of maximal likelihood will provide several optimal estimates, 

so which is the most optimal? Not less strange will be the concept of 

confidence interval. 

    3.6.3. Postulate on independence of trials. For mathematical 

statistics, it occupies in some sense a central position because it links 

the postulates of §§ 3.6.1 and 3.6.2. However, it is hardly elementary, 

see Chapter 4. 

    3.7. The choice of a threshold for discerning. In its very essence it 

is intuitive and unavoidable for verifying and comparing various 

statistical hypotheses with each other. Mathematical statistics can not 

naturally avoid it, but only shifts the choice to magnitudes not being 

measured in reality. No special benefit is seen in that procedure. 

    3.8. The problem of representativeness of samples. To all 

appearances, this should be frankly attributed to a problem non-formal 

in its very essence, to the choice of the initial intuitive assumptions. 

An alternative can be to separate the trials into several subsamples and 

only forecast rough averaged characteristics. The size of the 

subsamples and the threshold for discerning should be chosen 

according to precedents in a candid intuitive way in terms of measured 

magnitudes. Such an empirical intuitive approach embodies the 

fundamental principle of natural science, the demand of multiple 

repetition of experiments and a convincing reproduction of their 

results. See Alimov (1976, 1977, 1978b; 1978a; 1979). 

 

4. The Mises Formalizations of the Idea of Independent Trials 
    In § 3.3 we concluded that a clear rule is required for transition from 

one initial sequence of trials to an ensemble of statistically 

independent sequences. That rule should somehow reflect intuitive 

ideas about independence of trials. We may accept Mises’ general idea 

to consider the trials independent if their sequence is very irregular and 

difficult to forecast. He called such sequences irregular collectives.  

    From the 1920s many authors (Wald, Feller, Church, Reichenbach) 

had developed various versions of formalizing the concept of such 

collectives. Kolmogorov’s algorithmic notion of probability of 1963
8
 

also bears relation to this problem although it is apparently only 

indirectly linked with the idea of forecasting. See the pertinent initial 

bibliography, for example, in Knut (1977, vol. 2, chapter 3). 

    4.1. Formalization according to Ville [e. g., Shafer & Vovk 2001, 

pp. 48 – 50] and Postnikov (1960). 

    4.2. Formalization according to Copeland. Postnikov (1960) 

proved that a sequence is irregular in Copeland’s sense if and only if it 

is irregular according to Ville and Postnikov. 
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    4.3. General remarks on §§ 4.1 and 4.2. A sequence irregular 

according to §§ 4.1 or 4.2 presents a simplest example of an intuitive 

and rigorous mathematical model of trials which can be called 

independent and identical (identical since the distributions of the 

probabilities for all the formed sequences coincide). The idea of a poor 

predictability of one initial sequence is here indeed reduced rather 

naturally to demanding statistical independence of the ensemble of 

sequences. As a result, independence of trials is treated in such a 

manner that provides a sufficiently clear rule for its quantitative 

empirical verification. 

    Thus, after being clearly formulated, independence of trials 

obviously becomes a concept derived from the notion of statistical 

stability, cf. our assumption in § 2.10. It follows that the postulate of § 

3.6.3 even in its most simple clear form is evidently more complex 

than the postulates of §§ 3.6.1 and 3.6.2. It can not be the assumption 

from which, at least according to the pattern of one series, statistical 

stability is deduced. 

    The verification of any propositions of mathematical statistics will 

be therefore aimed at verifying the postulate of § 3.6.3 rather than at 

measuring the sought parameters of the distributions of the initial 

magnitudes. This measurement, for which, as it seems, mathematical 

statistics is indeed created, will only constitute a small and so to say 

preliminary part of the work to be done. 

    The formulations of the idea of independence of trials considered 

above are obviously only applicable when the n trials are actually 

carried out many times. The alternative to the method of mathematical 

statistics therefore means that the postulate of § 3.6.3 should be 

introduced only after the sought parameters or the initial distribution 

itself were reliably measured. 

    4.4. Specification of the traditional formulations of the limit 

theorems on the basis of the concept of an irregular collective. The 

author interprets the Bernoulli theorem by applying the notion of irregularity of 

collectives. One of the conditions of his pertinent theorem is the existence of a limit 

of the sequence of trials, the probability according to Mises. 

    He notes that his (and therefore the Bernoulli) theorem does not claim to justify 

the statistical stability of the frequency which is now one of his preconditions. He 

concludes that the limit theorems (in general!) are not actually fundamental 

propositions as it was thought in the initial period of the development of the theory 

of probability.  
    4.5. An example from classical statistical physics. [Concerning the 

work of an oscillator being in thermal equilibrium with a thermostat.] 
 

5. Conclusion 
    An alternative to the method of mathematical statistics can be 

described in a few words in the following way. In applied research, 

and more precisely beyond fundamental physics, we should as far as 

possible abstain from introducing stochastic magnitudes not measured 

in real experiments in our initial assumptions. The so-called numerical 

experiments compare a computer and a paper model but not model 

and reality. 

    The objects of study in economics, sociology and even modern 

technology are most often too complicated and unstable for 

constructing their useful models by issuing from general principles 
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peculiar for the foundations of physics but remote from experiment. 

Advisable here are efficient phenomenal models without special 

claims to fundamentalism. According to the principle of equal stability 

of all the elements of an applied investigation, introduction of 

complicated mathematics should be considered guardedly. I conclude 

by quoting Wiener (1966 from Russian), hardly an opponent of 

mathematization: 

 

    Advancement of mathematical physics caused sociologists to be 

jealous of the power of its methods but was hardly accompanied by 

their distinct understanding of the intellectual sources of that power. 

[...] Some backward nations borrowed Western clothes and 

parliamentary forms lacking personality and national distinctive 

marks, vaguely believing as though these magic garments and 

ceremonies will at once bring them nearer to modern culture and 

technology, − so also economists began to dress their very inexact 

ideas in rigorous formulas of integral and differential calculuses. [...] 

However difficult is the selection of reliable data in physics, it is much 

more difficult to collect vast economic or sociological information 

consisting of numerous series of homogeneous data. [...] Under these 

circumstances, it is hopeless to secure too precise definitions of 

magnitudes brought into play. To attribute to such magnitudes, 

indeterminate in their very essence, some special precision is useless. 

Whatever is the excuse, application of precise formulas to these too 

freely determined magnitudes is nothing but a deception, a vain waste 

of time. 

 

Notes 
    1. Both randomization and the Monte Carlo method are mentioned by Prokhorov 

(1999) and Dodge (2003). Tutubalin, who had sided with Alimov, later applied the 

Monte Carlo method in a joint contribution (Tutubalin et al 2009, p. 189). O. S. 

    2. Concerning the theory of probability the author was likely wrong, see Tutubalin 

[i, § 4.2], who [i, § 4.5] also remarked that for natural science the significance of the 

LLN only consisted in reflecting the experimental fact of the stability of the mean.  

The author’s next sentence had to do with the application of the LLN to statistics, but 

he only stated what that theorem did not achieve. 

    Concerning the CLT I quote Kolmogorov (1956, p. 269): Even now, it is difficult 

to overestimate [its] importance. O. S. 

    3. In spite of numerous efforts made, the Mises approach remains actually 

questionable, see end of [vi]. O. S. 

    4. It is worthwhile to quote another definition (Kolmogorov & Prokhorov 

1974/1977, p. 721):  

 

    [Mathematical statistics is] the branch of mathematics devoted to the 

mathematical methods for the systematization, analysis and use of statistical data for 

the drawing of scientific and practical inferences. O. S. 

 

    5. See the Introduction to [v]. O. S. 

    6. I illustrate principal and secondary magnitudes (§ 2.6) by Kolmogorov’s 

reasoning. Frequency µ/n tends to probability p, and the probability P(|µ/n − p| < ε) is 

a secondary magnitude which in turn should be measured as well. O. S. 

    7. This statement is not altogether correct. See Wilks (1962, Chapter 11) and 

Walsh (1962) who discuss non-parametric estimation and order statistics 

respectively. O. S. 

    8. Perhaps Kolmogorov (1963). O. S. 
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V 
 

V. N. Tutubalin 

 

Answering Alimov’s Critical Comments  

on Applying the Theory of Probability 
 

Otvet na kriticheskie zamechania Yu. I. Alimova  

v sviazi s problemami prilozenia teorii veroiatnostei.  

Avtomatika, No. 5, vol. 8, 1978, pp. 88 – 91 

 

Introduction by the Translator: The Main Ideas of Alimov (1978) 
    Page 71. The  stability of the initial means is a postulate whose 

likelihood should be experimentally justified. 

    Page 73. The LLN was, and sometimes still is considered a bridge 

connecting the theory of probability with practice. According to the 

context (p. 72), the author denies this statement because statistical 

stability of the trials had to be proved. 

    Page 73. The proximity of the empirical frequency to the initial 

probability should be estimated by measurement. 

    Page 74. Not practice is following Mises as Tutubalin remarked, but 

rather the inverse had happened. 

    Page 75. The significance of the LLN and other limit theorems in 

statistics is reduced to solving an ordinary problem. 

    Page 76. An explanation of the independence of trials is not 

fundamentally important for the Mises approach. Statistical 

independence can be revealed by most various sequences of trials 

including periodic sequences. 

    Page 77. For applications, the transition of the empirical frequency 

to probability is an undistinguished expense of a rigorous 

formalization rather than any essential feature of the Mises approach.  

    Page 77. Without due substantiation but in agreement with the 

former pronouncement the author alleges that the so-called strong 

laws of large numbers are very remote from the theory of probability.  

  

[The main text] 
    Alimov (1978) critically commented on some of my publications 

and his paper is the only one that I know to publish a response to my 

methodical and popular scientific works. Since discussions, including 

those carried out in public, are most necessary for the development of 

science and teaching, the initiative of the periodical Avtomatika as well 

as the serious (as will be seen below) work of Alimov only due to 

which that discussion became possible should be appreciated very 

positively.  

    Alimov is well known because of a number of his publications, 

mostly of a critical kind, on the application of the probability theory. I 

think that the general aim of his contributions differ but little from 

mine. We both apparently agree that the amount of falsehoods arrived 

at by applying the theory of probability is too great to be tolerated. In a 

historical perspective, my statement made publicly is all by itself a 

quite effective means of combating that evil. And indeed intrinsic 
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processes are now going on in the society due to which the part played 

by moral elements sharply increases. It is this circumstance to which I 

and Alimov are beholden for some not excessive popularity of our 

publications; otherwise they would just have not been popular. 

    Thus, connecting the problem of the truth of scientific work in the 

first place with the level of social morals, I consider the possibility of 

solving that problem by purely scientific means rather sceptically, for 

example by describing the theory of probability according to Mises 

rather than by the generally recognized Kolmogorov axiomatics. I do 

not mention the idea of official censuring voiced by Alimov (1978, p. 

82). That would have been only really helpful if those responsible will 

be at the same time as though automatically endowed with the truth or 

at least with a tendency to it. 

    Incidentally, I would like to turn Alimov’s attention to a 

circumstance which I myself previously experienced, that apparently 

any attempt to retell or cite the viewpoint of other people introduces 

unavoidable corruption. Thus, Alimov (1978, p. 74) says: When 

comparing the Mises approach with a dead language, Tutubalin 

nevertheless notes ... 

Actually, I (1972, p. 148) wrote: 

 

    In general, the present attitude of specialists towards the language 

of the Mises theory can be compared with the attitude towards a dead 

language in which for some reason no one wishes to speak although, 

after being appropriately corrected and altered, it will be quite 

capable of expressing everything spoken in a live language. 

 

Thus, after Alimov quite properly but [too] briefly arranged my 

viewpoint, my friendly attitude towards probability theory according 

to Mises absolutely disappeared and became replaced by disdain. 

    This example taken together with my general opinion about the 

corruptions of such a kind being practically unavoidable, sufficiently 

explains why I do not reply in detail to each point of Alimov’s 

criticism. Concerning general pronouncements, all is reduced to 

selecting some shade of conception. For example, if Alimov [p. 75] 

thinks that the law of large numbers is a limit theorem suited for 

solving an ordinary modest problem of probability theory unconnected 

with the principles of its applicability, then let him be in the right.  

    However, it is much more interesting to turn to concrete examples 

of application of the theory because they are always richer. For 

example, prominent physicists who had been creating that science 

usually philosophically interpreted it themselves without needing 

philosophers. Not that I deny the social utility of philosophers, but 

their customers are not leading scientists but the multitude of those 

who do not (yet) occupy leading places in science. 

    Alimov’s main merit as a critic, as it seems to me, is that he 

considered concrete numerical data. I bear in mind the experimental 

verification of the most simple Mendelian law of assortment of 

indications in the ratio 3:1. The data was provided by Ermolaeva 

(1939), a representative of the Lyssenko school, and Enin (1939), its 

opponent. Kolmogorov (1940) published a detailed analysis of 
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Ermolaeva’s results and concluded that, instead of refuting the 

Mendelian law, she completely confirmed it. There also, without 

minutely analysing Enin’s paper, Kolmogorov implied that his results 

are doubtful because they confirmed that law too finely.  

    In a popular scientific booklet, I [iii] thought it expedient to remind 

readers about Kolmogorov’s paper and supplemented it by treating 

Enin’s results. Alimov treated the same data otherwise and formulated 

a number of objections. He directed them to me alone although a part 

of them to the same extent concerned Kolmogorov’s calculations. I 

begin with the objection which I understand and consider essential.  

    He notes that in many cases the families considered by Ermolaeva 

were small (not more than 10 observations). Then the normal 

approximation of the frequencies of a certain phenotype introduced by 

Kolmogorov ought to be very rough. In particular, the presence of 

normed frequencies smaller than − 3 which I [iii] considered as 

significant deviations from the Mendelian law can be explained. as 

Alimov believes, by the asymmetry of the binomial law. Alimov 

declared that my conclusion was wrong (that was somewhat hastily, he 

should have said unjustified). Any student of a technical institute, as he 

states, would have avoided such a mistake caused by the general 

corruption of concepts due to the application of the non-Mises 

language and the rituals of mathematical statistics. 

    Actually, everything is much simpler. Before preparing my booklet, 

I did not acquaint myself with Ermolaeva’s paper which was not 

readily available. Now, however, since her data became an object of 

discussion, I had a look at that source. The data on the assortment in 

separate families are provided there in Tables 4 and 6. In Table 4 the 

families are numbered from 1 to 100, but for some unknown reason 

numbers 50 and 87 are omitted. In Table 6, the numbering begins with 

22 and continues until 148, but numbers 92, 95, 115, 127, 144 are 

absent. At the same time, the table showing the total, states 100 and 

127 families respectively. 

    Kolmogorov inserted a venomous pertinent remark; he counted 98 

families in the first, and 123 (actually, 122) in the second table. The 

general style of her contribution, let me say it frankly, is abominable. 

The author obviously does not understand the meaning of the errors 

calculated by biometric methods for the number of assortments. It is 

quite clear that her data do not really deserve to be seriously 

considered. 

    However, if only discussing Ermolaeva’s tables such that they are, 

Alimov is still unjustly reproaching me for discovering non-existent 

deviations from the Mendelian law. Indeed, Table 4 includes a result 

of assortment 0:17, and 0:10 in Table 6 instead of the expected ratio 

3:1. Their probabilities are 4
−17

 and 4
−10

 respectively so that, having 

200 plus trials, such events could not have occurred.  

    Concerning both Kolmogorov’s and  my own treatment, I would 

like to indicate that, in spite of Alimov’ opinion, correct scientific 

results are possibly often obtained not because we do everything 

properly, but owing to some special luck.  

    I did not understand the meaning of Alimov’s objection to the 

calculation of the confidence level. From the times of Laplace, after 



 137 

obtaining a deviation from the theory assumed to be valid, scientists 

have been attempting to calculate, if possible, the probability of a 

deviation not less than that. If that probability was high, 1/2, say, 

everything was in order; otherwise, supposing that its order was 

1/1000, it was advisable to look for the cause of the deviation. If, 

finally, it was moderate, its order being 1/10, say, the case was 

doubtful and a final decision impossible. Can we object to such kind of 

applying the confidence level? 

    I do not understand Alimov’s concept of independence either. On p. 

80 he thinks that secondary trials, that is, data on the assortment of 

indications in different families, unconnected with each other, can be 

statistically dependent. But how could that occur with the outcomes of 

different trials unconnected with each other? If as a result of one trial 

events A and B can either happen or fail, they can be statistically 

dependent and, when treating this dependence according to Mises, we 

should use a single record. But in case of two absolutely different trials 

we should apparently introduce something like a direct product of two 

records. 

    Finally, concerning my treatment of Enin’s data, Alimov remarks 

first of all that his number of families is so small (11 + 14 = 25), that 

their treatment did not warrant the waste of either time or paper with a 

special non-linear scale. I will answer that by stating that, on the 

contrary, I aimed at showing that the image of a distribution function 

unlike that of a histogram allows to obtain sensible results even when 

having such a small sample size.  

    Then, Alimov states that it was possible to arrive at my conclusions  

by compiling an extended sample
1
. To some extent this is correct, but 

to some extent wrong. After taking samples of about the same size, the 

frequencies in Enin’s second sample will be closer to the theoretical 

magnitudes than Ermolaeva’s similar frequencies. This is seen in 

Alimov’s table (1978, p. 78). It can be therefore concluded, if 

Ermolaeva’s data are considered as a standard, that there is some 

trouble with Enin’s materials. 

    However, after calculating the chi-squared statistic (Tutubalin [iii]), 

a standard is not needed. Actually, Alimov (1978, pp. 80 – 81) 

believes that Enin’s data should be treated not by means of the normal 

distribution of the normed frequencies, but by a more subtle model. In 

principle, I completely agree, only that model should not be a mixture 

of binomial distributions (Alimov, p. 80, formula (21)), but it should 

directly consider the actual numerical strength of the families. A series 

of binomial trials would be obtained having a known number of trials 

and a known probability of success. Understandably, such a model is 

barely convenient and therefore the stupidest Monte Carlo method
2
 

will apparently be most effective for calculating the various pertinent 

probabilities. Thus, for example, the true distribution of the 

Kolmogorov statistic or some other statistic measuring the deviation 

from the Mendelian law can be determined. Since such statistics are 

rather diverse, we conclude that not only the electron or the atom but 

also the certainly carelessly constructed Ermolaeva’s tables are 

inexhaustible
3
.  
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Notes 

    1. Alimov [iv, § 2.1] introduced extended series of observations. O. S. 

    2. Without saying anything else, I note that Tutubalin himself applied that method 

in a joint paper (Tutubalin et al 2009, p. 189). O. S. 

    3. That the electron is inexhaustible is Lenin’s celebrated statement from his 

Materialism and Empirical Criticism (1909, in Russian). The notion of electron is 

intrinsically contradictory, so perhaps the author indirectly stated the same about 

those tables. Anyway, Lenin’s statement remains unjustified. O. S. 
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VI 
 

Oscar Sheynin 

 

On the Bernoulli Law of Large Numbers 
 

    Bernoulli considered (independent) trials with a constant probability 

of success, and rigorously proved that the frequency of success tends 

to that probability. Mises, however, treated collectives, totalities of 

phenomena or events differing from each other in some indication, and 

characterized by the existence of the limiting frequency of success and 

by irregularity. The latter property meant that for any part of the 

collective that limiting frequency was the same.  

    Alimov noted that artificially constructed collectives proved that the 

empirical frequency of success can become more stable as the number 

of trials increased, but have no limit. Therefore, the existence of that 

limit is an experimental fact. I have described his viewpoint in some 

detail in an Introduction to [v]. Tutubalin largely sided with Alimov. 

    In the same Ars Conjectandi, previous to proving the LLN, 

Bernoulli stated that his law was also valid in its inverse sense (and De 

Moivre independently stated the same with respect to the first version 

of the CLT proved by him in 1733). In other words, an unknown and 

even a non-existing probability (one of Bernoulli’s examples) could be 

estimated by the limiting frequency.  

    In a little known companion paper (1765) to his main memoir 

(1764), Bayes all but proved his own limit theorem explicating that 

inverse LLN. He did not make the final step from the case of a large 

finite number of trials because he opposed the application of divergent 

series which was usual in those times. That was done in 1908 by 

Timerding, the Editor of the German translation of Bayes, certainly 

without using divergent series. 

    Bayes – Timerding examined the behaviour of the centred and 

normed random variable η, the unknown probability, (η − Eη)/var η 

whereas the direct LLN dealt with the frequency ξ, (ξ − Eξ)/varξ. His 

main memoir became widely known and for a long time the Bayes 

approach had been fiercely opposed, partly because an unknown 

constant was treated as a random variable (with a uniform 

distribution). Note that varη > varξ which is quite natural since 

probability is only unknown in the inverse case. For attaining the same 

precision the inverse case therefore demands more trials than the direct 

law. Mises could have called Bayes his main predecessor; actually, 

however, he only described the work of the English mathematician, 

and inadequately at that. Bayes completed the first stage of the 

development of probability theory. 

    Alimov’s viewpoint was largely correct since he considered an  

incomparably more general pattern than Bernoulli and thought about 

the necessary checks, but he [iv] was too radical in denying important 

parts of mathematical statistics as also too brave in altering the Mises 

approach. To borrow an expression from Tutubalin [end of ii], he 

introduced the Mises approach of a light-weighted type.  
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    Concerning the rigor of the frequentist theory, witness Uspensky et 

al (1990, § 1.3.4):  

 

    Until now, it proved impossible to embody Mises’ intention in a 

definition of randomness that was satisfactory from any point of view. 

 

    I ought to add, however, that Kolmogorov (1963, p. 369) had 

essentially softened his viewpoint about that theory: 

 

    I have come to realize that the concept of random distribution of a 

property in a large finite population can have a strict formal 

mathematical exposition.  

 

    In the 19
th

 and 20
th

 centuries statisticians had been reluctant to 

justify their studies by the Bernoulli LLN. They did not refer either to 

the inverse law or to Poisson (which would not have changed much). 

Maciejewski (1911, p. 96) even introduced la loi des grands nombres 

des statisticiens that only stated that the fluctuation of statistical 

numbers diminished with the increase in the number of trials. 

Romanovsky (1924, pt 1, p. 15) stressed the natural scientific essence 

of the LLN and called it physical. Chuprov (1924, p. 465) declared 

that the LLN included either mathematical formulas or empirical 

relations and in his letters of that time he effectively denied that the 

LLN provided a bridge between probability and statistics. 
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